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I. Abstract 
 

 

Lipidic formulations (LFs) are increasingly utilised for the delivery of poorly–water soluble drugs 

to improve oral bioavailability.  In vitro lipolysis is capable of mimicking the lipid digestion process 

and therefore it is a suitable method for assessing the fate of drugs administered in LFs.  

Intestinal micellar solubilisation and first–pass metabolism are the main contributors to the oral 

bioavailability of drugs that belong to class II of the Biopharmaceutics Classification System 

(BCS).  The intraluminal solubility of BCS II drugs in LFs can be estimated with the in vitro 

lipolysis model, whereas the first–pass extraction ratio can be assessed by performing 

microsomal stability assays.  This thesis work proposes, for the first time, the combination of 

in vitro lipolysis and microsomal metabolism studies for the quantitative prediction of human 

oral bioavailability of BCS II drugs administered in LFs.  Marinol® (Δ9–tetrahydrocannabinol 

dissolved in sesame oil) and Neoral® (a lipidic self–emulsifying drug delivery system of 

cyclosporin A), were selected as model LFs.  The observed oral bioavailability (Fobserved) values 

were obtained from published clinical studies that described the oral administration of the 

selected LFs to human subjects.  Two different lipolysis buffers, differing in the level of surfactant 

concentrations, were used for digestion of the LFs. The predicted fraction of absorbed dose 

(Fabs) was calculated by measuring the drug concentration in the micellar phase, obtained after 

ultra–centrifugation of the lipolysis medium.  To determine the fraction of drug dose that 

escapes metabolism in the gut wall and in the liver (Fg∙Fh), microsomal metabolism stability 

studies with human intestinal and hepatic microsomes were performed.  Clearance values were 

determined by applying the “in vitro half–life approach”, which is based on the measurement of 

the first–order rate depletion constant of a drug substrate.  The estimated Fabs and Fg∙Fh values 

were combined for the calculation of the predicted oral bioavailability (Fpredicted).  For the model 

LFs tested, results showed there was a correlation between Fobserved and Fpredicted values only 

when Fabs was calculated with the buffer characterised by more bio–relevant (lower) surfactant 

levels.  The general accuracy of the predicted values, and the strong correlation shown with 

the clinical ones, suggests the novel in vitro lipolysis/metabolism approach could satisfactory 

quantitatively estimate the oral bioavailability of BCS II drugs administered in LFs. 
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Chapter 1: Introduction 

 

 

1.1. Introduction 

 

The application of high−throughput screening techniques in non−aqueous media, and the 

development of combinatorial chemistry to generate large pharmacologically−active compound 

libraries, are considered to be responsible for the marked lipophilicity and low water solubility 

of the new chemical entities in development [1, 2].  The investigation of previously unexplored 

drug targets associated with lipidic architectures, intracellular signalling pathways, and highly 

lipophilic endogenous ligands, further boost the prerequisite of lipophilic drug candidates to 

gain access and interact with the target [3].  Moreover, the need for increased potency, together 

with the realisation that receptor binding is partially mediated by hydrophobic interactions, 

further amplifies the probability that drug candidates will have limited aqueous solubility.  All 

these factors bias the recognition of poorly water−soluble drugs as hits during the early drug 

screening [4]. 

Despite efforts to develop drugs with favourable biopharmaceutical properties during lead 

optimisation phases, it was estimated that in 2005 around 40% of the top 200 marketed oral 

drugs were poorly water−soluble [5].  Subsequently in 2007, it was reported that up to 70% of 

the new active molecules in the development pipeline exhibited poor aqueous solubility [6].  

Since low aqueous solubility can be associated with poor oral bioavailability, it is clear that one 

of the main challenges for pharmaceutical scientists is finding novel formulations capable of 

improving the intraluminal solubility of poorly water−soluble drugs. 

 

 

1.2. Bioavailability of orally administered drugs 

 

Oral drug delivery is the most acceptable route of administration due to patient compliance 

and ease of administration.  Besides, the manufacture of oral formulations is low cost, since 

they do not need to be produced under sterile conditions [7].  Analysis of the top 200 
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prescribed pharmaceutical agents in 2011 showed that in, the US, 87% were administered orally 

[8]. 

Solubility and permeability are thought to be the most important barriers to oral absorption.  

The Biopharmaceutics Classification System (BCS) was proposed by Amidon et al. with the aim 

of predicting the in vivo performance of drug products from in vitro measurements of 

permeability and solubility [9] (Figure 1-1).  A compound is considered highly soluble if the 

highest dose strength is soluble in less than 250 mL of over a pH range of 1 to 7.5 at 37 °C.  

Whilst, a drug substance is regarded as highly permeable when the extent of absorption in 

humans is greater than 90% of the administered dose, in comparison to an intravenous 

reference dose [10]. 

 

 

Figure 1-1. Biopharmaceutical Classification System. (Reprinted with permission from Ref. 

[11], Copyright© 2008, Nature Publishing Group)  

 

Formulation strategies cannot do much to increase the poor membrane permeability of class 

III and IV drugs, with the best solution to improve the oral bioavailability of these drugs being 

at the chemical level, i.e. to go back to the lead optimisation phase of drug discovery and select 

a candidate with more suitable physicochemical properties [12].  On the other hand, the 

aqueous solubility of class II drugs can be increased through formulation approaches, so as to 

achieve a biopharmaceutical behaviour similar to class I drugs.  These formulation strategies 

(further described in sections 1.3 and 1.4) are either solid dosage forms designed to increase 

dissolution rate, or liquid dosage forms incorporating the compound already in solution [13]. 
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It is generally acknowledged that although there are some difficulties in differentiating solubility 

classes, the major uncertainty relates to the permeability assignment.  Thus, Wu and Benet [14, 

15] proposed a revision of the BCS, the Biopharmaceutics Drug Disposition Classification 

System (BDDCS), where the extent of permeability criterion is replaced with extent of 

metabolism (≥ 70% of the oral dose).  BDDCS class I compounds would then be designated as 

highly soluble and extensively metabolised; BDDCS class II drugs as poorly soluble and 

extensively metabolised; BDDCS class III drugs as highly soluble and poorly metabolised; and 

BDDCS class IV compounds as poorly soluble and poorly metabolised.  Benet and colleagues 

believed it will be easier and less ambiguous to determine the assignment of BDDCS classes 

based on the extent of metabolism than using permeability (i.e., extent of absorption) in BCS 

assignments. The usefulness of these new system and its implementation by regulatory agencies 

is yet to be seen.  On the contrary, the BCS has been widely applied for a long time, and has 

been adopted by several regulatory agencies, such as the World Health Organisation, the US 

Food and Drug Administration, and the European Medicines Agency [16]. 

However, the BCS only focus on the drug absorption processes, e.g. drug movement from the 

lumen into the enterocytes, as it is a formulation tool.  At this point, it is important to distinguish 

fraction absorbed from systemic bioavailability, which is often limited by first−pass 

biotransformations.  In general, before reaching the systemic circulation and exerting its 

pharmacological action, drugs that are orally absorbed must first escape metabolism in the gut 

lumen and in the liver (Figure 1-2).  Once in the enterocyte, a drug molecule can either be 

effluxed back into the lumen by transporter proteins, undergo intestinal metabolism, or be 

transported to the portal vein (or mesenteric lymph).  The fraction of drug in the portal vein is 

then transferred to the liver, where it can undergo hepatic extraction, which includes 

metabolism and/or excretion into the bile.  The combination of the extraction that a drug 

suffers in the intestine and in the liver is known as first−pass or pre−systemic metabolism.  

Consequently, apart from limited solubility in the intestinal lumen restricting absorption, the 

other main barriers to a BCS class II drug having sufficient bioavailability are gastrointestinal 

metabolism and hepatic extraction/metabolism processes [9].  Alterations in any of the factors 

that determine the oral bioavailability will affect systemic  drug concentrations , and therefore 

will determine the drug’s efficacy and adverse effects [17]. 
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Figure 1-2. Schematic representation of the barriers a drug must overcome to reach systemic 

circulation and the site of action.  Fabs: Fraction absorbed; F: absolute bioavailability; Fg: intestinal 

bioavailability; Fh: hepatic bioavailability; Eg: intestinal extraction; Eh: hepatic extraction. (Adapted 

with permission from Ref.[18], Copyright© 2003, Nature Publishing Group)  

 

 

1.3. Oral drug delivery strategies for poorly water−soluble drugs 

 

As indicated above, the rate−limiting factor in the absorption of poorly water−soluble drugs is 

intraluminal solubilisation.  Therefore, increasing the dissolution rate could potentially enhance 

absorption.  The following section summarises briefly the most common principles (excluding 

lipidic formulations, which are discussed in section 1.4) that have been applied to improve oral 

absorption of hydrophobic drugs in recent years. 

 

1.3.1. Salt formation 

Salt formation is the most common and successful method of increasing dissolution rate and 

solubility of drugs with ionisable functional groups.  Salts of weakly acidic and weakly basic drugs 

have, in general, higher solubilities than their corresponding acidic or basic forms [19].   The 

risk of precipitation out into the free acidic or basic forms upon pH changes in gastrointestinal 

fluids, represents the main challenge to formulation scientists when using this approach [20]. 
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1.3.2. Polymorphic and amorphous forms 

Generally, the lowest energy crystalline polymorph is chosen for development.  However, when 

the most thermodynamically stable polymorph of a drug has limited solubility and thus cannot 

achieve the systemic exposure required for efficacious therapy, an amorphous form or a 

metastable polymorph can be developed to provide medical benefit [21].  The reason for the 

improvement with these forms, is that the rate of dissolution of a high energy polymorph or 

amorphous form can be many times faster than that of the equivalent low energy material [4].  

However, isolation of thermodynamically unstable polymorphs or amorphous forms is 

challenging since, over time, they can recrystallize reverting back to the thermodynamically 

stable form.  This transformation can occur in solid state during storage or very quickly in 

solution [22, 23].   

 

1.3.3. Solid dispersions 

The term solid dispersions refers to formulations containing drug dispersed in an inert carrier 

matrix.  They are categorised in different classes, based on the molecular arrangement within 

the carrier: (a) crystalline solid dispersions, where the drug is partially dissolved and the excess 

is suspended in the crystalline form; (b) amorphous solid dispersions, where the drug is partially  

dissolved and the excess is suspended in the amorphous state; and (c) solid solutions, where 

the drug is completely dissolved, this is molecularly dispersed [24].  The dissolution rate of a 

poorly water−soluble drug in a solid dispersion is increased via several mechanisms, including 

but not limited to increasing the surface area as a result of a reduction in drug particle size up 

to the molecular level and the impediment of aggregation and enhancing solubility by formation 

of a supersaturated solution and stabilisation of the drug in more soluble metastable 

polymorphic or amorphous form [25].  There are few marketed solid dispersion products.  This 

a reflection of the difficulties in their use, in particular the thermodynamic instability of the drug 

in the non−crystalline state [4]. 

 

1.3.4. Cyclodextrin complexation 

Cyclodextrins are macrocyclic oligosaccharides produced by enzymatic conversion of starch.  

Their molecular structure consists of a hydrophilic outer surface and a non−polar inner cavity.  
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Hydrophobic drug molecules are capable of interacting with cyclodextrins through 

non−covalent bonds and form inclusion complexes [26].  The higher solubility of these 

complexes, compared to the solubility of the drug alone, can increase apparent solubility by 

several orders of magnitude [27].  Besides, compounds labile to chemical or enzymatic 

degradation can be effectively protected if incorporated into cyclodextrins.  However, the 

nature of the drug−cyclodextrin interactions dictates that solubilisation within cyclodextrins is 

molecularly specific, thus only molecules that “fit” in the inner cavity can be incorporated in 

these macrocyclic structures [28]. 

 

1.3.5. Particle size reduction 

The dissolution rate of a drug is a function of its intrinsic solubility and its particle size.  When 

the particle size is reduced, the larger surface area available for solvation allows an increase in 

the rate of dissolution [29, 30].  Micronisation using dry−impact processes has been used for 

many years to obtain particles commonly between 2 and 5 μm [31].  Despite micronisation 

leading to an enhancement of the drug dissolution rate, it does not change the saturation 

solubility.  The development of wet−milling technologies together with the more extended 

utilisation of surfactant and polymeric stabilisers, led to the production of particles in the 

nanometre range (200–500 nm) [32].  Nanoparticles present a dramatic enlargement of the 

surface area to mass ratio.  In addition, drug nanoparticles are capable of increasing the 

saturation solubility, since the size−dependency of this property only plays a role when particles 

are smaller than 1 μm [33].  However, the formulation of drug nanoparticles is not trivial.  

Nanoparticles are very cohesive and tend to aggregate, therefore stabilisation of drug powders 

is needed.  Furthermore, the high shear forces required to reduce particles to nano−size ranges, 

might induce changes in the crystal lattice, and introduce undesired amorphous behaviour [4].   

 

 

1.4. Lipidic formulations 

 

Lipidic and surfactant excipients are commonly used to formulate drugs already in solution [13, 

34].  These formulation platforms are known as lipid−based drug delivery systems, lipid−based 
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formulations, or simply lipidic formulations (LFs).  The following sub−sections will review the 

development, characterisation and utilisation of oral LFs. 

 

1.4.1. Rationale behind the use of lipidic formulations 

Lipids are a group of naturally occurring hydrophobic and amphipathic small molecules, that 

include fatty acids, mono−, di− and triglycerides, phospholipids, waxes, eicosanoids, 

sphingolipids, sterols, terpenes, prenols and fat−soluble vitamins. Their main biological functions 

are to store energy, form structural components of cell membranes, and act as signalling 

molecules.  In addition, lipids play an important role in enhancing the desirability and palatability 

of many food products [35, 36]. 

Both lipids and hydrophobic drugs are characterised by low water solubility and relatively high 

lipophilicity.  However, whereas the oral absorption of poorly water−soluble drugs is low and 

erratic, dietary lipids are typically well absorbed (around 95%), even at “doses” as high as those 

characteristic of the Western diet (100 g or more, which constitutes 40% of the total energy 

intake).  The efficiency of lipid absorption reflects the existence of a specialised lipid−digesting 

pathway that avoids the problems of low intraluminal solubility and lead to efficient solubilisation 

of dietary lipids within the gastrointestinal tract [37–39]. 

For many years now, it has been realised that the intake of food, notably lipids, can have positive 

effects on the absorption and bioavailability of drugs [40].  However, the variability of food 

ingestion patterns and food components as a function of health condition, time of the day, age, 

or cultural environment, makes clinical prescription of drugs co−administered with food very 

difficult [4].  The co−administration of poorly water−soluble drugs with formulated lipids 

reduces the variability associated with the food effect, and provides the advantages of the 

endogenous lipid processing pathway to support drug solubilisation and absorption.  

 

1.4.2. Digestion and absorption of lipids in the gastrointestinal tract 

The digestion process of triglycerides – the major components of dietary lipids – starts almost 

immediately after food ingestion.  In the mouth, food is broken down and mixed with saliva by 

chewing, whereby the surface area is increased and a food bolus is formed.  This bolus is 

swallowed and transferred from the oesophagus to the stomach, where enzymatic hydrolysis 



 1.  Introduction 

Page | 8  

 

of triglycerides begins.  Around 10% to 30% of the total triglycerides may be digested in the 

stomach by the action of gastric and lingual lipases, secreted by the chief cells in the gastric 

mucosa and the serous glands on the tongue, respectively [38, 39].  Both enzymes hydrolyse 

triglycerides preferentially at the sn−3 position resulting in the formation of diglycerides and 

fatty acids [37, 41, 42].  The action of lingual and gastric lipases together with the mechanical 

mixing by peristaltic and segmental contractions, promotes the formation of coarse lipid 

emulsions that increase the surface area, and facilitates subsequent intestinal lipolysis.  Digestion 

and absorption of lipids occurs mostly at the upper part of the gastrointestinal tract [43].  When 

chyme enters the duodenum, cholecystokinin secretion from epithelial cells is triggered by the 

presence of fatty acids, which in turn stimulates the release of pancreatic juice and bile into the 

duodenum, from the pancreas and gall bladder, respectively.  Furthermore, it has been 

demonstrated that the presence of lipid emulsion in the distal part of the small intestine 

activates the so called “ileal brake”, which leads to a delay in gastric time and small intestine 

motility, and therefore increases the time available for digestion and absorption [44]. 

Pancreatic juice contains digestive enzymes, including pancreatic lipase, pancreatic co−lipase, 

and phospholipase A2 [45].  Water (~84%), bile salts (~11.5%, mainly sodium glycholate and 

sodium taurocholate), phospholipids (~3%, essentially phosphatidylcholine), and cholesterol 

(~0.5%) are the major solutes of bile [40].  Additionally, bile contains bicarbonate that, together 

with the alkaline mucus secreted by the Brunner’s glands in the duodenum, neutralises the acidic 

chyme providing an optimum pH for the action of pancreatic lipase.  Bile components are 

natural surfactants that decrease the lipid−water interfacial tension facilitating the formation of 

smaller oil droplets and stabilising the oil−in−water emulsion.  This emulsification is important 

as pancreatic lipase can only act at the oil−water interface of lipid droplets [40].  Nonetheless, 

high concentrations of bile salts may have an inhibitory effect and restrict the access of 

pancreatic lipase to emulsion interfaces [46].  The action of the co−factor pancreatic co−lipase 

is crucial, since it binds to the interface of lipid droplets acting as an anchor site for pancreatic 

lipase, which otherwise would be desorbed by bile salts.  In addition, recent studies of the 

X−ray crystal structure of the lipase/co−lipase complex suggest that another function for 

co−lipase is maintaining the active conformation of pancreatic lipase by stabilising the lid domain 

in the open conformation, thereby facilitating lipolysis [47, 48]. 
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Pancreatic lipase hydrolyses triglycerides at the sn−1 and sn−3 positions generating one 

2−monoglyceride and two fatty acids per triglyceride.  It has been reported that 

2−monoglycerides can slowly isomerise to 1/3−monoglycerides and be subsequently lipolysed 

releasing a third fatty acid and glycerol, as depicted in Figure 1-3 [49–52]. 

