Descriptor sensitivity
analysis shows local
dependencies of
missile aerodynamic
coefficients in artificial
neural network models

“DSA identifies the key parameters driving the

model...”

“Excellent correlation was achieved between

predicted and observed coefficients...”

“Q2 values for different flow regimes

were 0.993 or higher with RMSEs of 0.297 or

lower”
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ABSTRACT

A variety of machine-learning methods has been applied to problems for which
physics-based solutions are either nonexistent or computationally expensive. Based
on such methods, surrogate models, i.e., empirical models that are trained on
outputs of the more computationally intensive methods, can provide acceptable
accuracy while dramatically reducing execution time, storage space, and expense.
This work describes the application of an artificial neural network ensemble (ANNE)
approach to train surrogate models that predict missile aerodynamic coefficients.
The surrogate models developed to predict aerodynamic coefficients for arbitrarily
shaped missiles at arbitrary Mach numbers and angles of attack have resulted in
highly accurate predictions that execute in milliseconds on a modern laptop
computer. The ability for rapid predictions can be integral to the design process for
missiles and other aerodynamic bodies, as well as to estimate flight capabilities for
observed missiles developed by others.

Building on previous work, we show how descriptor sensitivity analysis identifies
the key parameters driving the model performance independently for any point
within the parameter space, and relates inputs to outputs to help meet critical

design/mission objectives,
DATA

Data used to train these proof-of-concept models was generated by AERODSN using
a range of missile geometnes at various Mach numbers and angles of attack. Inputs
are normalized to ile diameter or length, as is typical.
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Figure 1: Missile geometry.

Mach number 0.20, 0.50, [).70, 0.90, 0.95, 1.05, 1.10,
1.15,1.20, 1.30, 1.40, 1.60, 2.00, 2.50,
3.00, 3.50, 4.00, 5.00

Fineness ratio 10

alpha (angle of attack, degrees) -2,2,5.812,18

b2_tail (tail semispan) 0.01,05,1, 2,35

crt (tail root chord) 001,051,235

trt (tail taper ratio, ctt/crt) 0, 0.00001, 0.2, 05,07, 0.9
Lam_TE (tail trailing edge sweep 0,5, 10

angle)

b2_wing (wing semispan) 0.01,05,1,25

crw (wing root chord) 0.01,05,1,25

trw (wing taper ratio, ctw/crw) 0, 0.00001, 0.2, 0.5, 0.7
Lam_TEw (wing trailing edge sweep  -10,0, 10

angle)

xwing (wing location) 1.5, 2:35

Table 1: Training data included combinations of these flight conditions and
geometric parameters.

Aerodynamic force coefficients were calculated in AERODSN for model training
and model testing for each geometric combination, resulting in approximately
500K data points for each Mach number.
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CN Normal force coefficient

CMeg Moment coefficient about the nose
CA Axial force coefficient

Table 2: Calculated values of these parameters were used as dependent
variables for training. Resulting models predict these outputs for novel
missile designs.
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Descriptor Sensitivity

The prototype AEROModeler’s new Descriptor Sensitivity Analysis (DSA) tool
enables point interpretation of model predictions in structural terms. DSA allows a
user to explore the relationship between each specific descriptor and the model
output in detail, for one data record (observation) at a time. This “local sensitivity”
is significantly different from “global” sensitivities often reported for models,
which try to average sensitivity across the entire data set. The sensitivity of a
coefficient to a particular input is “local” — dependent on the missile configuration
and flight conditions at each point. A coefficient may have very high sensitivity to
angle-of-attack when at high angle-of-attack for one missile geometry and Mach
number, but angle-of-attack may be less sensitive than another input for another
missile geometry at different flight conditions. Thus, this tool may provide useful
guidance on how to optimize a missile’s properties.

After a model is built, it can generate predictions not only for the original training
points, but for any hypothetical point within the parameter space used to train the
model (as well as extrapolation for a limited range beyond the training space). The
user can then select any point of interest, and each descriptor’s influence on the
modeled output can be examined. Such analysis can identify the key geometric
parameters affecting flight at a critical point, for instance, to guide design or to
avoid certain flight conditions by limiting flight dynamics via control algorithms.
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Figure 2: Local descriptor sensitivity
for a non-linear model

Equation 1: Definition of local
descriptor sensitivity

Excellent correlation was achieved between predicted and observed coefficients
for subsonic, transonic, and supersonic models. An overall model encompassing
all Mach numbers also shows high correlation between predicted and observed

coefficients.
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Figure 3: Subsonic. Correlation piot Figure 4: Transonic. Correlation plot
for predictions of CN at M=0.20, 0.50, for predictions of CN at M=0.90, 0.95,
0.70 and 0.90, modeled with 11 inputs ~ 1.05, 1.10, 1.15 and 1.20, modeled with
and 50 neurons. 11 inputs and 100 neurons.
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Figure 5: Supersonic. Correlation plot
for predictions of CN at M=1.2, 1.3, 1.4,
1.6,2.0,2.5, 3.0, 3.5, 4.0, 5.0, modeled

with 11 inputs and 100 neurons.

This poster was presented at the NSMMS 2015 Conference in Chantilly, VA.

£151 an 368 24 I
Predhcted

AL Sp=1002 =006 CSad=049 RMSE=0291 MAE=0.153
TEST: Sip=1.002 In=0.007 OSqd=0.993 RMSE=0.297 MAE=D.15%
Figure 6: Full Mach range. Correlation
plot for predictions of CN at M=0.2 to
5.0, modeled with 11 inputs and 50
neurons.
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Figures 7 and 8 show that in this sample observation, consisting of a selected
missile configuration and flight condition, the model for CN is most sensitive to
alpha, b2_tail, and b2_wing (tail and wing semispans), in that order. [Mach=0.95,
Fine=10, alpha=[-2,5], b2_tail=1, crt=1, trt=0.5, Lam_TE=5, b2_wing=1, crw=1,
trw=0.5, Lam_Tew= 0, xwing=2]
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Figure 7: Selected example depicting descriptor sensitivity for a transonic model
for a given missile configuration (alpha=5 degrees)
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Figure 8: Selected example depicting descriptor sensitivity for a transonic model
for a given missile configuration (alpha= -2 degrees)

Existing techniques using wind tunnel data, flight data, and CFD data achieve
good results, but are time-, CPU-, and capital-intensive. In this prototype effort,
we have demonstrated an advanced machine-learning method that could be
applied to wind tunnel, flight test sensor data, and CFD results for aircraft of
similar geometries and flight conditions to provide rapid and accurate
predictions of aerodynamic coefficients.

Further, we've shown how Descriptor Sensitivity Analysis (DSA) can be used to
explore which features are most critical to the design, not just globally, but at any
given point in the model space (geometry, attitude, and flight conditions).

To further the development of this tool, real wind tunnel and flight test data, as
well as high-fidelity CFD data, are needed to build extensive models for selected
scenarios, Working with real-world data would demonstrate the robustness of
the modeling capabilities in an environment of experimental error and real-
world physics instead of idealized conditions, and allow us to move forward
with modeling complex aircraft shapes such as those contained in the ‘Digital
Twin’ Initiative.
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