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PHYSIOLOGICALLY BASED 
PHARMACOKINETIC MODELING 
AND SIMULATION FOR 

DRUG CANDIDATE 
OPTIMIZATION AND 
SELECTION  

E
stablishing a therapeutically 
beneficial new chemical entity 
(NCE) can be broadly classi-
fied into research (discovery) 
and development phases. 
Drug development is gener-
ally divided into nonclinical 
(animal) and clinical (human) 

testing stages, with regulatory approval of 
an investigational new drug application sepa-
rating the two. In contrast, drug discovery 
does not require regulatory oversight and 
follows the general path of: target validation 
—> assay development —> high-throughput 
screening —> hit to lead —> lead optimiza-
tion (LO).  Promising drug candidates are 
selected and transitioned from late LO into 
nonclinical development, although the spe-
cific processes for doing so vary between 
organizations.

Along with potency and safety, a third key 
factor in determining an NCE’s viability as a 
potential clinical drug candidate is its ADME 
(absorption, distribution, metabolism, and 
excretion) properties. In the not-so-recent 
past, poor ADME properties were respon-
sible for more clinical drug trial failures than 
efficacy or safety.1  Typically ADME proper-
ties are initially evaluated in early LO with in 
vitro experiments, while more specific and 
resource-intensive in vivo exposure data is 
collected during later stage drug candidate 
optimization and selection. Both in vitro and 
in vivo data are used to assess for liabilities 

such as poor bioavailability, high clearance, 
potential for drug-drug interactions, etc. A 
more thorough mechanistic understanding 
of how ADME properties can be optimized 
has evolved in the past decade or so, which 
has enabled pharmaceutical scientists to 
select more robust NCEs. This enhanced 
understanding also enables earlier stage in 
silico modeling and simulation.

Human exposure predictions during the 
nonclinical development phase have also 
improved. Historically, compartmental phar-
macokinetic (PK) methods have used allome-
tric scaling of preclinical animal data to predict 
exposures in humans. In compartmental PK, 
the body is arbitrarily represented by either 
one or several theoretical compartments 
without specifying anatomy and physiology. 
These analyses, however, require in vivo data, 
which is often unavailable during early com-
pound optimization. Furthermore, allometric 
scaling in simple compartmental models has 
no mechanistic basis, which can limit the 
predictive ability. 

Physiologically based pharmacokinetic 
(PBPK) methods are an alternative approach 
to address these challenges. Although the 
concept of PBPK modeling is not new, its 
use within the pharmaceutical industry has 
been limited until recently following regu-
latory acceptance by the Food and Drug 
Administration. The PBPK approach utilizes 
anatomical and physiological parameters for 
either in silico/in vivo extrapolation (ISIVE) or 

in vitro/in vivo extrapolation (IVIVE), which 
predicts full PK in animal species or humans. 
These predictions require only a compound’s 
in silico or in vitro ADME properties. A sig-
nificant disadvantage of PBPK has been the 
complexity, requiring hundreds of differential 
equations and biopharmaceutical parameters. 
This shortcoming, however, has been recti-
fied in whole-body PBPK models incorpo-
rated within several commercially available 
software products such as PK-Sim (Bayer 
Technology Services), Simcyp (Certara), and 
GastroPlus (Simulations Plus, Inc.).

Traditionally PBPK modeling and simula-
tion is used in the late nonclinical to early 
clinical development space to support dose 
selection for first-in-human studies, potential 
drug-drug interaction effects, and possible 
exposure differences resulting from a change 
in formulation. This powerful methodology 
can, however, also be employed in the early 
to late discovery stage as discussed further 
in a few select examples below.

 
CASE STUDY EXAMPLES

In Silico/In Vivo Extrapolations for 
Estimating Oral Bioavailability 
A database of 62 drugs was constructed 
using literature data that included molecu-
lar structures, dose, and oral bioavailability 
(F%). The major reported clearance pathways 
for these compounds were all CYP medi-
ated.2 The total reported F% range across all 

brownl
Typewritten Text
Reprinted from the June 2016 issue of AAPS Newsmagazine. © 2016 American Association of Pharmaceutical Scientists. All rights reserved. Reprinted with permission.

brownl
Typewritten Text



A tool for sparing 
resources in 
the discovery 
environment.

By Siladitya Ray Chaudhuri, Ph.D., Johnson & Johnson; Michael B. Bolger, Ph.D., 
Simulations Plus Inc.; Michael Lawless, Ph.D., Simulations Plus Inc.; Anand 
Balakrishnan, Ph.D., Bristol-Myers Squibb; and John Morrison, Ph.D., Bristol-Myers 
Squibb 

compounds varied from 3 percent (fluphen-
azine) to 99 percent (diazepam, galantamine, 
glimepiride, indomethacin, and tamsulosin) 
with an overall average3 of 60 percent. These 
compounds were therefore representative of 
early drug candidates.