In addition to triacylglycerol lipases, there are other important lipolytic enzymes that act within 

the gastrointestinal tract.  Phospholipase A2 hydrolyses phospholipids at the sn−2 position 

releasing lysophospholipids and fatty acids, whereas carboxylester hydrolase breaks down 

cholesteryl ester to yield cholesterol.  Lysophospholipids, cholesterol and bile salts arrange 

themselves into mixed micelles [71].  Mixed micelles incorporate the products of lipid digestion 

and serve as vehicles to the apical brush border membrane of the enterocytes.   

 

 

 

Figure 1-3. Lipolysis of a triglyceride (TG) by pancreatic lipase. Pancreatic lipase shows the 

same selectivity towards the hydrolysis at positions sn−1 and sn−3 of the triglyceride when the 

fatty acid (FA) side chains are identical.  DG: diglyceride; MG: monoglyceride.  (Modified from 

Ref. [53], under the terms of the Creative Commons Attribution License, CC BY, 2016) 

 

The unstirred water layer represents the next barrier for lipid absorption, as it is situated on 

the apical side of the enterocytes.  It consists of a complex aqueous glycoprotein network, 

characterised by a lower pH compared with the bulk adjacent intestinal fluid, with which it is 

poorly mixed.  Inclusion of lipolytic products into mixed micelles, which are characterised by 

high surface area–mass ratios, is necessary to maintain solubilisation and to generate structures 

that are small enough to quickly diffuse across the unstirred water layer [39, 54].  The exact 
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mechanism by which lipolysis products are absorbed into the enterocytes remains unknown 

(Figure 1-4).  Mixed micelles are not thought to be absorbed intact.  It is assumed that due to 

the lower pH area within the unstirred water layer, micelles are destabilised so fatty acids, and 

2−monoglycerides can cross the apical membrane alone [55].  It has been proposed lipolytic 

products can be absorbed by passive diffusion [56] or by carrier−mediated transport [57].  It is 

believed that the former dominates at high lipid concentrations, whereas the latter is more 

common at low fatty acid and 2−monoglyceride levels.  Alternatively, lipolytic products can be 

directly transferred through collision of mixed micelles against the brush border; or colloidal 

vehicles may undergo vesicular−mediated uptake and this may be initiated by binding to a 

transport protein on the apical membrane.  In addition to influx transporters, several transport 

proteins have been identified (e.g. P–glycoprotein) that efflux lipidic compounds back into the 

intestinal lumen [58].   

 

 
Figure 1-4. The unstirred water layer and mechanism of lipid absorption.  FA: fatty acid.  

(Reprinted with permission from Ref. [58], Copyright© 2007, Nature Publishing Group) 

 

Once in the enterocyte, digestion products derived from short− and medium−chain triglyceride 

diffuse across the cytosol, enter the underlying lamina propria, and get access to the portal vein.  

By contrast, the lipolysis products resulting from the lipolysis of long–chain triglycerides (which 

are more lipophilic than their shorter counterparts) travel to the endoplasmic reticulum, and 

are re−esterified and incorporated into lipoproteins.  Analogously, absorbed lysophopholipids 

can be re–esterified to phospholipids, and cholesterol can be esterified to form cholesterol 
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esters by the enzyme acyl–CoA cholesterol acyltransferase.  Re−synthesised triglycerides, 

phospholipids, free cholesterol and cholesterol esters are then assembled into lipoproteins.  

Chylomicrons are the largest major type of lipoproteins (ranging from 75 to 1200 nm), and 

consist of a hydrophobic core of triglycerides and a polar outer surface of apolipoproteins and 

phospholipids [59–61].  After formation, chylomicrons are transported to the Golgi apparatus, 

exocytosed from the enterocyte into the intercellular space, where they are unable to enter 

the systemic circulation due to their large size and are taken up into the lymphatic system 

instead [58, 62]. 

 

1.4.3. Mechanisms of bioavailability enhancement by lipidic formulations 

Dietary and formulation lipids, together with lipidic excipients, can affect the bioavailability of 

co–administered poorly water−soluble drugs via several mechanisms, which can be broadly 

grouped into those that promote solubilisation in the intestinal lumen, those that facilitate 

permeability into the enterocytes, and those that reduce pre–systemic metabolism [4]. 

 

1.4.3.1. Mechanisms that enhance solubilisation 

LFs deliver the drug to the gastrointestinal tract in solution, avoiding the need for wetting and 

dissolution associated to solid dosage forms.  Upon contact with the gastrointestinal fluids, LFs 

form emulsions in which the drug remains solubilised.  Simple solutions of drug in oils are 

unlikely to suffer drug precipitation since they are dispersed in the gastrointestinal fluids.  LFs 

that include large quantities of water–soluble co–solvents and surfactants, facilitate the 

formation of emulsions of particles with sizes in the nano–size range, and therefore increase 

the surface area available for lipolysis.  However, these sophisticated LFs could increase the risk 

of drug precipitation since the solubilising capacity of hydrophilic co–solvents and surfactants 

might be lost upon dilution in the intestinal milieu.  In general, highly lipophilic drugs would 

accumulate in any remaining undigested oil, whereas less lipophilic drugs would more easily 

travel from the processed LFs into solubilising colloidal species, such as mixed micelles. 

LFs further influence solubilisation by stimulating the secretion of endogenous solubilising agents 

(cholesterol, phospholipids, and bile salts), and by supplying additional exogenous solubilising 

components (formulation–derived lipids, surfactants and co–solvents), in the intestinal lumen.  



 1.  Introduction 

Page | 12  

 

The arrangement of lipolytic products with biliary−derived components leads to swollen mixed 

micelles, characterised by high solubilisation capacities for poorly water−soluble drugs, and 

capable of promoting mass transfer across the unstirred water layer [63–65].  

Furthermore, LFs are capable of triggering the “ileal brake”, leading to an increase in the time 

available for digestion and absorption [44] 

 

1.4.3.2. Mechanisms that facilitate permeability  

LFs may promote absorption across the apical membrane of the enterocytes by enhancing 

passive membrane diffusion, and by inhibiting drug efflux transporters.   

Digestion products derived from short– and medium–chain triglycerides are known to induce 

paracellular transport through tight junction permeability changes [66, 67].  Whilst, surfactants 

in LFs have been reported to enhance transcellular diffusion by increasing the membrane fluidity 

of enterocytes [68, 69]. 

Recently, numerous publications have focused on studying the ability of LFs to facilitate drug 

permeation through direct and indirect inhibition effects on efflux transporters.  Proposed 

mechanisms for transporter inhibition include direct interaction with the transporter [70], 

changes to transporter expression [71], and indirect destabilisation of the protein by changing 

the fluidity of the membrane lipidic domain [72].   

 

1.4.3.3. Mechanisms that reduce pre–systemic metabolism: Stimulation of the 

lymphatic transport………………………………………………………  

Lipidic excipients may have an impact on first–pass metabolism either indirectly by interaction 

with efflux transporters, or directly by stimulation of the lymphatic system.  

The “drug efflux−metabolism alliance” is a model that links the activity of metabolic enzymes 

and efflux transporters in the gut wall, and proposes that efflux increases the time available for 

enterocyte–based metabolism [73, 74].  Accordingly, the inhibition of efflux proteins by lipidic 

components might be expected to decrease pre–systemic extraction in the gastrointestinal 

tract, by reducing the time available for metabolism.  

As previously mentioned in section 1.4.2, after enterocyte uptake, some digestion products 

(specifically, fatty acids and 2–monoglycerides derived from long–chain triglycerides) are re–
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esterified and incorporated into chylomicrons (Figure 1-5).  After formation, chylomicrons 

are expelled from the intracellular space, and enter the lymphatic capillaries near the small 

intestine (lacteals).  Taking into account the differences in flow between blood and lymph (500:1, 

v/v), and that only 1% of lymph is made of chylomicrons, a drug requires a partition coefficient 

of at least 50,000 (logD7.4 > 5) in favour of lymph rather than blood to be transported via the 

lymphatic pathway [58].  Another requirement specified by Charman and Stella [59] is that drug 

solubility in triglycerides needs to be higher than 50 mg/mL for solubilisation within the 

chylomicron core.  However, it has been shown that these two physicochemical properties are 

not sufficient alone to quantitatively predict association with chylomicrons [75], which seems 

to be a critical step in estimating the degree of intestinal lymphatic transport of lipophilic 

molecules [61].  Gershkovich et al. [61] suggested that the combination of logD7.4, degree of 

ionization, polar surface area, number of hydrogen acceptors and donors, density, molar volume 

and freely rotatable bonds describes the process of uptake of drugs by chylomicrons more 

accurately than any single physicochemical property.  

Intestinal lymphatic transport provides two clear advantages over portal blood transport.  First, 

the mesenteric lymph drains directly into the systemic circulation i bypassing the liver.  

Therefore, drugs that are transported through the lymph experience an increase in systemic 

exposure as a result of a reduction in first–pass metabolism [76].  For poorly water−soluble 

drugs suffering from very high first–pass metabolism, lymphatic transport accounts for the 

delivery of most of the bioavailable drug to the systemic circulation, even when the overall 

extent of lymphatic transport is very low (e.g. testosterone) [4].  The second advantage is the 

possibility of effectively targeting the lymphatic system with drugs transported in chylomicrons.  

Lymphatic targeting can be potentially beneficial in the treatment of autoimmune diseases [58], 

HIV [77],  and metastatic processes [78]. 

LFs are capable of stimulating lipoprotein formation and therefore intestinal lymphatic lipid flux 

[58].  Examples of compounds formulated in long–chain lipids, in which lymphatic transport has 

been shown to improve oral bioavailability in animal models, include lipophilic cannabinoids in 

                                                           
i The thoracic lymph duct drains into the systemic circulation at the left subclavian vein. 



 1.  Introduction 

Page | 14  

 

peanut oil [79], halofantrine in soybean oil and glycerol monolinoleate [80], and 

dichlorodiphenyltrichloroethane in oleic acid [81]. 

 

 

Figure 1-5. Access to the lymphatic system by lipids and lipophilic drugs within the enterocyte.  

TG: Triglyceride; MG: monoglyceride; FA: fatty acid; LP: lipoprotein.  (Adapted with permission 

from Ref. [82], Copyright© 2015, Nature Publishing Group) 

 

 

1.4.4. Lipidic excipients: The Lipid Formulation Classification System 

Oral LFs may be liquid, semi–solid, or solid at room temperature, and comprise a wide range 

of formulations, spanning from solutions, to emulsions, liposomes, and lipid nanoparticles.  

Liquid LFs are convenient for patient populations with swallowing difficulties (children and the 

elderly), and useful in pre–clinical studies, since they are relatively fast to formulate, and may 

be administered by oral gavage at a range of doses to animals [83].  Nonetheless, soft or hard 

gelatine capsules containing LFs in the liquid state, are commonly preferred for clinical 

applications.  Lately, solid and semi–solid LFs, although more time– and money–consuming to 

develop, are gaining popularity, as they diminish the possibility of leakage and incompatibilities 

on storage [84]. 
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Because LFs include such a diverse group of formulations with different properties, some 

classification systems have been proposed over time.  Pouton [12, 85] proposed the Lipid 

Formulations Classification System (LFCS) to aid comparison of published data from other 

laboratorios (Table 1-1).  In time, the LFCS has become the most common system for 

categorising LFs into four classes, depending on their composition, and the effect of digestion 

and dilution on their ability to prevent drug precipitation [13].  

Type I LFs consist of drug solubilised in triglycerides, and/or mixed di– and monoglycerides.  

Commonly used excipients are vegetable oils, LabrafacTM, and Capmul®.  Type I LFs show the 

advantage of being simple, biocompatible (excipients are classified as GRAS ii by regulatory 

agencies), easy to fill in capsules, and resistant to precipitation on capsule rupture in the 

stomach.  However, Type I LFs require digestion (except for monoglycerides) in order to 

generate more amphiphilic lipolytic products, and subsequently promote drug partitioning into 

the aqueous micellar phase.  Moreover, due to their high lipophilicity, the solvent capacity is 

limited to drugs with high logPs (above 4). 

The addition to Type I LFs of a lipid–soluble surfactant with a hydrophilic–lipophilic balance 

(HLB) lower than 12, transforms them into Type II LFs.  Examples of lipophilic surfactants 

include fatty acid esters of propylene glycol (lauroglycol, capryol), and fatty acid esters of 

sorbitan (Spans®).  The inclusion of a surfactant (20–60% w/w) creates an isotropic mixture 

that promotes emulsification, and may improve solvent capacity.  Upon contact with water and 

with energy input, Type II LFs emulsify to give lipidic particle sizes that range from 200 nm to 1 

μm.  These formulations minimise the risk of drug precipitation upon dilution in the 

gastrointestinal fluids, as they are comprised of hydrophobic compounds, and the importance 

of digestion is not as critical as in Type I LFs.  However, the limited number of approved 

lipophilic surfactants have limited the number of Type II systems, and there does not seem to 

currently be any marketed product using this type of formulation. 

Type III LFs are comprised of a drug dissolved in a mixture of lipids and water–soluble 

surfactants (HLB > 12).  These LFs may or may not contain co–solvents (0–40% w/w) such as 

ethanol, propylene glycol, or polyethylene glycol.  Typical examples of hydrophilic surfactants 

                                                           
ii GRAS: Generally Recognised as Safe 
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are polyethylene glycol esters of fatty acids (Labrasol®, Gelucire®), castor oil ethoxylates 

(Kolliphor®), sorbitan ester ethoxylates (Tween®), and tocopheryl polyethylene glycol 

succinate.  In contrast to Type II systems, Type III LFs are self–emulsifying drug delivery systems, 

since they are able to spontaneously form very fine and thermodynamically stable dispersions 

(particle size < 250 nm), upon contact with gastrointestinal fluids.  Type III systems are further 

divided in two categories, based on the proportions of hydrophilic components and the particle 

size of the generated emulsions.  Accordingly, Type IIIA LFs are characterised by a lower 

amount of surfactants and co–solvents (20–60% w/w) and bigger lipid droplets (100–250 nm), 

compared to Type IIIB systems (> 80% w/w non lipidic excipients, 50–100 nm particle size).  

Type III LFs offer enhanced solubilisation capacity, and reduce the importance of lipolysis, since 

drug absorption is possible even without excipient digestion.  Nonetheless, the chance of 

precipitation upon dilution is increased, as they contain higher amounts of hydrophilic 

components.   

Type IV LFs are lipid–free mixtures of surfactants (water– and/or lipid–soluble) and co–solvents.  

Because lipids are not incorporated, Type IV systems are characterised by the highest solvent 

capacity. They allow the solubilisation of drugs that are hydrophobic but not lipophilic, permit 

higher drug loading, and are barely influenced by digestion.  However, Type IV systems are the 

most susceptible category to drug precipitation upon dispersion, as the majority of their 

components are water–miscible.  In addition, when drugs are administered chronically, high 

content of surfactants may cause local irritation in the gastrointestinal mucosa [86].   

The LFCS is a useful and practical attempt to classify the large variety of lipidic systems, but it 

shows some limitations.  As such, numerous LFs in the market or reported in research articles 

do not strictly fit in any of the categories defined by Pouton and co–workers.   
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Table 1-1. The Lipid Formulation Classification System by Colin W. Pouton.  

 
Type I Type II 

Type III 
Type IV 

Type IIIA Type IIIB 

C
o

n
te

n
t 

o
f 

fo
rm

u
la

ti
o

n
 (

%
, 

w
/w

) 

TG or 

mixed MG 

and DG 

100 40-80 40-80 < 20 - 

Water-

insoluble 

surfactants 

(HLB < 12) 

- 20-60 - - 0-20 

Water-

soluble 

surfactants 

(HLB > 12) 

- - 20-40 20-50 30-80 

Co-solvents - - 0-40 20-50 0-50 

Characteristics 

Non-

dispersing; 

requires 

digestion 

SEDDS 

without 

water-

soluble 

components 

SEDDS/ 

SMEDDS 

with water-

soluble 

components 

SMEDDS 

with water-

soluble 

components 

and low oil 

content 

Oil-free 

formulation 

based on 

surfactants 

and co-

solvents 

Advantages 

GRAS 

status; 

simple; 

excellent 

capsule 

compatibili

ty 

Unlikely to 

lose solvent 

capacity on 

dispersion 

Clear or 

almost clear 

dispersion; 

drug 

absorption 

without 

digestion 

Clear 

dispersion; 

drug 

absorption 

without 

digestion 

Good 

solvent 

capacity for 

many drugs; 

disperses to 

micellar 

solution 

Disadvantages 

Poor 

solvent 

capacity 

unless drug 

is highly 

lipophilic 

Turbid o/w 

dispersion 

(particle size 

0.25–2 μm) 

Possible loss 

of solvent 

capacity on 

dispersion; 

less easily 

digested 

Likely loss of 

solvent 

capacity on 

dispersion 

Loss of 

solvent 

capacity on 

dispersion; 

may not be 

digestible 

MG, DG, TG: mono–, di–, tri–glyceride; HLB: hydrophilic–lipophilic balance; S(M)EDDS: self 

(micro) emulsifying drug delivery system; GRAS: generally recognised as safe; o/w: oil in water. 

(Adapted with permission from Ref. [12], Copyright© 2006, Elsevier B.V.) 
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1.5. Assessment of oral drug delivery systems 

 

In vitro tests for reliable prediction of the solubilisation behaviour of a drug under bio–relevant 

conditions are essential at early stages of formulation development.  Unfortunately, in vitro tests 

often fail the in vitro–in vivo correlations (IVIVCs) for BCS class II drugs mainly due to poorly 

reproduced physiological conditions such as composition, volume, and static environment of 

classical dissolution tests, that also do not account for intestinal permeability and/or metabolism 

[87].  

 

1.5.1. Bio–relevant media 

Prediction of the fate of a drug in the gastrointestinal tract generally requires adequate 

simulation of the conditions in the stomach and the proximal part of the small intestine [88].  

The United States Pharmacopeia (USP) proposed the Simulated Intestinal Fluid (SIF) [89]  

consisting of phosphate buffer pH 7.5 and large amounts of pancreatin.  SIF was later modified 

to pH 6.8 to better represent the pH environment of the proximal small intestine [90].  

