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ABSTRACT

This study demonstrates the use of an advanced machine-learning methodology to
characterize the diameter of a missile in flight in near-real time. In missile defense
scenarios, accurate characterization of an incoming missile facilitates selecting the
best possible countermeasures. High-fidelity modeling techniques generally have the
ability to produce good results; however, the computational cost of such applications
makes them impractical in a real-time scenario where results are needed quickly.
Solvers that use approximations to compute analytical solutions are faster than
physics-based models, but come at the cost of accuracy. Properly-trained artificial
neural network ensembles (ANMNESs) can provide accurate results in times on the
order of milliseconds. This is achieved by training the ANNEs on high-fidelity data
prior to running the application during a launch.

The goal of this proof-of-concept study was to predict the diameters of missiles in
flight using simulated radar data from the trajectories of single-stage missiles. A
large, representative set of missile scenarios was generated using the AERODSN
software by varying missile geometric parameters and launch configurations. This
method employed the missiles” velocity and altitude at rocket motor burnout and at
apogee as the independent variables; the prediction of diameter is then made within

milliseconds of apogee.
DATA

A simulated radar data set was created using a six-degree-of-freedom solid rocket
motor (SRM) fly-out code and was seeded using a Latin hypercube uniform
distribution. This resulted in over 3000 unigque missiles distributed throughout a
wide range of feasible designs. Each of the unique missiles had a single simulated
trajectory, with a launch angle of 65 to 85 degrees. A total of 35 geometric parameters
(as seen in Table 1).

| Parameter | __Max | Min ___Parameter __Max__|_Min__|

o Ty 0.43 037 | b%/Dyoy 16 12
Tnosel Bbody 23 1.7 | crua/Dody 1.332 0932
fuel type 3.15 3.05 | tryg 0.81 051
R, 0.637 0477 | tipameep 17.5 2.5
R, 0.19667 0.11667 | Xrgun 0.9925 09915
# of star p Auto- 5
points 7.25 415 P“Cﬂd‘.h_, 2 0.5
fillet,, ;.. 0.099 0.069 | 2unch 85 65
angle
epsilon, 0.96138 0.80138 | x, 44 3.6
point, e 10.53149 9.53149 | x,, 35 1
fractional nozzle exit
nozzle 092686 0.60686 | diameter 0.6 0.3
length ratio ratio
dipont/Droy 03693 0.2193 | Dumy 2 1
T/ N 1473367 1093367 | e, 5 1
Aooay 1.5 0.2 | dr, 0.025 -0.005
b2,y 0.0015 0.0005 | dty.q. 0.5 0.1
Cying/Dody 0.0015 0.0005 | psicor 0.00721 -0.00778
ring 0935 0.925 | 6x-z 40000 40000
WiEaweep 1.84921 0.84921 | 8x-y 40000 40000
XLEw 0.35643 0.34643

Table 1: Geometric missile parameters used to generate data set.

The candidate independent variables used to train the ANNs were based on the
state at motor burnout (in this case defined as the point at which the acceleration
along the flight vector is no longer positive) and at apogee (maximum altitude). At
each of these two critical points, four parameters were used to define the missile
state: time from launch, altitude measured from launch, the ground vector of range
from the launch point, and the velocity along the flight vector.

This meant that eight potential state descriptors (independent variables) were used
in training each ANNE. During training, the ANNE software (a prototype we call
AEROModeler™) includes filtering steps to select the descriptors that are most
informative and to eliminate descriptors that do not add statistically significant
information.

MODEL BUILDING

The eight potential state descriptors at the eritical points of each simulated
trajectory were used as potential independent variables, and the missile diameters
used to generate the simulated trajectories were the dependent variables. The
prototype AEROModeler software automates each of the following steps
necessary to build high-quality predictive models:

* Filtering to remove descriptors that are redundant and/or highly correlated,
have relatively small variance, or are underrepresented in the data set;

* Clustering of data points to ensure intelligent selection of training, verification,
and external test sets;

* Ranking descriptors by their effects on the predicted property (in this case,
missile diameter) for each ANNE architecture (numbers of inputs and neurons);

* Training multiple ANNES to allow selection of the most appropriate neural
network architecture (numbers of descriptors and neurons);

* Selecting the best ANNE to use as the final predictive model.
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Figure 2: Simple ensemble of artificial neural networks. Multiple networks are
trained separately, then averaged to produce the output value. This ensemble uses
6 inputs, 2 neurons, and 6 networks. (The best model in this proof-of-concept
study used 50 ANNs, each with 5 inputs and 14 neurons.)

From eight potential descriptors, five were selected by the modeling process to
best represent the encoded trajectory. The descriptors selected are shown in Table
2 with their sensitivities. The other three descriptors were filtered out by the
training process due to high correlation with other active descriptors.

sension

Velocity at burnout 0.661 1.000
Time at burnout 0.610 0.924
Range at burnout 0.484 0.732
Velocity at apogee 0.378 0.572
Range at apogee 0.261 0.395

Table 2: Selected descriptors for best performing ANNE.

Due to our novel encoding of the trajectory, we examined the correlation plots of
the descriptors versus the diameter of the missile for qualitative confirmation that
the descriptors would be modeled well. Below are samples of these plots. The
divergence in some of the plots that occurs around a 0.9 meter diameter is likely
due to the amplified effects of multiple combinations of star points and star point
radius in the solid propellant rocket motor designs used to generate the
trajectories.

Figure 4: Time at burnout vs.

Figure 3: Velocity at burnout
body diameter.

vs. body diameter.

Figure 5: Range at burnout vs.
body diameter.

Figure 6: Velocity at apogee
vs. body diameter.

Models were built using a variety of ANNE architectures. The best performance
was found with an ensemble of 50 ANNSs, each using the five inputs in Table 2 and
14 neurons in the hidden layer. Figure 7 shows the correlation between the
predicted and observed diameters across the entire data set, with 15% of the data
points in the external, held-out test set (shown in red). The final ANNE
performance for more than 3,000 missiles is very dense along the diagonal —the
outliers that fan out as diameter increases above (.9 meters are actually relatively
few in number. The overall RMSE is 0.066 for the test set (0.067 for all data),
indicating very accurate prediction performance.
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Figure 7: Plot showing correlation between predicted and
observed diameters in meters.

CONCLUSIONS

The prototype AEROModeler software program was used to characterize missile
diameters from simulated telemetry data at burnout and apogee. This method of
modeling could have applications as an aid to current and future missile defense
systems whose effectiveness could be enhanced with a better and more accurate
characterization of the target vehicle while in flight.

In future studies, other missile characteristics can be modeled across a wider
range of missile geometries and trajectories to provide greater discrimination
across various missile types. This study held certain parameters constant to
demonstrate proof-of-concept for a single geometric parameter (diameter).
Varying other parameters such as fuel type and various material densities, more
complex data sets could be generated and might accommodate coupling other
computational intelligence methods or other trajectory diagnostic tools such as
infrared analysis of the plume signature. Such multimodal analysis could also
allow models to address and overcome sandbagging (early termination of rocket
thrust). Additional information about the trajectory and the missile, such as
observed G-forces, images, or other intelligence, might unlock the ability to fully
characterize a missile in flight, and to do so earlier in the flight.
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