Bioavailability for each of the 62 drugs 
was predicted by integrating quantitative 
structure activity relationship modeling data 
and PBPK modeling data. GastroPlus utilizes 
an advanced compartmental absorption and 
transit model to estimate mechanistic absorp-
tion (MA) and PBPK.4 This simulates the pro-
cess by which orally dosed drugs dissolve in 
the stomach, transit into the intestine, are 
absorbed through the gut wall, and circu-
late systemically. The MA/PBPK model also 
incorporated estimates of intestinal absorp-
tion as well as both intestinal and liver first 
pass extraction. 

First pass extraction in the gut and liver 
was simulated using cytochrome P450 (CYP) 
metabolism models for 5 CYP isoforms 
(1A2, 2C9, 2C19, 2D6, and 3A4) within the 
ADMET Predictor software (Simulations 
Plus, Inc.). The initial step was to predict 
whether a drug molecule was a substrate 
for any of the 5 CYP isoforms, based upon 
substrate/nonsubstrate classification crite-
ria.5 Each of the 62 molecules was predicted 
to be a significant CYP substrate, which 
was consistent with their major reported 
clearance pathway.2 Furthermore, the CYP 
isoform with highest predicted intrinsic 

clearance (CLint) was the same isoform 
as the major reported clearance pathway 
for the majority of these molecules (68 
percent). Michaelis-Menten kinetic param-
eters6 were calculated for each compound 
and included in the MA/PBPK simulations. 
Overall, 69 percent of the compounds in 
this sample set had predicted F% values 
within twofold of their reported in vivo F% 
as shown in Figure 1.

In Silico/In Vivo and In Vitro/In 
Vivo Extrapolations for Predicting 
Plasma Concentration Profiles 
Following Oral Dosing
Risperidone is an antipsychotic drug molecule 
with physicochemical and biopharmaceuti-
cal properties consistent with many discov-
ery stage compounds. It is designated as 
a Biopharmaceutics Classification System  
IIb weak base compound with low aqueous 

Figure 1. Predicted versus Observed Oral Bioavailability (F%) for 62 Drug Molecules Simulated with an In Silico Mechanistic 
Absorption (MA) and Physiologically Based Pharmacokinetic (PBPK) Model

Notes:  i) Bioavailability (F%) values were estimated using in silico rCYP Km and Vmax values for gut and liver extraction as well as in silico physicochemical parameters 
with GastroPlus version 9.0 (Simulations Plus, Inc., Lancaster, CA 95354 USA).  ii) The model assumed a 35-year-old American male physiology.

brownl
Typewritten Text

brownl
Typewritten Text

brownl
Typewritten Text



solubility and high permeability.7  Table 1 lists 
in silico estimates and in vitro experimental 
values for the relevant properties.8-10

An MA/PBPK model was used to generate 
an in silico prediction of the plasma profile fol-
lowing oral administration of a two milligram 
immediate release (IR) tablet as shown in 
Figure 2a. This purely in silico model provides 
a reasonable approximation of the in vivo 
data. The simulated area under the curve 
was within 10 percent of the observed in 
vivo value, and both the Cmax and Tmax simu-
lations were within twofold of the observed 
in vivo values.

However, the addition of in vitro data fur-
ther improves the modeling accuracy. Ris-
peridone was reported by Fang et al to be a 
substrate for metabolism13 by CYP2D6 and 
CYP3A4, which was accurately predicted by 
ADMET Predictor. Although experimental 
values of Km for these enzymes were not 
reported, in silico estimates from the ADMET 
Predictor were used along with the reported 
Vmax values (Table 1). 
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Table 1: In Silico Estimates and Experimental In Vitro Values for Risperidone Physicochemical and Biopharmaceutical Properties 

PROPERTY ESTIMATE (in silico)a OBSERVED (in vitro) NOTES

Log P (octanol/water) 3.23 3.04 reference 9

Aqueous solubility  0.08 mg/mL 0.04 mg/mL Marcus Brewster private 
(pH 10.0)   communication (2010)

pKa (weak base) 7.8 and 3.0 8.2 and 3.1 reference 9

Jejunal Permeability (human) 3.35 x 10-4 cm/s - -

MDCK Cell Permeability - 19.8 x 10-6 cm/s reference 8

Blood/Plasma  0.69 0.67 reference 9
Concentration Ratio 

Fraction Unbound in Plasma 0.08 0.12 reference 10

Unbound CLint 167 µL/min/mg Prot. - -

CYP2D6 S+Km 2.69 µM N/A -

CYP3A4 S+Km 13.3 µM N/A -

CYP2D6 Vmax not reported 7.5 pmol/min/pmol  reference 13

CYP3A4/5 Vmax not reported 0.6 pmol/min/pmol  reference 13

a Estimates were obtained using ADMET Predictor (AP ver. 7.2) (Simulations Plus, Inc.)