Dressman and co–workers [91, 92] introduced the Fasted State Simulated Intestinal Fluid 

(FaSSIF), which contained bile salts and lecithin.  Recently, it was upgraded to FaSSIF–V2 [88], 

where the buffer was modified to maleic acid (to comply with physiological osmolarity and pH), 

and the concentration of phospholipid was decreased, to better reflect the in vivo situation, and 

increase the stability over time.  Alternatively, buffers based on bicarbonate species which 

incorporate a sophisticated double purging system of carbon dioxide and helium to establish 

and maintain the required pH, have been proposed as better surrogates for small intestinal fluid 

[93, 94]. Numerous media reflecting the contents of the small intestine in the post–prandial 

state have been developed.  In general, all these Fed State Simulated Intestinal Fluids (FeSSIFs) 

contain higher amounts of bile salts and phospholipids, and include monoolein and oleic acid to 

simulate lipid loading [95].  Despite the hard work dedicated towards the development of bio–

relevant media to better mimic in vivo drug dissolution/solubilisation, there are still a limited 

number of studies showing successful IVIVCs in humans [96]. 
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1.5.2. In vitro testing of oral dosage forms 

Disintegration testing is conducted to determine whether tablets or capsules disintegrate within 

the prescribed time when placed in a liquid medium at 37 °C [97].  The majority of LFs are oral 

solutions, or liquids loaded into soft or hard gelatine capsules that take up to 3 and 6 minutes, 

respectively, to disintegrate in the stomach [98].  Accordingly, disintegration tests do not seem 

to be useful for LFs assessment. 

After ingestion, LFs are presented to the gastrointestinal fluids in solution, and subsequently 

disperse.  Dispersion tests are performed to discriminate formulations that disperse slowly 

compared to  those that disperse rapidly, and thus lead to drug precipitation [4].  This test is 

particularly important for Types III and IV LFs which may lose solvent capacity upon contact 

with water, as a result of their water–miscible components migrating to the bulk water phase. 

Since the properties of LFs change dramatically by dilution and digestion, the assessment of 

drug solubilisation in bio–relevant media is critical.  The most commonly used and wide–spread 

dissolution tests are the USP apparatus.  The basket (type I) and the paddle (type II) apparatus 

allow dissolution testing in a single medium, at a defined pH.  The reciprocating cylinder (type 

III) apparatus allows better hydrodynamics and enables flexibility in the composition of the 

medium.  In the USP IV apparatus, the formulation is placed in a cell, where a medium passes 

through at a pre–defined rate.     

Most dissolution tests are performed using USP apparatus because they are quite simplistic 

[99].  However, these tests can often reflect poorly the in vivo situation, and thus additional 

models that reproduce drug transfer were introduced to improve predictability.  In these more 

sophisticated biopharmaceutical transfer tests, the formulation is initially dispersed in a gastric 

compartment and then is transferred to an intestinal compartment [100], and it could even be 

subjected to an absorption step [101].  Despite these tests being more bio–relevant than the 

USP apparatuses, they are still missing a key factor for LFs performance: the digestion step.  For 

this reason, the in vitro lipolysis model was developed.  
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1.6.  In vitro lipolysis model 

 

In vitro lipolysis model is capable of mimicking the lipid digestion process, and is consequently a 

suitable method to trace the solubilisation state of drugs delivered by means of LFs.  Although 

biochemists have been performing lipolysis experiments for many years, the implementation of 

this technique by pharmaceutical scientists has been slow.  Reymond and colleagues [102] 

published in 1988 the first in vitro lipolysis study in which the solubilisation of cyclosporin in 

olive oil was assessed.  Numerous studies have been reported since then [49, 103–109], and 

although experimental conditions and parameters vary among them, the concept and 

fundamental principles remain the same.   

The general protocol for in vitro lipolysis is based on the dispersion of the tested LF in the 

experimental medium consisting of FaSSIF.  The addition of the digestive enzyme (pancreatic 

lipase/co–lipase) to the medium initiates the lipolysis process which is allowed to proceed until 

the triglycerides breakdown is completed (or deliberately stopped by the addition of an enzyme 

inhibitor).  As a consequence of the triglycerides being hydrolysed, fatty acids are released, 

inducing a drop in pH.  In order to keep pH at a constant value throughout the experiment (to 

mimic in vivo conditions), a pH–stat titrator is used.  The instrument continuously measures and 

controls this transient drop in pH by equimolar titration with a basic solution. 

After completion of the lipolysis process, the digestion medium is commonly subjected to 

density−gradient separation.  Ultra–centrifugation of the lipolysis mixture usually affords three 

distinct layers (Figure 1-6): (i) an upper lipid phase, containing undigested tri− and diglycerides; 

(ii) a middle aqueous−micellar phase, containing colloidal structures (mixed micelles formed by 

bile salts, lysophospholipids, fatty acids and monoglycerides) within which poorly water−soluble 

drugs are solubilised, and (iii) a lower sediment phase, comprising fatty acids’ calcium soaps.  

Drug concentration in the micellar phase is of particular interest, as the working hypothesis of 

the researcher groups working with the model, is that only drug solubilised in the micellar layer 

is available for absorption.  On the other hand, drug contained in the lipid and pellet phases is 

expected to have delayed or no absorption.   
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Figure 1-6. Schematic representation of the phases commonly present after the 

ultra−centrifugation of the lipolysis medium. 

 

1.6.1. Bio−relevant medium of the in vitro lipolysis model 

The main difference between in vitro lipolysis simulated medium and real intestinal contents is 

the buffer system.  The principal physiological buffer ion present in the gastrointestinal tract is 

bicarbonate (HCO3
−), which is secreted by cells from the stomach, duodenum and pancreas 

[110].  Instead, simulated fluids use maleate buffer which is not produced naturally in the human 

gastrointestinal tract.  There are two main reasons for using a different buffer system for in vitro 

lipolysis experiments. Firstly, bicarbonate buffer is unstable over time and experimentally 

difficult to handle, since it constantly seeks equilibrium with atmospheric CO2 resulting in pH 

changes, unless continuously sparged with CO2 and titrated with NaOH [111].  And secondly, 

the high buffer capacity of bicarbonate in the fasted state (reported average values range from 

2.4 to 5.6 mM/∆pH [112–114]) would not allow the monitoring of lipolysis by direct titration 

as the ionisation of fatty acids would not provoke a drop in pH, as with the maleate buffer 

systems.  Nevertheless, in vitro lipolysis models try to mimic the bicarbonate physiological buffer 

capacity by setting a tight pH control band (usually target pH ± 0.05). 

The choice of pH depends partially on which region of the intestine is represented in the model. 

Therefore, while some groups focus on the duodenum (pH 6.5), others decide to mimic the 

jejunum (pH 6.8), where the absorption of the majority of nutrients takes place [115].  

However, the election of pH value has been often a compromise between physiological 
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conditions, the optimum activity profile of pancreatic lipase (pH 6.5–8) [116], and the apparent 

pKa of the released fatty acids that are being monitored (e.g. pH for oleic acid ionisation is 9.85 

[117]). 

Bile salts in the human body are a complex mixture of steroid acids conjugated to taurine or 

glycine.  By contrast, simulated media are rather simplistic and are usually formed by a single 

bile salt, with sodium taurocholate and sodium taurodeoxycholate being the most common 

ones.  Although the use of these purified bile acids might be less representative of the in vivo 

situation, it facilitates the design and interpretation of lipolysis experimentation. 

Lecithin consists of a mixture of phospholipids (phosphatidylcholine, phosphatidylethanolamine, 

etc.) and other traces of lipids such as triglycerides, and fatty acids.  Lecithin derived from egg 

yolk is the most common source of phospholipids, although the current general trend is shifting 

towards higher purity sources such as soy–purified phosphatidylcholine. 

Almost all research groups utilise porcine pancreatin powder as lipase source because of its 

availability and the common enzymatic features porcine and human pancreatic lipase share 

[118].  Besides, porcine pancreatin is also a good source of co–lipase and other relevant 

intestinal enzymes such as phospholipase A2 and cholesterol esterase.   

The inclusion of liberated fatty acids within mixed micelles is thought to be, in vivo, the most 

important mechanism of solubilisation and removal of fatty acids from the oil–water interface.  

However, in vitro, the precipitation of fatty acids in the form of calcium soaps is believed to be 

the main way of removing them from oil droplets surface.  Therefore, the presence of calcium 

cations (Ca2+) is essential to avoid the inhibition of the enzyme and allow the lipolysis to 

proceed.  The difference in Ca2+ addition might be the most critical discrepancy between the 

research group at the University of  Copenhagen  (where Ca2+is added continuously during the 

experiment) and the rest of research institutions (where Ca2+ is added as a bolus at the 

beginning of the experiment).   Zangenberg et al. [103] developed the in vitro “dynamic” lipolysis 

model, where Ca2+ is pumped into the digestion medium at a certain rate, and thus the rate of 

lipolysis can be artificially controlled.  Both approaches can lead to a change in micellar 

composition and consequently to an altered dissolution capacity.  Whether one technique is 

better than the other it is still a topic for discussion.  
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As previously mentioned, gastric lipase is partially responsible for the lipolysis process, and 

approximately 17.5% of ingested triglycerides are broken down in the stomach [119].  The 

majority of in vitro lipolysis studies have focused on the intestinal digestion, thus events occurring 

in the stomach that might be relevant for predictability purposes are potentially overlooked.  

The main barrier to the establishment of a gastric step has been the fact that gastric lipase is 

not commercially available, which limits the use to a few laboratories.  Recombinant dog gastric 

lipase and the microbial lipase Candida Antarctica lipase A, which have comparable activity to 

human gastric lipase, have been used as a surrogate for the human enzyme in some published 

studies [120–122]. 

There have been very few attempts to establish in vitro lipolysis in the fed state [121].  The 

reasons for this may include the difficulty in developing an appropriate digestion media, and the 

impossibility of ranking LFs based on their performance, as their solubilisation enhancement 

capacity gets masked by the food effect (i.e. all formulations perform equally well).  

 

1.6.2. Predictability power of the in vitro lipolysis model: IVIVCs 

The development of IVIVCs is key in all drug development programs, as this is the basis for 

understanding how product performance in vitro is likely to relate to performance in vivo.  

Traditionally, an IVIVC is defined as a mathematical relationship between in vitro dissolution and 

some aspect of in vivo exposure, such as the area under the plasma concentration–time curve 

(AUC) or the maximum concentration (Cmax).  However, in literature and in practice, the term 

IVIVC is used to link some aspect of the in vitro formulation behaviour to the measured clinical 

performance of dosage forms [87]. 

Even though experimental conditions are still under evaluation, lipolysis testing has already 

demonstrated suitability with respect to predictability of the in vivo situation.  Several 

publications have shown rank–order correlations between in vitro lipolysis solubilisation data 

and exposure data in animals [104, 123–127].  This was achieved by correlating the percentage 

of drug solubilised in the micellar phase with the AUC or the Cmax obtained after oral 

administration of the tested LF to animals (rats, mini–pigs or dogs).  As an example, Dahan and 

Hoffman [105, 108] reported a linear relationship between in vitro data and bioavailability data 

for progesterone and griseofulvin when administered to rats in short–, medium–, and long–
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chain triglycerides.  However, when these experiments were applied to the study of Vitamin 

D3 and dexamethasone, no linear IVIVC was obtained.   

 

 

1.7. First−pass metabolism 

 

The liver is usually assumed to be the major site of metabolism because of its size and high 

content of metabolic enzymes.  However, there are other potential metabolism sites, such as 

the lungs, the kidneys, the blood, and specifically, the intestinal mucosal cells in the small 

intestine [128–132].  Systemic bioavailability (F), defined as the ratio of AUCs, after oral and 

intravenous (IV) drug administration (normalised by the dose), is often used as a measure of 

the extent of first−pass metabolism (Equation 1-1).   

F=

AUCoral
Doseoral

⁄

AUCIV
DoseIV

⁄
  Equation 1-1 

Overall, metabolic processes will increase the polarity of a drug and transform it into a 

more−water soluble substance to enable excretion in body fluids (urine or bile).  Phase I 

metabolism may involve reduction, hydrolysis, cyclisation, or de−cyclisation; but the most 

common reaction that occurs is oxidation.  The vast majority of these oxidative reactions are 

catalysed by cytochrome 450 monooxygenases (CYPs), which are located at the endoplasmic 

reticulum and mitochondria within the cell.  When the products of these reactions 

(metabolites) are polar enough, they may be readily excreted.  When that is not the case, 

metabolites undergo subsequent phase II reactions.  Phase II metabolism consists of the 

attachment (conjugation) of an ionised group to the electrophilic or nucleophilic group of the 

metabolite to form a highly water−soluble compound with increased molecular weight, to 

facilitate excretion.  Phase II biotransformation include methylation, acetylation, 

glucurodination, sulphation, glutathione conjugation and glycine conjugation.  These reactions 

are catalysed by transferases, mainly located in the cytosol of cells [133]. 
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1.7.1. The small intestine, the enterocytes and enzyme gut activity   

Although the small intestine is commonly regarded as an absorptive organ, it is also considered 

the most important extra−hepatic site of drug biotransformation, due to its large surface area, 

significant metabolic content and low blood out−flow [132, 134, 135].  Interestingly, several 

clinical studies have shown the substantial contribution of the gut to overall first−pass 

metabolism of verapamil [136], midazolam [137] and cyclosporine A [138, 139], among other 

drugs.  Furthermore, it has been suggested that for some substances the extent of intestinal 

metabolism is quantitatively greater than that of hepatic metabolism [140, 141].  

The dominant cell type in the small intestinal epithelium (90% of total epithelial cells) is the 

enterocyte [142].  Enterocytes are responsible for the majority of the absorption of nutrients 

and drugs, and contain both influx and efflux transporters together with metabolic enzymes.  

The main absorption mechanism for lipophilic xenobiotics is the transcellular route (across the 

cell), while small hydrophilic molecules are able to diffuse across the tight junctions in between 

the cells (paracellular route) [143].  The route by which a drug is absorbed is of particular 

importance, since compounds using the paracellular pathway will not be metabolised by the 

intestinal enzymes [135].  Usually, drugs cross the enterocyte membrane by passive diffusion, 

driven by a concentration gradient.  However, active mechanisms such as carrier−mediated 

transport may co−exist as well, and can either facilitate (influx transporters) or slow (efflux 

transporters) the drug uptake process [144].  The main efflux transporters expressed at the 

apical membrane are P−glycoprotein (P−gp), breast cancer resistance protein, and multidrug 

resistance protein (MRP) [15].  P−gp shares with CYP3A the same extremely broad substrate 

specificity, and together they form the “drug efflux−metabolism alliance”, acting as a 

coordinated absorption barrier against xenobiotics [134].  Drugs that are dual substrates of 

CYP3A and P−glycoprotein (e.g. cyclosporin A) show very limited bioavailability, as efflux 

transporters re−circulate the drug, giving the enzymes numerous opportunities to metabolise 

it [73, 74].   

Enterocytes contain both phase I (CYPs) [135] and phase II (glucunosyltransferase, UGT; 

glutathione S−transferase, GST; etc.) [145, 146] enzymes.  Intestinal enzyme expression 

demonstrates a large intra− and inter−individual variability, with specific content and activity 

declining sharply from the proximal region to the distal ileum.  The most abundant P450 
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subfamily expressed in the small intestine is CYP3A4, which accounts for around 82% of the 

total CYP content, followed by CYP2C9 (~14%), CYP2C19 (~2%), CYP2J2 (~1.4%), and 

CYP2D6 (~0.7%) [135, 147].  It has been estimated that the total amount of CYP3A in the 

human small intestine represents around 1% of the hepatic levels.  Nonetheless, when intestinal 

and hepatic activities are corrected for the enzyme mean population relative abundance, the 

metabolic activities of gut and liver are comparable [148, 149].  

 

1.7.2. The liver, the hepatocytes, and enzyme hepatic activity 

The liver is the largest solid organ and the most important site for drug biotransformation in 

humans.  Besides, it is responsible for other important functions, such as bile production, plasma 

protein synthesis, hormone production, or regulation of glycogen storage, among others.   

Hepatocytes are the main cell type in the liver (make up around 70-85% of liver’s mass), and 

are responsible for the vast majority of metabolism occurring in the liver.  They are 

characterised by abundant cellular organelles associated with metabolic (e.g. endoplasmic 

reticulum) and secretory (e.g. Golgi apparatus) functions.  Furthermore, the membrane of 

hepatocytes is constituted with microvilli, enabling increased exchange of substances with the 

perfusing blood [150].  Hepatocytes are well equipped at both the apical (canalicular) and 

basolateral (sinusoidal) membranes, with active transporters for efficient uptake of drugs and 

excretion into bile [151].  Unbound compounds in sinusoidal blood are taken up into 

hepatocytes by transporter−mediated mechanisms or by diffusion across the basolateral 

membrane [152].  Drugs that are excreted into the bile reach the duodenum and can be either 

eliminated with faeces, or be re−absorbed (enterohepatic circulation) [153].   

Hepatocytes contain a great number of metabolic enzymes, which can be found either freely 

moving in the cytosol, or included in organelles, such as the endoplasmic reticulum.  As in the 

small intestine, the liver includes CYP enzymes in abundance, as well as phase II enzymes (UGTs, 

GSTs, sulfotransferases…).  The large inter−individual variation observed in human drug 

clearance for some drugs administered orally, can be partially explained by the substantial 

inter−individual fluctuation in the expression levels of the different enzymes [17].  CYP3A is 

the most abundant P450 subfamily expressed in the liver, representing around 40% of total CYP 
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content, followed by CYP2C (~25%), CYP1A2 (~18%), CYP2E1(~9%), CYP2A6 (~6%), and 

CYP2D6 (~2%) [135]. 

 

1.7.3. Estimation of first–pass metabolism  

It is believed that the main reasons for clinical failure of new chemical entities are lack of efficacy, 

toxicity and unfavourable pharmacokinetic properties [154].  Hence, the development and 

application of reliable methods to predict human drug disposition may reduce the number of 

drug candidates that fail due to unacceptable pharmacokinetic characteristics, and decrease the 

cost and time loss related to selection failure [155].  Clearance is one of the most important 

pharmacokinetic parameters because it relates directly to drug elimination and bioavailability 

[156].  Both empirical and physiologically−based approaches have been developed to predict 

drug clearance in humans that involve the use of preclinical animal data and/or in vitro human 

data [157].  Early determination of pharmacokinetic properties in humans during Phase 0 trials 

are also useful to guide further drug development. 

 

1.7.3.1. Direct and indirect methods in humans 

Direct measurements of the fraction of drug dose that escapes hepatic (Fh) and intestinal (Fg) 

elimination, are rarely performed in humans due to ethical reasons [158].  In the case of hepatic 

elimination, it would require the catheterisation of the brachial artery and hepatic vein after 

intravenous drug administration [159].  Regarding intestinal elimination, sampling of the portal 

vein after oral drug intake would be necessary.  Nevertheless, an exception to ethical concerns 

are the studies in anhepatic patients during liver transplant operations, or surgical patients 

whose portal blood circulation bypasses the liver [139]. 

Indirect assessment of Fg and Fh can be done after preclinical studies, during Phase 0 trials, when 

sub−therapeutic doses of a new drug are given to a small cohort of patients to determine 

pharmacodynamic and pharmacokinetic properties.  Total clearance (CL) can be derived from 

the AUC following intravenous dosing.  Because CL is an additive property, hepatic clearance 

(CLh) can then be derived from CL if other contributing factors are known (i.e. renal clearance) 

or are very limited, and thus negligible.  Following the same assumption, Fg can be estimated 
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when the absolute oral bioavailability is known, and the orally administered dose is expected 

to be completely absorbed (Fabs~1). 

Alternatively, for CYP3A substrates only, Fg can be estimated from interaction studies with 

grapefruit juice [160].  In this model it is assumed that grapefruit completely inhibits 

CYP3A−mediated metabolism, and that it shows no effect on the fraction absorbed or on 

hepatic enzymes.  Fg is estimated by comparing the AUC values after drug oral administration 

with and without grapefruit juice. 

 

1.7.3.2. In vivo methods: Allometric scaling 

The best described technique to predict human pharmacokinetics from in vivo animal preclinical 

data is allometric scaling.  Pharmacokinetic parameters are a function of anatomical and 

physiological processes, they can potentially be scaled allometrically across species to 

extrapolate pharmacokinetic data from animals to humans.  Allometric scaling is based on a 

power function of the form y = a ∙ Bx,  where y is the parameter of interest (e.g. clearance, 

volume of distribution…), B is the body weight, and a and x are the allometric coefficient and 

exponent, respectively [156].  The major drawback in allometric scaling is its empirical nature, 

although efforts have been made to provide a valid theoretical explanation for commonly 

accepted scaling exponents [161].   

 

1.7.3.3. In vitro methods 

Scientific limitations in the in vivo methods, the possibility of reducing the use of animals, and 

the increasing availability of animal and human liver samples, led to the development of in vitro 

to in vivo physiologically−based direct scaling approaches [162].  Clearance values can be 

determined by several approaches, including incubations with recombinant enzymes, subcellular 

fractions, whole cell systems, and tissue slices [163].  

 

1.7.3.3.1. Recombinant enzymes 

One way to understand a complex process like metabolism is to isolate the smallest unit 

possible, this is, the enzyme responsible for a given metabolic pathway. Recombinantly 

expressed enzymes provide important information on whether the drug candidate is 
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metabolized by single or multiple isoforms, and whether highly polymorphic enzymes are the 

major contributors to its metabolic clearance [164]. 

 

1.7.3.3.2. Cell systems 

Freshly isolated hepatocytes and enterocytes present the advantage of being close to the 

"original" state of the liver and gut [165], but they cannot be pre−characterised, and human cell 

lines are rarely available.  Furthermore, enterocyte harvests are likely to be contaminated with 

other intestinal cell types, which leads to low activity and difficult interpretation of experimental 

design.  The use of cryopreserved hepatocytes circumvents the problems of availability and are 

usually well characterised by the manufacturer.  Whilst cryopreserved enterocytes, if any, are 

commercially scarce.  

 

1.7.3.3.3. Tissue slices 

Precision−cut tissue closely resembles the organ from which it is prepared, with all cell types 

present in their original matrix configuration [166].  Usage of tissue slices allows for 

maintenance of the functional architecture of the organ and displays metabolism activity from 

hours to days [167].  However, their use is narrowed to a few laboratories due to limited tissue 

availability and technical issues, such as difficulties in distributing substrates evenly [168], or the 

exhibited lag time in Phase II metabolic reactions [169]. 

 

1.7.3.3.4. Subcellular fractions 

Subcellular fractions, which include S9, cytosol, and microsomes, continue to be the most widely 

used in vitro system for drug metabolism investigations.  During the process of isolation of these 

fractions (Figure 1-7), the co−factors that mediate metabolism are lost.  Therefore, the 

addition of expensive co−factors is necessary for enzyme activation.  Nonetheless, it shows the 

advantage that by excluding or including certain co−factors, it is possible to trigger a specific 

metabolic pathway for a given compound [164]. 
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Figure 1-7. Preparation method of subcellular fractions.  S9 is the supernatant fraction 

obtained from a tissue homogenate by low speed centrifugation (~9000 g).  Whilst, the pellet 

contains unbroken cells, nuclei, and mitochondria.  After high speed centrifugation (~100,000 

g) of the S9 fraction, pieces of the endoplasmic reticulum sediment out as a pellet (microsomes), 

and soluble components remain as a supernatant (cytosol).  

 

The S9 fraction contains both cytosolic (transferases) and microsomal components (CYPs), 

thus it represents almost the complete collection of all Phase I and Phase II metabolic enzymes.  

However, scale−up factors to predict in vivo intrinsic clearance from S9 incubations are rarely 

covered in the literature [164].  Cytosol is the simplest metabolic system, and only contains 

soluble drug−metabolising enzymes.  Microsomes contain CYPs and UGTs, which are 

responsible for the bio−transformation of approximately 90% of marketed drugs.  However, 

because they lack cytosolic enzymes, the estimated intrinsic clearance values tend to be 

underpredicted [168, 170].  Despite limitations, microsomes are the most commonly used in 

vitro approach.  This is a reflection of their capacity for long−term storage and high throughput 

application, commercial availability, ease of use, and thorough characterisation of optimal 

incubation conditions, enzymology and kinetics [171–175].   

 

1.7.3.3.5. Determination of human clearance 

The strategy that allows extrapolation of the in vitro clearance to the in vivo situation is depicted 

in Figure 1-8 [176].  The first step consists of determining in vitro intrinsic clearance (CLint), a 

pure measurement of enzyme activity that is not influenced by other physiological parameters 

such as organ blood flow or drug binding to blood matrix.  In vitro CLint values should be 

normalised for cell, microsomal protein or enzyme concentration, and corrected for the 
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fraction unbound in the incubation (CLuint).  The second step involves the determination of in 

vivo hepatic or gut intrinsic clearance (CLuh,int or CLug,int) by extrapolating the activity measured 

in vitro to the whole organ (liver or small intestine) by applying physiologically−based scaling 

factors.  The final stage of the strategy requires the use of a liver/small intestine model that 

incorporates the effects of blood cell partitioning, organ blood flow, and plasma protein binding 

to transform CLuh,int and CLug,int into hepatic (CLh) and intestinal (CLg) clearances, respectively. 

 

 

Figure 1-8. Three−stage strategy for extrapolation of in vitro clearance to in vivo hepatic 

metabolic clearance. CL: human clearance (hepatic or intestinal); CL int: intrinsic clearance; ke: 

drug elimination constant; Km: Michaelis−Menten constant; SI: small intestine; vmax: maximum 

rate of metabolism. 

 

There are several mathematical human hepatic models in the literature, such as the well−stirred 

and the parallel tube models, which are the simplest and most commonly used.  However, the 

distributed and dispersion models are also well known.  In general, differences among the 

models reside in different assumptions made in terms of anatomical structure and the extent 

of blood mixing within the liver [151].  In terms of liver anatomy, the well−stirred model views 

the liver as single compartment, whereas the parallel tube model sees it as a group of identical 

tubes positioned in parallel.  Regarding blood flow, the well−stirred model assumes complete 

mixing, whereas the parallel tube model considers a bulk flow of blood passing through the 

tubes.  Drug concentration in the well−stirred model is constant and equal to that of emergent 

venous blood.  Whilst, the parallel tube produces a drug concentration gradient from the portal 

vein to the hepatic vein region.  Common assumptions of both models  are the following: only 

unbound drug is subject to elimination, linear kinetics, and no membrane transport barrier 

[177].  The difference in estimated elimination values of the same drug between the models is 
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not significant when CLh is low (Fh > 0.7).  However, when CLh is high (Fh < 0.3), the well−stirred 

model seems to provide better CLh estimates than the parallel tube model, which tends to 

overestimate them [151, 178]. 

Scientists first applied the well−stirred liver model to predict intestinal bioavailability (Fg).  

However, this model does not have real physiological meaning since drug molecules are 

delivered to the metabolic enzymes in the gut lumen, and not by the gut blood flow.  Tucker 

and co−workers [179, 180] developed the “Q−gut” model, which retains the shape of the 

well−stirred model, but includes a flow term (Qgut) which is a hybrid parameter reflecting the 

volume of the enterocytes, drug absorption rate from the intestinal lumen, and removal of drug 

from the enterocytes by the enterocytic blood supply. 

 

 

1.8. Research proposal and Objectives 

 

LFs are mainly used for the delivery of BCS II drugs.  The main barriers to the oral bioavailability 

of these drugs are intestinal micellar solubilisation and first−pass metabolism (rather than 

membrane permeability).  The intraluminal solubility of BCS II drugs in LFs can be estimated 

using the in vitro lipolysis model, and the first−pass extraction ratio can be assessed by 

performing microsomal stability assays.   

The majority of the approaches developed to predict human oral bioavailability typically focus 

on the behaviour of drugs in the individual processes of absorption, distribution, metabolism, 

and excretion.  However, the body is a complex biological system, and thus the characterisation 

of a drug's pharmacokinetics would be best described by including these processes in one 

holistic  model [181].   

Based on this, the current work proposes, for the first time, the combination of in vitro lipolysis 

and microsomal metabolism studies for the prediction of human oral bioavailability of BCS II 

drugs administered in LFs.   

The overall goal of the present thesis was to further develop and improve the in vitro lipolysis 

model to better characterise lipidic formulations, and thus allow prediction of in vivo exposure 
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in humans.  In order to achieve this goal, the objectives of the present PhD thesis were as 

follows: 

 Simplify and unify the in vitro assessment of LFs by proposing a unique and optimised 

set of working conditions that covers a wide range of LFs (Chapter 2). 

 Gain a better understanding of the lipolysis mechanism by assessing pancreatic lipase 

activity towards lipidic excipients prone to enzyme digestion (Chapter 3). 

 Select model lipidic formulations and associated clinical data, and perform 

pharmacokinetic analyses to obtain the oral bioavailability observed in human subjects 

(Chapter 4). 

 Estimate the fraction of drug dose that is absorbed in those studies by performing vitro 

lipolysis experiments (Chapter 4). 

 Estimate the fraction of drug dose that escapes intestinal and hepatic first−pass 

metabolism in those studies by performing microsomal metabolism assays (Chapter 

5). 

 Propose estimated oral bioavailability values for those studies by combining in vitro 

lipolysis and metabolism data, and check the predictability power of the novel approach 

by comparing the predicted bioavailability values with the observed ones (Chapter 5). 

 Propose recommendations for future work, including the prediction of oral 

bioavailability in pre–clinical species and defining a bio−relevant in vitro input from the 

lipolysis model which could be used for in silico physiologically−based pharmacokinetic 

modelling to predict the performance of LFs (Chapter 6). 

 Summarise concluding remarks (Chapter 7). 
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Chapter 2: Optimisation of the In Vitro 

Lipolysis Model Working Conditions 

 
 
2.1. Introduction 

 

The in vitro lipolysis model has been previously developed and utilised by different research 

groups [103–106, 122].  The concept and fundamental principles of the model are similar among 

groups, but different experimental conditions and parameters have been proposed to 

accommodate the study purposes of each research group.  This differences include duration of 

the test, sampling times, pH, volume and composition of the digestion medium, amounts of 

formulation added, lipase activity, and source of lipase and bile acids, among others.  Table 2-1 

summarises and compares the most important parameters of the experimental media used by 

established in vitro lipolysis research groups, together with Dressman’s FaSSIF-V2 (Fasted State 

Simulated Intestinal Fluids version 2) values, and literature data for average concentrations of 

major components of human intestinal fluid in the fasted and fed states.   

The Lipid Formulation Classification System Consortium has published a number of studies 

aimed to reduce the variability in the experimental approach between different groups [182–

184].  Their focus has been on the characteristics of the experimental medium.  However, other 

important parameters of the in vitro lipolysis model, such as time required for digestion, the 

titrant concentration, or factors associated to the pH–stat titrator working conditions (e.g. rate 

of titrant addition) have not been assessed. 

Based on this, and on the fact that different pH–time profiles were observed during preliminary 

lipolysis experiments of triglycerides (TGs) with different chain lengths (further described in 

chapter 3), it was evident that an optimisation of the lipolysis conditions was needed for tighter 

control over pH levels so as to better mimic in vivo conditions.  For this reason, the aim of 

these studies was to find an optimised set of conditions (in terms of titrant concentration and 

maximum and minimum titrant addition rates) capable of maintaining the pH environment 

within the physiological range (6.75 – 6.85) during the hydrolysis of TGs with different carbon 
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chain lengths.  The hydrolysis of different volumes of oil was also evaluated to assess a variety 

of possible scenarios in the intestine, from the ingestion of an oil−containing capsule in fasting 

conditions to the consumption of a high−fat meal. 

 

Table 2-1. Comparison of the composition of digestion media between the human jejunal 

fluids and several bio−relevant media.  Values are expressed as means ± SD, or ranges (−). 

 pH Buffer BS PL Ref. 

In vivo fasted 
6.8 ± 0.4, 

7.1± 0.6 

8.5 ± 5 mM, 

17, 30 

mEquiv/L 

HCO3
− 

2 ± 0.2, 

0.8−5.5 mM 

0.2 ± 0.07 

mM 

[114, 185–

188] 

In vivo fed 
6.2 ± 0.2, 

5.2−6.0  

2−20, 6−20 
mEquiv/L 

HCO3
− 

8 ± 0.1, 6.5 ± 
0.9 mM 

3 ± 0.3 mM 
[114, 187, 

189–192] 

FaSSIF–V2 6.5 
19 mM 

Maleic acid 
3 mM 0.2 mM [88] 

University of 

Copenhagen 
6.5 

2 mM 

Maleate 

5 mM  

NaTDC 

1.25 mM  

Soy PC 
[193] 

Monash 

University 
7.5 

50 mM  

Maleate 

5 mM 

NaTDC 

1.25 mM  

Soy PC 
[194] 

Hebrew 

University of 

Jerusalem 

6.8 
50 mM  

Maleate 

5 mM 

NaTC 

1.25 mM 

Lecithin 
[105, 195] 

LFCS 

Consortium 
6.5 

2 mM 

Maleate 

3 mM 

NaTDC 

0.75 mM 

Egg PC 
[182] 

BS: Bile salt; FaSSIF–V2: Fasted State Simulated Intestinal Fluids version 2; NaTDC: Sodium 

taourodeoxycholate; NaTC: Sodium Taurocholate; PC: Phosphatidylcholine; PL: Phospholipid; 

Ref.: exemplary reference.  

 

As mentioned before (see Chapter 1, section 1.4.2), the main enzyme involved in the lipolysis 

of dietary fat in the intestine is pancreatic lipase [196].  For TG hydrolysis to occur, the 

participation of another pancreatic protein, co–lipase (~ 10 kDa), is absolutely necessary, as 

this cofactor prevents the inhibitory effect of bile salts and phospholipids on pancreatic lipase.   

Lipase and co–lipase are water–soluble pancreatic proteins that in aqueous solution form a 1:1 

molar complex [196].  Lipase is glycoprotein with a single chain polypeptide containing 449 

amino acids distributed in two domains: a predominant N–terminal domain (amino acids l-335) 

and a smaller C–terminal domain (residues 336-449) [197].  On the other hand, co–lipase 

consists of a single polypeptide chain containing 86 amino acids and is not glycosylated. The 

interaction between the C–terminal domain of lipase and co–lipase is both electrostatic and 

hydrophobic and is stabilised by eight hydrogen bonds and around 80 van der Waals contacts.  
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Pancreatic lipase/co–lipase complex is not significantly active below pH 5.0 and displays its 

maximum activity at pH 7.0–7.5 (Figure 2-1).  Hence, lipase is well adapted to the pH 

conditions measured in vivo in the small intestine [198]. 

In the light of this,  for a correct setup of the in vitro lipolysis model, the activity of lipase/co–

lipase complex was measured prior to optimisation experiments to make sure the enzyme was 

added in excess, as is the case in in vivo conditions [107].   

 

 
Figure 2-1. pH dependence of Michaelis–Menten constant (Km, green circles) and maximum 

reaction rate (Vm, blue squares). (Adapted with permission from Ref. [199], Copyright© 1971, 

American Chemical Society)  

 

 

2.2. Materials and Methods 

 

2.2.1. Materials 

Sodium hydroxide solutions (NaOH, 0.5 M and 1 M), Trizma® maleate, sodium taurocholate 

hydrate (98% w/w), L−α−lecithin (~60% pure L−α−phosphatidylcholine, from egg yolk), 

pancreatin powder from porcine pancreas (8 x US Pharmacopeia, USP, specifications activity), 

glyceryl triacetate (≥ 99.9% v/v), glyceryl trioctanoate (≥ 99% v/v), and peanut oil were all 

purchased from Sigma−Aldrich (Dorset, UK).  Sodium chloride (99.5% w/w) was a product from 

Fisher Scientific (Leicester, UK).  Calcium chloride anhydrous (93% w/w), and glyceryl 

tributyrate (98% v/v) were purchased from Alfa Aesar (Heysham, UK).  Glyceryl tridecanoate 

(≥ 98% v/v) was obtained from TCI (Tokyo, Japan).  The standard buffer solutions (pH 4, 7, 10 
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and 12), utilised for calibration of the pH−electrode, were purchased from YSI Incorporated 

(Ohio, USA) and Hanna Instruments (Rhode Island, USA).  Water was obtained from a Purelab 

Ultra Genetic purification system (Elga LabWater, Illinois, USA). 