Figure 2: Mechanistic Absorption and Physiologically Based Pharmacokinetic Modeling for a Two-Milligram Immediate-Release 
Oral Risperidone Tablet versus Clinical Data7 by a) In Silico/In Vivo Extrapolation (ISIVE) and b) In Vitro/In Vivo Extrapolation (IVIVE)  

Notes: i) Volume of distribution (Vd) was calculated using the mechanistic equations described by Rodgers, Leahy and Rowland11 as modifi ed by Lukacova.12 ii) Systemic 
clearance was estimated from rCYP linear CLint in the PBPK liver tissue for all enzymes predicted to metabolize risperidone. The predicted fraction metabolized (Fm%) 
for CYP enzymes were: 1A2 (1%), 2C19 (1%), 2D6 (20%), and 3A4 (78%). iii) GastroPlus version 9.0 and ADMET Predictor version 7.2 (Simulations Plus, Inc., Lancaster, 
CA 95354 USA). iv) The solid blue lines represent modeled plasma concentration, solid red lines represent the % dose dissolved, solid pink lines represent the % dose 
absorbed, solid orange lines represent the % of dose getting to the portal vein, and the solid black lines represent the % dose entering the systemic circulation. The 
blue squares indicate the clinical data.7 

Cp-Venous Return-Risper AP7.2 w all rCYP CLint
Cp-Venous Return-Risper AP7.2 w all rCYP CLint Obs
Cp-Venous Return-Risper AP7.2 w all rCYP CLint Err
Total Absorbed-Risper AP7.2 w all rCYP CLint
Total Dissolved-Risper AP7.2 w all rCYP CLint
Total to Portal Vein-Risper AP7.2 w all rCYP CLint
Total entering Sys. Circ.-Risper AP7.2 w all rCYP CLint

Cp-Venous Return-PO 2 mg IR Tablet IVIVE
Cp-Venous Return-PO 2 mg IR Tablet IVIVE Obs
Cp-Venous Return-PO 2 mg IR Tablet IVIVE Err
Total Dissolved-PO 2 mg IR Tablet IVIVE
Total Absorbed-PO 2 mg IR Tablet IVIVE
Total to Portal Vein-PO 2 mg IR Tablet IVIVE
Total entered Sys. Circ.-PO 2 mg IR Tablet IVIVE

Record: Risper AP7.2 w all rCYP CLint 
Total simulation time (h): 24

RESULT OBSERV SIMUL
Fa (%)  99 99.99
FDp (%)  0 99.99
F (%)  69 58.63
Cmax (ng/mL)  10.4 14.20
Tmax (h)  1.24 0.64
AUC 0-inf (ng-h/mL)  66.67 60.01
AUC 0-t (ng-h/mL)  63.07 57.39
CMax Liver (ng/mL)   110.4

Record: PO 2 mg IR Tablet IVIVE
Total simulation time (h): 24

RESULT OBSERV SIMUL
Fa (%) 99 99.94
FDp (%) 0 88.87
F (%) 69 59.11
Cmax (ng/mL) 10.4 11.49
Tmax (h) 1.24 1.2
AUC 0-inf (ng-h/mL) 66.67 74.89
AUC 0-t (ng-h/mL) 63.07 73.05
CMax Liver (ng/mL):  55.71

Risper AP7.2 w all rCYP CLint
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clinical values. These results illustrate the 
potential value of in silico property estimates 
and PBPK simulations for use in early dis-
covery and also demonstrate the value of 
in vitro experimental data when refining the 
early PBPK results.

Modeling and Simulation to 
Assess the Role of Physico-
chemical, Biopharmaceutical, and 
Formulation Properties on Oral 
Exposures
Historically, evaluation of early discovery drug 
candidate physicochemical, biopharmaceuti-
cal, and formulation properties required in 
vitro assays and preclinical in vivo testing. 
Despite the use of high-throughput solubility 
and permeability assays, the large number 
of early drug candidates to be evaluated 
imposes practical limits on the thoroughness 
of such assessments. Fortunately this data 
can instead be complemented with PBPK-
based tools for a more mechanistic early link 
to in vivo oral exposures.