 

2.2.2. Lipidic formulations 

Glyceryl triacetate (tri−C2) and glyceryl tributyrate (tri−C4) served as model molecules for 

short–chain triglycerides (SCTs, < C6).  Glyceryl trioctanoate (tri−C8) and glyceryl 

tridecanoate (tri−C10) represented medium−chain triglycerides (MCTs, C6–C12).  In a similar 

manner to previous publications [105, 200], peanut oil (tri−C18) was chosen as the prototype 

for long–chain triglycerides (LCTs, > C12).  Peanut oil contains mainly LCTs (C16 and C18), 

the vast majority of which is triolein [201]. 

 

2.2.3. Preparation of digestion buffers 

The preparation of the bio−relevant digestion buffer simulating the contents of the jejunum in 

the fasted state was based on that developed by the Hebrew University of Jerusalem [105, 195] 

with a minor modification.  This change consisted in decreasing the pH of the buffer from 7.40 

to 6.80 to achieve maximum pseudo−physiological conditions [202].  The lipolysis medium 

contained 50 mM trizma® maleate [123, 203–205], 5 mM calcium chloride, 5 mM sodium 

taurocholate, and 1.25 mM L-α-lecithiniii.  The osmolarity of the buffer solution was fixed at 

around 280 mOsm/kgiv with 150 mM NaCl.  The pH of the medium was adjusted to 6.80 ± 0.05 

at 37 °C using 1 M NaOH solution as titrant, and a pH−stat titrator unit (T50 Graphix, Mettler 

Toledo Inc., Leicester, UK) coupled to a pH−electrode (DGi111−SC, Mettler Toledo Inc., 

Leicester, UK). 

The buffer used for the preparation of the enzyme extract was made in a similar manner, 

although it did not include bile salts or phospholipids to prevent the deactivation of the lipase 

prior to the lipolysis experiments. 

                                                           
iii L−α−lecithin from egg yolk consist in ~60% pure L−α−phosphatidylcholine, therefore the 

actual phospholipid levels are 0.75 mM. Lecithin may contain other phospholipids such as 

phosphatidylethanolamine or phosphatidylinositol. 
iv Reported osmolarity values of the jejunum in the fasted state are 271 ± 15, 200 ± 68, and 278 

± 16 mOsm/kg [188, 384, 385].  The main electrolytes are Na+ and Cl-, followed by K+ and 

Ca2+
. 
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2.2.4. Preparation of lipase/co−lipase extract 

Porcine pancreatin powder, containing equimolar amounts of lipase and co−lipase [103], was 

prepared as described by Sek et al. [206].  Briefly, one gram of pancreatin powder was added 

to 5 mL of digestion buffer and vortex−mixed for 15 min at room temperature.  After 

centrifugation at ~1200 g (Harrier 18/80 centrifuge, swing−out rotor, MSE, London, UK) and 4 

°C for 15 min, the supernatant was collected and stored on ice to avoid denaturation.   

 

2.2.5. Determination of lipase/co−lipase extract activity 

Lipase activity was determined titrimetrically using 20 μL of lipase/co−lipase extract dissolved 

in 35.5 mL of digestion buffer (pH 6.8, 37 °C).  Tri−C4 (6 mL) and NaOH (1 M) were used as 

enzyme substrate and titration solution, respectively.  The lipolysis reaction was left to proceed 

for 5 minutes.  Experiments were performed five times. 

The rate of lipolysis (kL) was transformed into enzymatic activity units, as indicated in Equation 

2-1.  The activity of the enzyme was expressed in terms of glyceryl tributyrate units (TBU), 

where 1 TBU is the amount of enzyme that can release 1 μmol of butyric acid from tri−C4 per 

minute.   

Activity (TBU) = 𝑘L ∙ (
mL 1 M NaOH

s
) ∙

60 s

min
∙

1000 μmol NaOH 

1 mL 1 M NaOH
∙

1 μmol butyric acid 

1 μmol NaOH
 

Equation 2-1 

According to USP [207], an alternative method for lipase activity determination involves the 

lipolysis at pH 9 of olive oil emulsified with gum arabic.  The triolein method is more robust as 

it requires the use of a reference standard [107].  However, the tributyrate method is preferred 

because tri−C4 shows a lower pKa than tri−C18 so its lipolysis can be monitored titrimetrically 

at physiological pH values.  Moreover, butyric acid is soluble in water so linear kinetics are 

obtained for longer times [50]. 

 

2.2.6. Optimisation of the in vitro lipolysis model working conditions 

The set−up of the in vitro lipolysis model utilised in the laboratory can be seen in Figure 2-2.  

The procedure of the in vitro lipolysis was similar to that described previously [104, 105, 182, 

203, 208].  A certain amount of oil was added to 35.5 mL of digestion buffer dispersed in a 
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reaction vessel with continuous stirring and kept at 37 °C.  After 15 min of equilibration, 3.5 

mL of lipase/co−lipase extract was added to the mixture to initiate the enzymatic hydrolysis.  A 

pH−stat titrator unit was used to keep experimental pH under control (6.75– 6.85) by titrating 

the released ionised FAs with NaOH solution.  The maximum and minimum rates of titrant 

addition were set up through the instrument control software (LabX light v3.1).  The 

experiments were considered to be completed when the dosing rate of NaOH was lower than 

the minimum rate. 

  

 

Figure 2-2. Set−up of the in vitro lipolysis model in the laboratory.  The main components and 

their functions are indicated with arrows. 

 

The lipolysis model was optimised to be able to analyse different volumes of oil and the lipolysis 

of TGs with different chain lengths with one set of conditions.  The titrant concentration and 

the maximum and minimum rates of addition were varied in order to find a unique set of 

conditions that maintained the pH between 6.75 and 6.85 during lipolysis.  The sets of 

conditions evaluated during the optimisation of the model are listed in Table 2-2.  Each set of 

conditions was assessed for short−, medium−, and long−chain TGs, and with oil volumes of 
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200, 500 and 1000 μL, five times.  The dispersion of 200 μL of TG in the model (~40 mL) would 

be equivalent to a 1000 μL lipid−containing capsule in the human gastrointestinal tract (~250 

mL [209]).  Similarly, 1000 μL of oil dispersed in the lipolysis medium would be comparable to 

a high−fat meal in the in vivo situation [105].  500 μL was chosen as a value in between the 

previous two conditions. 

 

Table 2-2. Sets of conditions assessed during the optimisation of the lipolysis model (n = 5). 

Concentration of titrant 

(M) 

Maximum dosing rate 

(mL/min) 

Minimum dosing rate 

(μL/min) a 

0.5 1 10 

1 1 10 

1 1 3 

1 3.5 3 
a The minimum dosing rate and the termination rate were set to coincide in all experiments.  

(Reprinted from Ref. [53], under the terms of the Creative Commons Attribution License , CC 

BY, 2015) 

 

2.2.7. Statistical data analysis 

All presented data are expressed as mean ± standard deviation (SD).  A one−way analysis of 

variance (ANOVA), followed by post hoc Tukey−Kramer multiple comparison test, was used 

to determine statistically significant differences among the experimental groups.  Prior to 

ANOVA testing, it was confirmed that data followed a normal distribution 

(Kolmogorov−Smirnov test), and that SDs were not significantly different among groups 

(Barlett’s test).  A p value (calculated probability) of 0.05 was considered the minimal level of 

significance to reject the null hypothesis.  Statistical analysis was performed using GraphPad 

Prism version 7.00 for Windows (GraphPad Software, San Diego, California, USA). 

 

 

2.3. Results 

 

2.3.1. Lipase extract activity 

Lipase activity was determined based on USP recommendations [10].  The amount of NaOH 

used for titration was represented against time (Figure 2-3), and using only the points that fall 
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on the straight−line segment of the curve, the kL (the slope) was calculated and transformed 

into enzymatic activity units, as indicated in Equation 2-1.  The activity of the lipase used was 

42 TBU/mg of dry pancreatin powder, and 735 TBU/mL of digest.  

 

 

Figure 2-3. pH−time (green) and volume of NaOH−time (blue) profiles of the lipolysis of 6 

mL of glyceryl tributyrate by 20 μL of lipase/co−lipase extract.  Conditions: 1 M NaOH, 3.5 

mL/min maximum and 3 μL/min minimum dosing rate.  

 

2.3.2. Optimisation of the in vitro lipolysis model working conditions 

The effect of the concentration of titrant, and maximum and minimum titrant dosing rates on 

the control over the lipolysis process was investigated to find an optimised set of conditions 

capable of keeping the pH environment within the physiological range (6.75–6.85), during the 

hydrolysis of TGs with different carbon chain lengths.  Also the lipolysis of different TG volumes 

was evaluated in order to assess a variety of possible scenarios in the intestine. 

 

2.3.2.1. 0.5 M NaOH, 1 mL/min maximum rate, 10 μL/min minimum rate 

The initial set of conditions was characterised by a prolonged time to gain control over pH 

during the lipolysis of tri−C4, and by a transient drop of pH during the hydrolysis of 500 and 

1000 μL of tri−C8 (Figure 2-4).  In addition, high volumes of titrant were required during the 

lipolysis of 1000 μL of tri−C2, tri−C4 and tri−C8 which lead to dilution (approximately 25%) 

of the experimental medium.  Prolonged times to complete the process (e.g. over two hours 

for 1000 μL of tri−C4) were additional issues encountered while assessing the set of conditions. 
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2.3.2.2. 1 M NaOH, 1 mL/min maximum rate, 10 μL/min minimum rate 

Titration with 1 M NaOH considerably reduced the time needed to gain initial control over the 

pH for the lipolysis of tri−C2 and tri−C4, and avoided or decreased the transient loss of control 

during the lipolysis of tri−C8 (Figure 2-5).  Despite improvements, these conditions caused a 

premature cessation of the process for the lipolysis of 200 μL of tri−C18. A marked elevation 

of the pH above the pre−determined threshold at the beginning of the process led to a very 

slow titrant dosing rate that was recognised by the titrator as lower than the termination rate 

and the process was terminated after just 90 s. 

 

2.3.2.3. 1 M NaOH, 1 mL/min maximum rate, 3 μL/min minimum rate 

Reducing the minimum rate of addition from 10 to 3 μL/min enabled the continuation of the 

lipolysis of 200 μL of tri−C18 (Figure 2-6).  Nevertheless, the loss of control over pH (1000 

μL of tri−C8), the sharp drop of pH and the prolonged time to reach the control band (500 

and 1000 μL of tri−C4) were still unresolved issues. 

 

2.3.2.4. 1 M NaOH, 3.5 mL/min maximum rate, 3 μL/min minimum rate 

The increment of the maximum addition rate from 1 to 3.5 mL/min achieved the control over 

pH throughout the lipolysis of all evaluated TGs and volumes (Figure 2-7).  In terms of reaction 

time, lipolysis of short− and medium−chain TGs lasted less than 30 min.  Lipolysis of tri−C18 

came to an end before reaching 45 min. Statistically significant differences (p < 0.05) in NaOH 

consumption were observed during lipolysis of different volumes of the same TG (except for 

500 and 1000 μL of tri−C18). 
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Figure 2-4. pH–time lipolysis profiles (mean ± SD, n = 5) for 200, 500 and 1000 μL of glyceryl 

triacetate (tri−C2), tributyrate (tri−C4), trioctanoate (tri−C8), tridecanoate (tri−C10), and 

peanut oil (tri−C18). Conditions: 0.5 M NaOH, 1 mL/min maximum and 10 μL/min minimum 

dosing rate. Only the first 800 s of the process are represented for ease of comparison.  

(Modified from Ref. [53], under the terms of CC BY, 2015) 
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Figure 2-5. pH–time lipolysis profiles (mean ± SD, n = 5) for 200, 500 and 1000 μL of glyceryl 

triacetate (tri−C2), tributyrate (tri−C4), trioctanoate (tri−C8), tridecanoate (tri−C10), and 

peanut oil (tri−C18).  Conditions: 1 M NaOH, 1 mL/min maximum and 10 μL/min minimum 

dosing rate.  Only the first 800 s of the process are represented for ease of comparison.  

(Modified from Ref. [53], under the terms of CC BY, 2015) 
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Figure 2-6. pH–time lipolysis profiles (mean ± SD, n = 5) for 200, 500 and 1000 μL of glyceryl 

triacetate (tri−C2), tributyrate (tri−C4), trioctanoate (tri−C8), tridecanoate (tri−C10) and 

peanut oil (tri−C18).  Conditions: 1 M NaOH, 1 mL/min maximum and 3 μL/min minimum 

dosing rate. Only the first 800 s of the process are represented for ease of comparison.  

(Modified from Ref. [53], under the terms of CC BY, 2015) 

 

 

 

 

 



2.  Optimisation of the In Vitro Lipolysis Model 

Page | 46  

 

 

 

 
Figure 2-7. pH–time lipolysis profiles (mean ± SD, n = 5) for 200, 500 and 1000 μL of glyceryl 

triacetate (tri−C2), glyceryl (tri−C4), glyceryl (tri−C8), glyceryl (tri−C10), and peanut oil 

(tri−C18).  Conditions: 1 M NaOH, 3.5 mL/min maximum and 3 μL/min minimum dosing rate. 

Only the first 800 s of the process are represented for ease of comparison.  (Modified from 

Ref. [53], under the terms of CC BY, 2015). 
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2.4. Discussion 

 

2.4.1. Lipase extract activity 

Pancreatic lipase readily adsorbs to TGs droplets.  In the small intestine, these droplets are 

covered with bile salt and phospholipids which prevent the adsorption and lipolytic action of 

lipase.  In this situation the activity of lipase is restored by co–lipase, another pancreatic protein. 

Lipase and colipase in solution form a 1:1 molar complex.  In this investigation, lipase/co–lipase 

complex activity was determined based on USP recommendations [10], at pH 6.8 (jejunal 

conditions).  The activity of the lipase/co–lipase complex used was 42 TBU/mg of dry pancreatin 

powder, and 735 TBU/mL of digest.  This value was higher than the activity for in vivo conditions 

(500−600 TBU/mL in the fasted state [110]) and confirmed we were working with an excess of 

enzyme. 

 

2.4.2. Optimisation of the in vitro lipolysis model working conditions 

The role of the concentration of titrant and maximum and minimum titrant addition rates, in 

the control of the lipolysis process, was investigated to find an optimised set of conditions 

capable of maintaining the pH environment within physiological range (6.75–6.85) during the 

hydrolysis of TGs with different carbon chain lengths.  The hydrolysis of different volumes of 

oil (200, 500 and 1000 μL) was evaluated to assess a variety of possible scenarios in the intestine, 

from the ingestion of an oil−containing capsule in fasting conditions to the consumption of a 

high−fat meal.  

The first set of conditions evaluated (0.5 M NaOH with 1 mL/min maximum and 10 μL/min 

minimum dosing rates, Figure 2-4) was found to be suitable for tri−C10 and tri−C18, but not 

for tri−C2, tri−C4 and tri−C8.  The high activity that pancreatic lipase showed towards tri−C4 

– translated into a large amount of liberated ionised FAs – presented a problem for the titrator 

when trying to regain control over pH during the initial stages of the process.  Most importantly, 

during the ‘‘delayed’’ periods, pH of the medium dropped to acidic values.  If the fate of an 

ionisable drug across lipolysis phases had been assessed under these conditions, such low pH 

values could have affected the distribution of the compound, leading to incorrect 

interpretations of the performance of the lipidic formulation.  Regarding the lipolysis of tri−C8, 
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the drawback was not the initial drop of pH, but the loss of control over pH at a later point in 

the reaction.  Apart from pH control, other reasons to disregard this set of conditions were 

dilution of the medium due to large volumes of titrant needed during the lipolysis of 1000 μL 

of tri−C2, tri−C8 and tri−C10 (which could affect the critical micellar concentration of the 

colloidal species in solution), and prolonged times to complete the process.  Based on these 

results, it was decided to increase the concentration of the titrant up to 1 M but maintain the 

same maximum and minimum rates of addition of NaOH (Figure 2-5).  Despite improvements, 

the new conditions introduced the problem of premature stopping of titration with small 

volumes of tri−C18.  To avoid reaching the termination rate at initial stages of the process, it 

was decided to reduce the minimum rate to 3 μL/min (Figure 2-6).  This new set of conditions 

enabled the continuation of the lipolysis of 200 μL of tri−C18, but was still suboptimal due to 

the loss of control over pH during the lipolysis of 1000 μL of tri−C8.  There was also a sharp 

drop of pH and prolonged time to reach the control band at initial stages of the lipolysis for 

500 and 1000 μL of tri−C4.  Finally, by increasing the maximum addition rate up to 3.5 mL/min, 

all previous issues (premature stop of titration, loss of control over pH, and prolonged time to 

reach control band) were avoided and the control over pH throughout the lipolysis of all 

evaluated TGs and volumes was achieved (Figure 2-7).  The implementation of this method 

resulted in shorter reaction times, which allows the assessment of several formulations on the 

same day.  Statistically significant differences (p < 0.05) in NaOH consumption were observed 

during lipolysis of different volumes of the same TG indicating the optimised conditions were 

capable of distinguishing among the different fat−digesting situations that were mimicked. 

 

 

2.5. Conclusions 

 

1 M NaOH titrant concentration, 3.5 mL/min maximum titrant dosing rate and 3 μL/min 

minimum titrant dosing rate, were found to be the conditions that better maintained the pH 

environment within physiological range (6.75–6.85) during the hydrolysis of TGs with different 

carbon chain lengths. This optimised set of conditions also allowed the differentiation of the 

lipolysis of different lipid loads. 
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This unique set of in vitro lipolysis working conditions could facilitate the comparison of data 

among laboratories, as the impact of method variation on in vitro performance would be highly 

reduced.  Besides, these conditions offer better control over pH levels, closely reflecting the 

buffer capacity in vivo, and thus allowing better simulation of physiological digestion of LFs.
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Chapter 3: Assessment of Pancreatic 

Lipase Activity: In Vitro Digestion of 

Equimolar Amounts of Lipids   

 

 

3.1. Introduction 

 

Triglycerides (TGs) are the main constituents of dietary lipids [201] and one of the most 

common excipients used in LFs [210].  Enzymatic hydrolysis of TGs (to yield 2–monoglycerides, 

2–MGs, and fatty acids, FAs) occurs at the oil−water interface of the emulsified lipid droplets 

[40].  The composition and state of this interface affects the characteristics of the lipid droplet, 

and consequently can modulate the lipase activity [211, 212].  Although 2–MGs and FAs are 

more water−soluble than the TGs from which they derive, they still show poor solubility in 

bulk water.  As a result, they tend to accumulate on the surface of the lipid droplets forming 

local liquid crystalline structures.  These lipidic structures spontaneously detach from the oil–

water interface into the aqueous phase and form large multilamellar vesicles.  On further 

dilution with the intestinal fluids, these multilamellar species transform into smaller unilamellar 

species, and are eventually incorporated into mixed micelles.  Differences in the chain length of 

2–MGs and FAs, dictate differences in phase transition behaviour (liquid crystalline to 

multilamellar and unilamellar vesicles), and in the solubilisation capacity of the colloidal species 

formed.  In long–chain lipid systems vesicular species persist at lower lipid concentrations and 

are more capable of swelling; hence, they retain drug solubilisation capacity more effectively 

compared with more polar medium– and short–chain systems.  For this reason, chain length 

largely dictates the absorption fate of poorly water−soluble drug co–administered with lipids 

[58, 213, 214].  Indeed, the micellar solubilisation capacity of long−chain triglycerides (LCTs) 

has been reported to be higher than that of short−chain triglycerides (SCTs) [105, 108].   

There are other additional mechanisms by which the FA chain length of the TG plays a critical 

role in the oral bioavailability of the co−administered poorly water−soluble drugs [215].  As an 
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example, SCTs are known to induce tight junction permeability changes, and thus increase drug 

intestinal permeation [66].  On the other hand, highly lipophilic drugs (logD7.4 > 5) co–

administered with LCTs may be incorporated into chylomicrons, and enter the lymphatic 

system, bypassing the hepatic first−pass metabolism [62] (see section 1.4.3.3 for further details).   

Although the in vitro assessment of the performance of TG−based drug delivery systems with 

different chain lengths has been carried out before, these studies have only focused on the end 

result, i.e. drug solubilisation across lipolysis phases [50, 104, 108, 123, 184, 203].  Limited 

attention has been drawn to assessing the substrate specificity of the pancreatic lipase [216, 

217].  A better mechanistic knowledge of the lipolysis process itself, and the factors governing 

lipase activity, will help to rationalise the performance of LFs and eventually aid in the 

development of optimised formulations.   

Accordingly, the objective of this study was to gain a deeper understanding of the mechanism 

behind pancreatic lipase activity, by evaluating the in vitro lipolysis of equimolar amounts of TGs 

with different chain lengths.  In order to do so, the difference in the lipolysis profiles (extent of 

digestion, time required to terminate the process, etc.) were investigated.  Additionally, the 

need for a “back−titration” step to overcome underestimation issues addressed in previous 

literature reports [182, 218] was also assessed. 

 

 

3.2. Materials and Methods 

 

3.2.1. Materials 

Reagents and solvents used for experimentation were the same as those listed in chapter 2, 

section 2.2.1.  Glyceryl triacetate (tri−C2), glyceryl tributyrate (tri−C4), glyceryl trioctanoate 

(tri−C8), glyceryl tridecanoate (tri−C10) and peanut oil served again as model molecules for 

short−, medium−, and long−chain triglycerides. 

 

3.2.2. Preparation of simulated digestion buffers 

The preparation of the bio−relevant digestion buffer simulating the contents of the jejunum in 

the fasted state was the same as that described in chapter 2, section 2.2.3.   
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3.2.3. Preparation of lipase/co−lipase extract 

Lipase/co−lipase extract preparation was identical as that described in chapter 2, section 2.2.4.  

The activity of the lipase/co−lipase extract used in these studies was 42 tributyrin units (TBU) 

per mg of dry pancreatic powder (735 TBU/mL of digest). 

 

3.2.4. Experimental procedure: Lipolysis of equimolar amounts of different 

triglycerides 

The experimental conditions described in Chapter 2, section 2.2.6 were followed to investigate 

the lipolysis of a fixed amount (860 μmol) of triglycerides.  This molar amount corresponded 

to 161, 251, 421, 500, and 829 μL of tri–C2, tri–C4, tri–C8, tri–C10, and tri–C18, respectivelyv.  

0.5 M NaOH solution, and 1 mL/min and 10 μL/min as maximum and minimum rates of titrant 

addition, were the in vitro lipolysis model conditions used for these investigations.  The 

experiments were considered to be completed when the dosing rate of NaOH was lower than 

10 μL/min. Each experiment was repeated five times. 

Control experiments (n = 5) were performed without any formulation, to correct for the 

amount of NaOH solution needed to neutralise the acids released as a consequence of the 

lipolysis of phospholipids, or arising from the lipolysis of impurities in the pancreatin extract. 

The extent of digestion was expressed as percentage of the maximum theoretical quantity of 

lipid susceptible to hydrolysis.  Accordingly, it was assumed that one TG releases three FAs and 

glycerol (Figure 1-3).  The apparent extent of lipolysis at pH 6.80 was calculated from the 

volume of titrant consumed during the in vitro digestion, as expressed in Equation 3-1: 

Extent of lipolysis (%) =
V ∙ 0.5 ∙ MW

3 ∙ ρ ∙ v
∙ 100  Equation 3-1 

where V is the volume (L) of titrant consumed during the digestion at pH 6.80, 0.5 (M) is the 

concentration of the titrant, MW is the molecular weight (g/mol) of the oil under investigation, 

                                                           
v The availability of tri–C10 was very limited, hence the number of experiments with this oil 

had to be reduced as much as possible.  In order to do so, the data collected using the middle 

volume (500 μL) of tri–C10 during the optimisation of the model (Chapter 2) was used here.  

The equivalent molar amount to 500 μL of tri–C10 (860 μL) was used as a reference to calculate 

the equivalent volumes of the other triglycerides. 
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3 is the maximum quantity of FAs than can be released from one TG, ρ is the density (g/mL) of 

the oil, and v is the volume (mL) of oil dispersed in the lipolysis medium. 

 

3.2.5. Experimental procedure: Back−titrations 

Based on their apparent pKa, FAs released as a consequence of enzymatic hydrolysis at pH 6.80 

may be only partially ionised.  As a result of this titration by NaOH, lipase activity determination 

may be underestimated in direct titration experiments.  In order to calculate the total extent 

of lipolysis, back−titrations [182, 218] were performed. In these experiments, the pH of the 

medium was elevated to pH 11.50 ± 0.05 by quick addition of 0.5 M NaOH.  Control 

experiments without any TG were performed to correct for the amounts of NaOH needed to 

raise the pH of the medium up to 11.50. 

The total extent of lipolysis was calculated using Equation 3-1, where V represented the 

volume of NaOH added originally at pH 6.80 (titration of ionised FAs) plus the volume of NaOH 

added during the back−titration experiments (titration of unionised FAs). 

 

3.2.6. Solubility effect of glyceryl triacetate on the extent of lipolysis 

As opposed to the other model triglycerides, tri−C2 was completely soluble in the bio−relevant 

media due to its high water solubility (58 g/L at 25 °C, [219]).  In order to determine whether 

this factor would affect pancreatic lipase activity, additional lipolysis experiments (n = 3) with 

higher amounts of tri−C2 were performed. 1500 μL and 2100 μL of tri−C2, representing values 

slightly below (49 g/L) and above (68 g/L) the solubility limit, respectively, were lipolysed under 

the same conditions described in sections 3.2.4 and 3.2.5. 

 

3.2.7. Measurement of the droplet size and total surface area of equimolar 

triglyceride emulsions following dispersion in the lipolysis buffer 

Dynamic light scattering (DLS) was used to determine the mean droplet size (dH) of the 

emulsions in the digestion medium before the addition of pancreatic lipase, just after the 

equilibration period.  DLS measurements were carried out at a scattering angle of 173° and 37 

°C, using a Zetasizer Nano ZS (λ = 633 nm, Malvern Instruments, Malvern, UK).  As the 

emulsions were too turbid, they were diluted with incomplete lipolysis buffer to 5∙10−2% v/v to 
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avoid multiple scattering effects.  Size determinations were performed for all TG emulsions at 

least 8 times.  Diluted digestion buffer was also analysed to account for any contribution of bile 

salts and phospholipids to DLS measurements.  As expected, droplet size of digestion buffer 

particles was below the detection limit of the instrument [220], and their size could not be 

determined. 

Droplet size measurements were used to calculate the specific surface area (SS, surface area 

per unit volume [221]) of the emulsions formed prior to enzyme addition.  Assuming emulsions 

were formed by spherical droplets, the surface was determined using Equation 3-2: 

Ss =
ST

VT

=
n ∙ Si

VT

=

VT
Vi

⁄ ∙ Si

VT

=
Si

Vi

=
π ∙ dH

2

1
6⁄ ∙ π ∙ dH

3
= 6 ∙

1

dH

  Equation 3-2 

where ST is the total surface area of lipid, n is the number of lipid droplets, Si is the surface area 

of a single lipid droplet, VT is the total volume of lipid, and Vi is the volume of a single lipid 

droplet. 

 

3.2.8. Statistical data analysis 

All presented data are expressed as mean ± standard deviation (SD).  Statistical tests detailed 

in Chapter 2, section 2.2.7 were used here as well.  When only two experimental groups were 

available, an unpaired Student’s t-test was used instead of a one–way analysis of variance 

(ANOVA). 

 

 

3.3. Results 

 

3.3.1. In vitro lipolysis of equimolar amounts of different triglycerides 

The changes in pH over time during the in vitro lipolysis of equimolar quantities of selected TGs 

are depicted in Figure 3-1.  Regardless of carbon chain length, all pH–time profiles showed an 

initial drop of pH as a result of the delay between the pH−stat titrator detecting the first ionised 

FAs and the subsequent addition of NaOH solution for the titration.  The initial burst of 

hydrolysis has already been reported by other authors [103]. Since transit time along the 

gastrointestinal tract is known to be variable [222], experiments were not performed for a 
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fixed period of time, but were allowed to proceed until the titrant addition rate was low (10 

μL/min), indicating the absence of any FAs to titrate, i.e. absence of TG hydrolysis.  As a result, 

the digestion of each lipid took different times, with the hydrolysis of tri−C8 being the longest 

process (~80 min), followed by tri−C18, tri−C10 and tri−C2 (~35 min).  The lipolysis of tri−C4 

took the shortest time (~20 min). 

 

 

Figure 3-1. pH–time profiles obtained during the in vitro lipolysis of equimolar amounts of: (A) 

glyceryl triacetate, (B) tributyrate, (C) trioctanoate (D) tridecanoate,  and (E) peanut oil.  

Conditions: pH 6.80 ± 0.05, 0.5 M NaOH titrant concentration, 1 mL/ min and 10 μL/min 

maximum and minimum titrant dosing rate, respectively.  Values are expressed as mean ± SD 

(n = 5).  (Modified from Ref. [53], under the terms of CC BY, 2015) 

 

The cumulative volumes of 0.5 M NaOH solution required over time during the in vitro digestion 

of equimolar amounts of the selected TGs are represented in Figure 3-2.  The amount of 
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titrant consumed was used in Equation 3-1 to calculate the apparent extent of lipolysis at 

different time−points, which is also shown in Figure 3-2.   

 

 
Figure 3-2. Apparent extent of lipolysis (green) and volume of titrant (0.5 M NaOH) consumed 

over time (blue) during the direct in vitro lipolysis at pH 6.80 ± 0.05 of equimolar amounts of: 

(A) glyceryl triacetate, (B) tributyrate, (C) trioctanoate, (D) tridecanoate, and (E) peanut oil.  

Values are expressed as means (n = 5) ± SD.  Note the difference in the time scales (X- axes) 

among the graphs. (Modified from Ref. [53], under the terms of CC BY, 2015). 

 
 

All lipids showed a fast initial increase in hydrolysis rate, which subsequently decreased and 

stayed almost constant for the rest of the process. The lipolysis of tri−C8 resulted in the highest 

consumption of titrant, and thus in the highest apparent extent of lipolysis by direct titration 

(93 ± 2%).  Tri−C4 was hydrolysed to a lower extent (62 ± 6%), but the process was completed 

one hour earlier.  The apparent extents of lipolysis of tri−C10 (43 ± 2%), tri−C2 (33 ± 0%) and 

tri−C18 (12 ± 3%) were lower than that of tri−C4, despite the longer durations of the reaction. 
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3.3.2. Back−titration studies 

The results from the back−titration experiments showed that the extent of lipolysis at pH 6.80 

was underestimated by direct titration for all lipids except for tri−C8 (Figure 3-3).  Based on 

the cumulative titrant volumes of both direct and back titrations, the lipolysis of tri−C2, tri−C4 

and tri−C8 were almost complete (98 ± 2%, 91 ± 9% and 96 ± 5%, respectively), and not 

statistically different from each other (p < 0.001).  The total extent of hydrolysis of tri−C10 

was 67 ± 3%, whereas that of tri−C18 was only 31 ± 6%. 

 

 
Figure 3-3. Comparison of the total extent of lipolysis for the in vitro lipolysis of equimolar 

amounts of different triglycerides: glyceryl triacetate (tri−C2), tributyrate (tri−C4), trioctanoate 

(tri−C8), tridecanoate (tri−C10) and peanut oil (tri−C18). Blue colours represent the apparent 

extent of lipolysis calculated during direct titration experiments (pH 6.80 ± 0.05).  Green−shade 

areas represent the underestimated extent of lipolysis calculated after back−titration 

experiments (pH 11.50 ± 0.05).  Values are expressed as means (n = 5) ± SD. One−way 

ANOVA followed by post hoc Tukey–Kramer test was used for statistical analysis.  
a Statistically significantly different from all other TGs (p < 0.001); b Statistically significantly 

different from tri−C4, tri−C8 and tri−C18 (p < 0.001), and from tri−C10 (p < 0.01); c 

Statistically significantly different from tri−C4, tri−C8 and tri−C18 (p < 0.001), and from tri−C2 

(p < 0.01); d Statistically significantly different from all other TGs (p < 0.001), except for tri−C4 

and tri−C8 (p < 0.05); e Statistically significantly different from all other TGs (p < 0.001), except 

for tri−C2 and tri−C8 (p < 0.05); and f Statistically significantly different from all other TGs (p 

< 0.001), except for tri−C2 and tri−C4 (p < 0.05). 

(Modified from Ref. [53], under the terms of CC BY, 2015) 
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3.3.3. Solubility effect of glyceryl triacetate on the extent of lipolysis 

The apparent and total extent of lipolysis of tri−C2 in volumes below and above its solubility 

limit is shown in Table 3-1.  No statistically significant differences were found among groups.  

This result suggests that the lipolysis of 860 μmol of tri−C2 could be compared with that of the 

other triglycerides even when this oil was completely solubilised in the bio−relevant media and 

the others were not. 

 

 

Table 3-1. Volumes of titrant used, and calculated apparent and total extent of lipolysis (see 

Equation 3-1), during the hydrolysis of different amounts of glyceryl triacetate representing 

values below and above its solubility limit.  Conditions: 0.5 M NaOH, 1 mL/min maximum and 

10 µL/min minimum dosing rate.  Values are expressed as mean ± SD. 

Volume of 

oil (µL) 

Direct titration  

(pH = 6.80 ± 0.05) 

Back titration  

(pH = 11.50 ± 0.05) 

Volume of 

NaOH  (mL) 

Apparent 

extent of 

lipolysis (%) 

Volume of 

NaOH  (mL) 

Total extent of 

lipolysis (%) 

161 (n = 5) 1.673 ± 0.021 33 ± 0* 3.299 ± 0.100 98 ± 2* 

1500 (n = 3) 15.333 ± 0.885 32 ± 2* 40.727 ± 0.495 100 ± 2* 

2100 (n = 3) 21.699 ± 0.509 32 ± 1* 52.789 ± 0.527 99 ± 0* 
 *No statistically significantly difference with the other groups (unpaired t−test).   

(Reprinted from Ref. [53], under the terms of CC BY, 2015) 

 

3.3.4. Droplet size and total surface of the equimolar triglyceride emulsions 

following dispersion in the lipolysis buffer 

The particle size and the specific surface area of the equimolar emulsions are shown in Table 

3-2.  All emulsions showed one population and tight peak widths. Tri−C4 had the smallest 

droplet size (124 ± 6 nm) and the highest specific surface area (436∙10−3 ± 12∙10−3 nm−1), 

followed by tri−C2, tri−C8, tri−C10, and tri−C18.  The relatively large droplet sizes are 

consistent with the poor dispersion properties of Type I lipidic formulations [85].  
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Table 3-2. Hydrodynamic droplet size (dH) and specific surface area (SS) of the diluted (5∙10−2% 

v/v) triglyceride (TG) emulsions formed upon dispersion of equimolar amounts of oil in the 

digestion buffer after the equilibration period, prior to enzyme addition (mean ± SD, n ≥ 8).  

One way ANOVA followed by post hoc Tukey–Kramer test was used for statistical analysis. 