In the early discovery space, in vivo 
resources are limited, and PBPK-based 
absorption modeling can provide a prelimi-
nary risk indication of key physicochemical, 
physiological, and formulation properties 
(Table 2). It must be noted that the reliability 
of such “bare bones” PBPK modeling is not 
equivalent to that for a clinical asset. How-
ever, the ability to triage compounds and 
refine the in silico models as additional data 
becomes available is invaluable. The use of 
PBPK-based simulations in early discovery 
enables pharmaceutical scientists to derive 
greater benefit for initially sparse datasets, 
identify risk factors, and prioritize appropriate 
follow-up studies.

CONCLUSIONS
The above examples help demonstrate the 
accuracy with which in vivo PK data can be 
simulated using either simple in silico inputs 
or more precise in vitro data. These simu-
lations also provide an efficient means to 
test mechanistic hypotheses, for instance, 
lysosomal trapping, CYP mediated clear-
ance, GI physiology implications, or food 
effects. Such models offer an opportunity for 
pharmaceutical scientists to provide critical 
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Furthermore, Risperidone’s relatively high 
log P and high basic pKa (Table 1) were antici-
pated to render the compound susceptible to 
lysosomal trapping in both enterocytes and 
hepatocytes as observed for other central ner-
vous system targeted drugs.14 This effect has 
been demonstrated in Caco-2 cells treated 
with bafilomycin A1 (an inhibitor of vacuolar-
type H+-ATPase).15 Relative to untreated cells, 
lysosomal pH increases, and the ion-trapping 
phenomenon for lipophilic weakly basic com-
pounds is diminished. Figures 3a and 3b show 
the in silico cellular simulations of Caco-2 
apparent permeability in the apical to baso-
lateral direction for Risperidone using Mem-
branePlus (Simulations Plus, Inc.), assuming 
lysosomal pH = 4.0 (untreated) and pH = 6.5 
(bafilomycin A1 treated), respectively. Both 
the rate and extent of Risperidone basolat-
eral transfer (blue curves) increased with the 

simulated bafilomycin treatment (blue curves 
in Figure 3b vs Figure 3a) and the lysosomal 
concentration (pink curve) greatly decreased 
indicating a strong potential for lysosomal 
trapping. 

Since lysosomal trapping cannot be directly 
simulated in the MA/PBPK model, enterocyte 
protein binding (at 92 percent bound) was 
used instead as a mechanistic surrogate. This 
had the effect of increasing the dwell time of 
Risperidone prior to crossing the basolateral 
membrane and entry into the portal vein. In 
addition, CYP metabolism as well as intestinal 
and liver first pass estimates were incorpo-
rated into the model for a two milligram IR 
tablet dose of Risperidone (Figure 2b). 

The F% for the IVIVE (Figure 2b) is similar 
to the ISIVE result (Figure 2a). However, the 
Cmax and Tmax results are much more accu-
rate—within 10 percent of the observed 

Table 2: Examples of Modeling and Simulation for Physicochemical, Biopharmaceutical, 
Physiological, and Formulation Properties on Oral Drug Exposures

APPLICATION  NOTES

Impact of changes in API properties (e.g., particle size, solubility, etc.) Reference 16

Assessing effects of pH-dependent solubility Reference 17

Impact of variability in GI physiology  Reference 18

Understanding effect of food on oral absorption Reference 19

Assessment of formulation choices Reference 20
 

Figure 3: Simulation of Caco-2 Apparent Permeability incorporating Lysosomal Trapping Modeling in a) Untreated Cells (lysosomal 
pH = 4.0) and b) Bafi lomycin A1 Treated Cells (lysosomal pH = 6.5)  

Notes: i) The model simulated a 21-day Caco2 cell culture. ii) The solid red, blue, and pink lines represent the total risperidone concentrations in the donor, receiver, 
and lysosomal compartments respectively.
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input during the early stages of compound 
design and optimization. It is anticipated 
that such resource-sparing modeling will 
become more prevalent in the drug discovery 
environment.

Learn more about the AAPS Drug Discovery 
and Development Interface section; visit the 
section’s webpage at www.aaps.org/DDDI. 

We want to know your opinion!
Please discuss the following question 
with your colleagues via the AAPS Blog. 
To find the blog entry associated with this 
article, visit http://aapsblog.aaps.org/tag/
aaps-newsmagazine.

How significant are in silico ADMET 
property estimations in decision making 
at the interface of drug discovery and 
development?
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