Triglyceride dH (nm) SS ∙10−3 (nm−1) 

Glyceryl triacetate (tri−C2) 138 ± 4 a 436 ± 12 a 

Glyceryl tributyrate (tri−C4) 124 ± 6 a 485 ± 25 a 

Glyceryl trioctanoate (tri−C8) 155 ± 7 b 388 ± 19 b 

Glyceryl tridecanoate (tri−C10) 162 ± 7 c 371 ± 17 c 

Peanut oil (tri−C18) 189 ± 7 a 318 ± 12 a 
a Statistically significantly different from all other TGs (p < 0.001); b Statistically significantly 

different from all other TGs (p < 0.001), except for tri− C10 (p < 0.05); c Statistically significantly 

different from all other TGs (p < 0.001), except for tri− C8 (p < 0.05). 

(Reprinted from Ref. [53], under the terms of CC BY, 2015) 

 

 

3.4. Discussion 

 

In this work, the extent of lipolysis of lipidic Type I formulations, based on TGs, has been 

evaluated by means of an in vitro lipolysis model, to better understand the specificity behind 

pancreatic lipase activity.  The assessment of the lipolysis process by direct titration at pH 6.80 

showed there are significant differences in the pH–time profiles (Figure 3-1) and the amount 

of titrant consumed (Figure 3-2) for each TG.  In addition and in agreement with previous 

studies, there is also more extensive lipolysis (Figure 3-3) of medium−chain TGs by pancreatic 

lipase when compared with long−chain TGs.  Most of previous in vitro lipolysis reports have 

compared formulations with the same volume [217] or same mass [49, 123, 182, 203, 218] of 

lipid.  However, to compare pancreatic lipase activity on different TG substrates, the 

assessment is more informative mechanistically when performed with equimolar amounts as 

reported here. 

Another consideration in the experimental procedure is that the lipolysis of Type I 

formulations, results in lipolytic products that have a low degree of ionisation at physiologically 

relevant pH (e.g. pH 6.80).  Some authors [121, 182, 217, 218, 223–225] have partially resolved 

this, by performing back−titrations and defining a correction factor to determine the real extent 

of lipolysis.  In the light of this, back−titration experiments were undertaken at pH 11.50, 
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immediately after direct titrations had been performed.  The pH value of 11.50 was chosen to 

guarantee both complete FA ionisation and pancreatic lipase inhibition [199]. 

For tri−C2, the apparent extent of lipolysis was approximately 33%.  This value suggests that 

only triglycerides were hydrolysed.  However, back−titration results indicate 66% of the 

lipolysis extent was underestimated and thus diglycerides and MGs were lipolysed as well. 

Similarly, the calculated extent of lipolysis at pH 6.80 of tri−C4 was 66%, indicating that all TGs 

and diglycerides were lipolysed.  Subsequent titrations at pH 11.50 revealed that 33% of the 

extent of the process had been underestimated in direct titrations.  Interestingly, pKa values of 

acetic and butyric acid are 4.74 and 4.82 [226] respectively, and therefore all acid molecules 

should have been ionised at pH 6.80. However, it has been suggested previously that the 

apparent pKa of FAs within the aqueous micellar solution is higher than that calculated in 

standard conditions [182], which could explain the incomplete ionisation.  Another possible 

explanation for this phenomenon is that the lipase was still active, and therefore catalysed the 

release of one more FA during the time taken (60 s) for the increase of pH levels from 6.80 to 

11.50. 

For tri−C8 the apparent extent of lipolysis calculated indirectly from the NaOH volume data 

showed that almost complete hydrolysis was achieved. Figure 3-2C shows that for tri−C8 the 

apparent extent of the lipolysis−time profile is characterised by two distinct slopes, i.e. two 

different lipolysis rates.  The inflection point of this graph falls almost exactly at the 66% value 

of the lipolysis extent.  It could be assumed that the first part of the profile (from 0% to 66%) 

represents the lipolysis of TGs and diglycerides, and the second part of the profile (the 

remaining 33%) represents the isomerisation of 2−MG to 1/3−MG and subsequent lipolysis to 

glycerol and one FA.  It is conceivable that the second stage of the process (characterised by 

the least steep slope) was the slowest, since it involved two steps (isomerisation and hydrolysis), 

and because the affinity of pancreatic lipase towards monoglycerides is lower than towards TGs 

and diglycerides [216].  Back−titration data demonstrated that almost all released FAs during 

the lipolysis of tri−C8 were ionised at pH 6.80 ± 0.05, which is in agreement with the pKa of 

octanoic acid: 4.89 [226]. 

Back−titration results for tri−C10 revealed that the total extent of hydrolysis was around 66%; 

thus, pancreatic lipase catalysed the lipolysis of all TGs and diglycerides, but not monoglycerides.  
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Although the pKa of decanoic acid (4.90 [217]) is higher than that of octanoic acid, the unionised 

to ionised FA ratio (~0.5) did not follow theoretically predicted values.  However, similar 

results have been found in other laboratories.  Williams et al. [182] reported a ratio of 0.43 

after the lipolysis of a mixture of tri−C8 and tri−C10 at pH 6.5.  Likewise, Fernandez et al. [223] 

determined a ratio of 0.33 while assessing the lipolysis of Gelucire® 44/14 (dodecanoyl 

polyoxyl−32 glycerides) at different pH values. 

Finally, the total extent of lipolysis of LCT tri−C18 indicates that lipase acted on half of the TGs 

to release two FAs per one molecule of tri−C18.  In this case the incomplete ionisation of oleic 

acid at pH 6.80 was expected since its pKa is 9.85 [117].  Accordingly, around 20% of the extent 

of the process was undetected by direct titration. 

Overall, the trend in extent of lipolysis, and thus lipase activity (tri−C2, tri−C4, tri−C8 > 

tri−C10 > tri−C18) correlates with results observed by the only two other authors who have 

undertaken these equimolar lipolysis comparisons.  Firstly, Dicklin et al. [227] incubated the 

TGs with pancreatic tissue homogenate for a fixed period of time without titrating the released 

FAs.  In this study, no statistical differences were found among the specific activities that porcine 

pancreatic tissue homogenates showed towards tri−C4, tri−C6 (glyceryl trihexanoate) and 

tri−C8, although they were all higher than the lipase activity demonstrated by tri−C10.  While, 

Ciuffreda et al. [118] assessed the in vitro lipolysis of different TGs by direct titration at pH 8 

and reported an ascending order of lipase activity from tri−C18 and tri−C10 to tri−C4, but no 

lipolytic activity was detected for tri−C2. 

A theory as to the increased pancreatic lipase activity for the shorter TG chain lengths could 

be explained based on a two−step process as described by Lengsfeld et al. [198], whereby 

adsorption at the oil–water interface is followed by a catalysis reaction.  Therefore, substrate 

specificity of lipase could arise from any of these two steps, and could be due to the ability of 

the lipase to adsorb at the interface, as well as to the chemical affinity the binding site shows 

towards the TG acyl chain. 

Binding site affinity could explain the lower activity observed for tri−C10 and tri−C18 when 

compared to tri−C2, tri−C4 and tri−C8.  X−ray crystallographic studies have shown that the 

active site of pancreatic lipase is formed by three residues: serine 153 (Ser153), histidine 264 

(His264) and aspartate 177 (Asp177) [197]. 
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The catalytic triad is pulled together through hydrogen bonds between the hydroxyl group of 

Ser153 and one imidazole nitrogen of His264, and between the other imidazole nitrogen and 

the carboxylic group of Asp177 (Figure 3-4).  It is under this conformation that the hydrolysis 

reaction can take place.  The hydroxyl group of Ser153 is thought to initiate the reaction 

through a nucleophilic attack to the first (or third) glyceryl carbon, with the fatty carboxylate 

being the leaving group [228].  Consequently, the reaction would become faster the more 

electrophilic the glyceryl carbon is and the better leaving group (more stable) the carboxylate 

is.  In terms of electrophilicity, all TGs are analogous.  However, in terms of the leaving group, 

carboxylates of shorter chain length are better candidates (the stronger the acid, the weaker 

the conjugate base, the better the leaving group), and accordingly tri−C2, tri−C4 and tri−C8 

were lipolysed to the greatest extent. 

 

 

 
Figure 3-4. Proposed molecular mechanism of triglyceride lipolysis by pancreatic lipase 

focused on the catalytic triad.  (Reprinted from Ref. [53], under the terms of the CC BY, 2016) 

 

Regarding the lipase adsorption to the interface, the difference in activity could be attributed 

to the size of the oil droplets and/or to the inhibitory effects of the lipolysis products.  Since 

pancreatic lipase carries out interfacial catalysis, the higher the substrate surface area, the more 
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extensive the lipolysis becomes.  Therefore, in theory, the TGs with smaller oil droplets, are 

supposed to be lipolysed to a greater extent.  Indeed, results derived from DLS measurements 

showed that those triglycerides that were lipolysed to a greater extent (tri−C2, tri−C4, and 

tri−C8) were also characterised by greater specific surface areas (Table 3-2).   

Alternatively, the lipolysis process could be inhibited by the interfacial activity of amphiphiles 

such as diglycerides, unionised FAs and, mainly, 2−MGs [229–231].  Unless incorporated within 

mixed micelles, 2−MGs could form a layer at the droplet surface that efficiently blocks the 

access of the lipase [231].  Therefore, it could be hypothesised that 2−MGs derived from 

tri−C10 and tri−C18 are the least solubilised and inhibited the process to a greater extent. 

In summary, the results suggest that there is a specific chain length range (C2–C8) for which 

pancreatic lipase shows higher activity. We hypothesise that this specificity could result from a 

combination of physicochemical properties of TGs, 2−MGs and FAs, namely the droplet size of 

the TGs, the solubility of 2−MGs within mixed micelles, and the relative stability of the FAs as 

leaving groups in the hydrolysis reaction. 

 

 

3.5. Conclusions 

 

In these studies, the in vitro lipolysis by pancreatic lipase under bio−relevant conditions at 

physiological pH of equimolar amounts of TGs with different chain lengths has been evaluated 

for the first time.  The assessment of the process by direct titration at pH 6.80 showed there 

are significant differences in the pH–time profiles and the amount of titrant consumed for each 

TG.  The combined results of direct and back−titration studies proved there is a specific chain 

length range (C2–C8) for which pancreatic lipase showed higher activity.  Based on the obtained 

results, it is hypothesised that the specific surface area of the dispersed oil droplets, the 

solubility of 2−MGs within mixed micelles, and the relative stability of the FAs as leaving groups 

in the hydrolysis reaction, are the physicochemical properties which could determine the total 

extent of lipolysis. 

Pharmaceutical scientists may consider the extent of digestibility as an additional factor for 

excipient selection.  LCTs may be preferred as their solubilisation capacity is high and have the 
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potential of increase lymphatic transport.  However, since they are slowly and not fully digested, 

the transfer of drug from the oil droplet to the mixed micelles might be delayed and thus 

incomplete.  SCTs are quickly hydrolysed and therefore the co–administered drug is promptly 

released.  Withal, the solubilisation capacity of their associated micelles is limited, hence the 

chance for drug precipitation is high.  Therefore, the selection of MCTs might be the best option 

as they are fully digested and their solubilisation capacity is significant. 
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Chapter 4: Estimation of the Fraction 

Absorbed of BCS II Drugs in Lipidic 

Formulations by In Vitro Lipolysis 

 

 

4.1. Introduction 

The Biopharmaceutics Classification System (BCS) recognises that drug dissolution and 

gastrointestinal permeability are the fundamental parameters controlling the rate and the extent 

of drug absorption.  Accordingly, pharmaceutical scientist try to find tools to reliably correlate 

in vitro drug product dissolution and in vivo drug performance [9].  Through the successful 

development and application of in vitro in vivo correlations (IVIVC), in vivo drug performance can 

be predicted from its in vitro behavior.  If successful, IVIVCs can provide a surrogate for 

bioequivalence studies, improve product quality, and reduce regulatory burdens [232].  Several 

studies on different levels of IVIVC have been reported in the literature.  As an example, Amann 

et al. [233] worked with poly(lactic-co-glycolic) acid implants of risperidone, and obtained a 

good correlation (R2 = 0.96) between the in vitro mean dissolution time (assessed with a USP 

apparatus) and the in vivo mean residence time in rats.  As another example, Buch and colleagues 

[234] combined permeability values (determined with dialysis membranes) and extent of 

solubilisation data (obtained by using a paddle USP apparatus) of fenofibrate immediate release 

tablets and related them to the Cmax (maximum plasma concentrations) values gathered from 

two human studies. 

In vitro lipolysis digestion methods have been proposed in previous studies as a means to select 

appropriate lipid vehicles and to rationalise formulation design [63, 103, 235].  Later on, in vitro 

lipolysis studies started focusing on drug solubilisation and distribution across lipolysis phases 

during lipid digestion.  These studies revealed the importance of the lipid component in the 

formulation to enhance drug absorption, and used the model as a qualitative tool to rank–order 

the performance of lipidic formulations (LFs) [104, 123, 124, 203, 236].  This was done by 

correlating the percentage of drug solubilised in the micellar phase with the area under the 
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plasma concentration–time curve or the maximum concentration obtained after oral 

administration of the tested LF to animals.  To the best of this author’s knowledge there are 

no publications describing the correlation between in vitro lipolysis data of LFs and drug 

exposure in humans.   The ability of the in vitro lipolysis model to predict the actual in vivo 

performance of LFs in humans remains unknown, thus studies that assess IVIVCs are highly 

needed. 

The first aim of the work described in this chapter was to evaluate the solubilisation and 

distribution across lipolysis phases of two BCS class II drugs, by means of an in vitro lipolysis 

model.  The second aim was to propose the fraction of absorbed dose values by using the drug 

concentration data found in the micellar phase.  The last objective consisted in assessing the 

usefulness of in vitro lipolysis for quantitative estimations by comparing the in vitro results with 

in vivo bioavailability data, obtained following oral administration of the tested formulations to 

humans (reported in previously published clinical studies). 

Despite entering the market place in 1981, ten years ago oral LFs were still outnumbered 25 

to 1 by more “conventional’ formulations, and only represented 3% of the total marketed oral 

formulations (at least in United Kingdom, USA, and Japan) [6, 237].  The small number of 

commercially available oral LFs considerably reduced the number of model BCS class II drugs 

suitable for our purposes.  Eventually, 9-tetrahydrocannabinol (THC) and cyclosporine A 

(CsA) (Table 4-1) were selected for this investigation.  THC is an orally active cannabinoid 

which has complex effects on the central nervous system.  THC is a highly lipophilic and poorly 

water soluble () marketed under the brand name Marinol®.  Marinol® is approved for the 

treatment of anorexia in AIDS patients, as well as for refractory nausea and vomiting in patients 

undergoing chemotherapy.  Marinol® contains dronabinol (synthetic THC) dissolved in sesame 

oil [238].  CsA acts as an immunosuppressant drug and is broadly used to prevent graft rejection 

in organ transplantation patients, and for the treatment of severe arthritis and psoriasis, among 

other indications [239].  CsA is characterised by moderately high lipophilicity, very low solubility 

in aqueous media, and it is commercialised mainly as Sandimmun Neoral®, a lipid-based self-

emulsifying drug delivery system (SEDDS) of CsA.  Five published clinical studies were selected 

as a set of clinical data for the purpose of estimating  the human oral bioavailability of THC in 

Marinol® and CsA in Neoral® [240–244].  The selection process of model LFs and associated 
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clinical data for the future validation of the in vitro lipolysis/metabolism approach will be 

described.  The observed human oral bioavailability of the model LFs was calculated by 

performing a non–compartmental analysis (NCA) of the pharmacokinetic (PK) data provided in 

the selected published clinical studies. 

 

Table 4-1.  Physicochemical properties of 9-tetrahydrocannabinol (THC) and cyclosporin A 

(CsA), and formulation details of Marinol® and Neoral®, 

 THC CsA 

Chemical 

structure 

 

 

Molecular 

formula 
C21H30O2 C62H111N11O12 

Molecular 

weight 
314.47 g/mol 1202.64 g/mol 

logP 6.97 [245] 3.35 [245] 

Water 

solubility 
0.77-2.8 µg/mL [246] 5 ± 2 μg/mL [247] 

pKa 10.17 (acid) [248] 10.3 (acid) [248] 

Effective 

permeability 
7.56.10-4 cm/s [248] 1.65.10-4 cm/s [249] 

Lipidic 

formulation 
Marinol® Neoral® 

Dose 2.5, 5 and 10 mg [238] 10, 25, 50, and 100 mg [239] 

Composition 

per capsule 
250 μL of sesame oil [238] 

1 mL of propylene glycol, Kolliphor® 

RH40, ethanol, mono–, di–, and 

triglycerides of corn oil, and α–

tocopherol [239] 

 

 

 



4.  In Vitro Lipolysis: Estimation of the fraction absorbed 

Page | 68  
 

4.2. Materials and Methods 

 

4.2.1. Materials  

Reagents and solvents used for experimentation were the same as those listed in chapter 2, 

section 2.2.1.  Additional utilised reagents were those listed as follows; α–tocopherol and 

Kolliphor® RH40 were purchased from Sigma–Aldrich (Dorset, UK).  Vitamin D3 (VitD3, 98% 

w/w) was obtained from Alfa Aesar (Heysham, UK).  Sesame oil and corn oil were purchased 

from Acros Organics (Geel, Belgium).  Dronabinol (synthetic THC), and CsA were products 

from THC Pharm GmbH (Frankfurt, Germany) and Kemprotec Ltd. (Carnforth, UK), 

respectively.  Cannabidiol (CBD) was kindly donated by GW Pharmaceuticals (Cambridge, UK).  

Propylene glycol (PG) was purchased from Amresco (Ohio, USA).   

 

4.2.2. Lipidic formulations, clinical data, and PK analysis 

4.2.2.1. Selection of lipidic formulations and associated clinical data 

The selection of model formulations was performed based on availability of published clinical 

data.  An exhaustive search of the literature was performed in order to find publications which 

would provide the necessary information to accurately reproduce the in vivo digestion of the 

LF using the in vitro model.  The studies were chosen based on the following criteria: 

a) Volunteers had to be dosed in the fasted state because in vitro lipolysis experimental 

medium consists of simulated intestinal fluids in the fasted state.   

b) Volunteers had to be healthy (no history of renal, hepatic or gastrointestinal diseases) 

adults (18 to 55 years old), to make sure no additional factors would affect the ADME 

(absorption, distribution, metabolism, and excretion) properties of the drug.  It is known 

that the age of treated subject represents an additional factor affecting the solubility of 

drugs.  It has been estimated that around 10% of individuals over 65 years of age have a 

gastric pH greater than pH 6 in the fasted state [250].  Apart from physiological factors, 

disease states may affect the solubilising capacity in the gastrointestinal tract.  As an 

example, subjects suffering from HIV tend to have a higher gastric pH [251], whereas 

cystic fibrosis patients have a lower pH [252].  Furthermore, gastric pH can be influenced 

by concomitant treatment with other drugs [253]. 
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c) Availability of clear information about the exact amount of lipidic formulation administered 

since a defined amount of formulation had to be dispersed in the in vitro lipolysis medium. 

d) Availability of relevant PK data for a single oral dose, and following intravenous (IV) 

administration.   

The list of selected commercially available oral LFs in the United States, United Kingdom and 

Japan, collected by Strickley [237], was used as starting point for screening LFs.  Some LFs were 

not considered because sales had been discontinued (Fortovase®, saquinavir [254]), because 

more than one active pharmaceutical ingredient was included in the medicine (Kaletra®, 

lopinavir and ritonavir [255]), or because they were extended–release drug products (Ketas®, 

ibudilast [256]; MXL® capsules, morphine sulphate [257]; and Detrol® LA, tolterodine tartrate 

[258]).  Most of the LFs containing antivirals and antineoplastics were rejected mainly due to 

available trials referring to non-healthy volunteers, such as HIV patients (Agenerase®, 

amprenavir [259]; Norvir®, ritonavir [260]; Aptivus®, tipranavir [261]; and Sustiva®, efavirenz 

[262]) and cancer patients (Targretin®, bexarotene [263]).  Other LFs were discarded due to 

unavailable (Epadel®, ethyl icosapentate; and Fenogal®, fenofibrate), or very limited (Avodart®, 

dutasteride [264]; and Infree® S capsules, indomethacin farnesyl [265]) oral PK data for single 

oral doses.  Some LFs were rejected because clinical trials included volunteers in the fed state, 

and/or it was not indicated whether the administered formulation was actually a lipidic one 

(Juvela N®, tocopherol nicotinate [266]; Selbex®, teprenone [267]; Accutane®, isotretinoin 

[268]; and Rapamune®, sirolimus [269]).  If only one single valid study could be found, the LFs 

were not taken into account either (Depakene®, valproic acid [270]; Cipro®, ciprofloxacin 

[271]; Glakay® capsules, menatetrenone [272]; Vesanoid®, tretinoin [273]; Prometrium®, 

progesterone [274]; and Hectorol®, doxercalciferol [275]).  The LFs of testosterone 

undecanoate (Andriol® and Restandol®) were discarded as well because the stability of this 

ester prodrug in the gastrointestinal tract remains unknown.  

Eventually, five medicines were short–listed: Marinol® (THC) [240, 241, 276–280], One-

Alpha® capsules (alfacalcidol) [281, 282], Rocaltrol® (calcitriol) [282, 283], Heminevrin® 

(clomethiazole edisilate) [284, 285], and Neoral® (CsA) [138, 242–244, 286–290].  Marinol® 

(sesame oil), One-Alpha® capsules (sesame oil and α–tocopherol), Rocaltrol® (fractionated 

triglycerides of coconut oil or palm oil) and Heminevrin® (fractionated coconut oil) are all Type 
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I lipidic formulations, whereas Neoral® is a self–emulsifying drug delivery system (SEDDS) 

consisting of  lipids, surfactants and co-solvents (Type IIIA).  For the sake of formulation 

diversity, it was decided to select one Type I formulation (Marinol®, already available in the 

laboratory), and one Type III (Neoral®).   

The clinical studies of the selected LFs were narrowed down further according to the 

inclusion/exclusion criteria explained above.  In the case of Neoral®, numerous studies were 

rejected because of one of the following reasons: the trials were not performed in healthy 

volunteers, or were usually conducted in organ transplant patients [287], or the impossibility 

of confirming whether the administered formulation was actually Neoral® [138, 288, 289], or 

the impossibility of purchasing the administered dose strength (i.e. 60 mg capsules are not 

commercially available in UK) [286, 290].  In the case of Marinol®, some studies were not 

considered because the volunteers were not healthy (cancer patients [276]), because the 

fed/fasted state of the subjects was not indicated [280], and because of incomplete information 

about the formulation, such as the volume of co–administered oil [277, 278], or the dose 

strength of the capsules [279]. 

Finally, it was possible to select five published clinical studies that described oral administration 

of THC and CsA and that fulfil the eligibility criteria described above.  In the case of Marinol®, 

the studies described the administration of: (a) 2 x 10 mg capsules (20 mg THC in ~0.5 mL 

sesame oil) [240], and (b) 1 x 10 mg capsule (10 mg THC in ~0.25 mL sesame oil) [241].  

Regarding Neoral®, the studies described the administration of: (a) 2 x 100 mg capsules (200 

mg CsA in 2 mL SEDDS) [242, 243], (b) 3 x 100 mg capsules (300 mg CsA in 3 mL SEDDS) 

[244], and (c) 6 x 100 mg capsules (600 mg CsA in 6 mL SEDDS) [242].  Publications detailing 

the intravenous administration of THC [280, 291–294] and CsA [138, 295] were collected also 

to calculate the absolute Fobserved. One of THC studies included frequent Cannabis users [293], 

which might affect THC PK parameters, such as CL due to induction of metabolism.  However, 

no statistical significant differences were found in the PKs between the users and non–users 

groups, and thus it was decided to include this data. 
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4.2.2.2. PK analysis 

PK variables for the selected model drugs were collected from the associated published clinical 

studies.  These parameters were as follows: terminal half–life (t1/2,z), volume of distribution at 

the terminal phase (Vz) and at the steady–state (Vss), maximum plasma (or blood) concentration 

(Cmax), time at which Cmax occurs (tmax), clearance (CL), and area under the plasma 

concentration–time curve (AUC) from time zero to the last measurable concentration point 

(AUCt), and extrapolated to the infinity (AUC∞).  When such PK data were not available in the 

manuscripts, plasma (or blood) concentration–time profiles were extracted using an online tool, 

WebPlotDigitizer [296], as others researchers have previously done [297–299].  Subsequently, 

PK parameters were calculated using a NCA in Phoenix WinNonlin® 6.3 (Pharsight, Mountain 

View, CA, USA).  The AUC values were estimated by using the linear and logarithm trapezoidal 

rules, in the rising and declining phases of drug concentration, respectively.  The terminal phase 

half–life was estimated from at least three of the last measurable concentrations following Cmax.  

Cmax and tmax values were derived directly from the profiles.  The Fobserved values were estimated 

from the ratio of the AUC∞ normalised by the dose after IV and oral dosing (Equation 1-1). 

The fraction of drug dose escaping hepatic metabolism (Fh) was calculated from the CL values, 

assuming the compounds are strictly metabolised by the liver when administered intravenously.  

When plasma CL values were given/calculated, they were transformed into blood CL through 

the blood to plasma drug concentration ratio (B/P).  The combined fractions of the absorbed 

drug dose and non-metabolised in the gut (Fabs∙Fg) were derived from the estimated Fobserved and 

Fh values. 

 

4.2.3. Composition and preparation of blank lipidic formulations 

Blank formulations mimicking the excipient composition of Marinol® and Neoral®, but lacking 

the active pharmaceutical ingredients, were prepared and lipolysed in order to generate 

matrixes from which appropriate calibration curves were constructed.  The Marinol® blank 

formulation consisted of plain sesame oil [238].  The exact composition of Neoral® is not fully 

disclosed [239], hence some approximations had to be made.  Based on available information, 

and assuming a standard amount of α–tocopherol of 2.5 mg per unit dose [300], it was 

calculated that one 100 mg/mL Neoral® capsule contains, in addition to 100 mg CsA, the 
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following excipients: 100 mg PG, 405 mg Kolliphor® RH40, 0.119 mL ethanol, and 0.35 mL 

mono–, di–, and triglycerides of corn oil.  These specified amounts of excipients were mixed 

under constant stirring at 37 °C, and stored at room temperature until used. 

 

4.2.4. In vitro lipolysis studies 

4.2.4.1. Scaling down from in vivo to in vitro conditions 

It has been suggested [301] that for the assessment of the mass of soluble drug in the small 

intestine an in vivo dissolution volume of 80 to 100 mL, rather than the classic 250 mL, would 

be more accurate.  In the current work, it was decided to follow both approaches, and 

preliminary studies with the Marinol® formulation were done assuming 250 and 100 mL for 

the in vivo dissolution volume.  Based on the obtained results, it was decided later on to continue 

only with the 100 mL approach in the Neoral® studies. 

The digestion medium of the in vitro lipolysis model consists of approximately 40 mL. Therefore, 

the amount of formulation corresponding to each clinical study was scaled down accordingly to 

match the in vivo situation, as indicated in Equation 4-1: 

Formulation volume 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 =
40 mL ∙ Formulation volume 𝑖𝑛 𝑣𝑖𝑣𝑜

250 or 100 mL
 Equation 4-1 

The calculated proportional amounts are summarised in Table 4-2.  

 

Table 4-2. Scaled amounts of lipidic formulation (Marinol® and Neoral®) dispersed in the in 

vitro lipolysis model (~40 mL) calculated from the quantities administered in vivo, according to 

Equation 4-1, assuming different in vivo dissolution volumes. 

 In vivo 

dissolution 

volume (mL) 

Formulation in vivo Formulation in vitro 

 
Volume 

(mL) 

Amount of 

drug (mg) 

Volume 

(mL) 

Amount of 

drug (mg) 

M
a
ri

n
o

l®
 

(T
H

C
) 

250 

 

0.5 20 0.08 3.2 

0.25 10 0.04 1.6 

100 
0.5 20 0.2 8 

0.25 10 0.1 4 

N
e
o

ra
l®

 

(C
sA

) 

100 

2 200 0.8 80 

3 300 1.2 120 

6 600 2.4 240 

THC: Δ9–tetrahydrocannabinol; CsA: cyclosporin A 
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4.2.4.2. Simulated intestinal buffers 

The effect of the surfactant (bile salts and phospholipids) composition on the in vitro digestion 

of the lipidic formulations was assessed by using two different intestinal fluid compositions 

simulating the contents of the jejunum in the fasted state (Table 4-3).  The composition of 

these digestion media differed in the concentration of sodium taurocholate (bile salt, BS) and 

phosphatidylcholine (phospholipid, PL).  The “classical” buffer, which was used during the 

experimentation described in Chapters 2 and 3, was analogous to those previously used by 

other lipolysis research groups [53, 104, 105, 203, 302, 303], and consisted of higher 

concentrations of surfactants in a proportion 4:1 BS/PL.   On the other hand, the “new” buffer, 

was closer to Fasted–State Simulated Intestinal Fluid–version 2 (FaSSIF–V2) and human 

physiological conditions, and therefore contained lower surfactant concentrations (3 mM and 

0.2 mM BS and PL concentration, respectively)  in a ratio 15:1 BS/PL [95].   

 

Table 4-3. Comparison of the two different lipolysis media used for the intraluminal processing 

of Marinol® and Neoral®.   

 Classical New 

C
o

n
c
e

n
tr

a
ti

o
n

 

(m
M

) 

Trizma® maleate 50 

Sodium chloride 150 

Calcium chloride 2 

Sodium taurocholate 5 3 

Phosphatidylcholine 0.75 0.2 

Bile salt to Phospholipid ratio 4:1 15:1 

(Adapted from Ref. [304] under the terms of CC BY, 2016) 

 

4.2.4.3. Experimental procedure 

The experimental conditions described in Chapter 2, section 2.2.6 were followed to investigate 

the lipolysis of the calculated formulation volumes (Table 4-2).  The set of conditions (1 M 

NaOH titrant concentration, and maximum (3.5 mL/min) and minimum (3 μL/min) rates of 

titrant addition) optimised in Chapter 2 were set up through the instrument control software.  

The experiments were considered to be completed when the dosing rate of NaOH was lower 

than 3 µL/min. Each experiment was repeated six times. 
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Once the lipolysis process was finished, the resulting reaction mixtures were collected in ultra–

centrifuge tubes (Beckman Coulter, High Wycombe, UK) for subsequent density gradient 

separation.  The mixtures were ultra–centrifuged (Sorvall Discovery 100SE centrifuge, TH–641 

rotor, Thermo Scientific, North Carolina, USA) at ~ 197000 g and 37 °C for 90 minutes.  After 

centrifugation, phases were separated, collected (sediment was re–suspended in water) and 

stored at - 80 °C until drug content analysis.  The volume recovered for each phase was 

recorded to determine the drug content. 

 

4.2.5. HPLC–UV analysis 

4.2.5.1. Sample preparation 

Lipolysis and calibration curve samples were prepared for HPLC–UV (ultraviolet) analysis by 

liquid–liquid extraction.  The procedure for THC samples was similar to that developed by 

Zgair et al. [305], with some modifications.  The changes consisted in choosing a different 

internal standard (VitD3 instead of probucol) and using 200 µL (or 50 µL) of sample volume 

instead of 150 µL.  Aliquots of 200 µL of MP and SP (or 50 μL of LP) were mixed with 60 µL of 

350 µg/mL VitD3 in acetonitrile, and vortex-mixed for 2 minutes.  Subsequently, 600 µL (or 150 

µL for LP) of ice–cold acetonitrile was added, and samples were vortex-mixed for 2 minutes.  

Six hundred microliters of water was added, and samples were vortex-mixed again for another 

2 minutes.  Next, 3 mL (or 1.5 mL of LP) of n–hexane was added, and samples were vortex–

mixed for 5 minutes.  After centrifugation at ~1200 g (Harrier 18/80 centrifuge, swing-out 

rotor, MSE, London, UK) for 15 min at room temperature, the upper organic layer was 

transferred to a fresh glass tube and evaporated under a gentle stream of nitrogen gas at 35 °C 

(Techne Dri-Block Sample Concentrator, Cambridge, UK).  Residues were reconstituted in 200 

µL (or 750 µL) of acetonitrile, and 10 μL was injected into the HPLC system.   

The sample treatment of CsA lipolysis samples was similar to that of THC samples.  Exceptions 

were the use of a different initial sample volume (100 µL), internal standard type, concentration 

and volume (10 µL of 2 mg/mL CBD in acetonitrile), extraction solvent type and volume (1.5 

mL methyl tert–butyl ether), and the volume of solvent added to reconstitute the residue (1000 

μL).   
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4.2.5.2. Chromatographic conditions 

The quantitative determination of THC, CsA and corresponding internal standards, wasas 

performed using a HPLC system (Waters Alliance 2695, Waters Corporation, Milford, MA, 

USA) equipped with a photodiode array UV detector (Waters 996, Waters Corp.).  Sample 

temperature was controlled by a fitted chiller at 4 °C.  THC and VitD3 were detected at 220 

nm, whereas CsA and CBD were monitored at 211 nm.  Separations were achieved using a 

Sonoma C18(2) 100 x 2.1 mm, 3 μm particle size column (ES Industries, West Berlin, NJ, USA), 

protected by a Phenomex C18 4 x 2 mm guard cartridge (Phenomenex, Macclesfield, UK).  

Mobile phases were a mixture of acetonitrile and water in a ratio of 75:25 and 65:35 (v/v), for 

THC and CsA determination, respectively.  The flow rate was set at 0.3 mL/min for 40 minutes 

at 55 °C, and for 12 minutes at 60 °C, for THC and CsA determination, respectively.  Data 

acquisitions and processing was carried out using EmpowerTM 2 software (Waters Corp.). 

 

4.2.5.3. Method validation 

Partial validation of THC and CsA quantitative determinations was performed in accordance 

with the European Medicines Agency (EMA) and the American FDA Guidelines on bioanalytical 

method validation [306–308].  Accuracy and precision were expressed as relative error (RE, 

Equation 4-2) and relative standard deviation (RSD, Equation 4-3), respectively: 

RE(%)=
|∆x|

x
=

|xcalc − xnom|

xnom

 ∙ 100 Equation 4-2 

RSD(%)=
sx

x̅
∙ 100 Equation 4-3 

where |∆x| is the absolute error, xcalc is the regressed concentration computed from the 

calibration curve, xnom is the nominal standard concentration, and sx and x̅  are the standard 

deviation and average of all xcalc for a certain concentration, respectively.  A method is 

considered to be accurate and precise if RE and RSD values are ≤ 15%, except for low limit of 

quantification (LLOQ), where it should not exceed more than 20%.  Intra–day accuracy and 

precision were determined by analysing six replicates of the same sample batch at 

concentrations of low, medium and high quality control samples (LQC, MQC and HQC).  Inter–

day accuracy and precision were calculated by analysing those same concentrations in six 

different sample batches. 
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Calibration curves were constructed using a weighting factor of 1/x2, except for that 

corresponding to CsA in the SP, for which statistical analysis showed that curve–weighting was 

not appropriate [309].  Calibration curves consisted of a blank sample (matrix sample processed 

without internal standard), a zero sample (matrix sample processed with internal standard), and 

at least six non–zero samples covering the expected concentration range, and meeting the 

above criteria with regards to RE and RSD values. 

 

4.2.6. Calculation of the predicted fraction absorbed (Fabs) 

Following oral administration, drug solubilisation in the intestinal milieu is a prerequisite for the 

absorption process.  Therefore, drug molecules solubilised in the micellar phase of the lipolysis 

medium are thought to be most readily available for absorption.  By contrast, drug molecules 

in the sediment and lipid phase are not expected to be available for absorption in vivo conditions. 

Since BCS II drugs are highly permeable and lipidic formulations are thought to inhibit drug 

efflux transporters [310, 311], it was assumed that all the mass of THC and CsA solubilised in 

the micellar phase would be completely absorbed.  To determine the fraction of drug absorbed 

(Fabs), the concentration of drug found in the micellar phase (CMP) was multiplied by the in vivo 

dissolution volume assumed for scaling down doses (250 or 100 mL), and divided by the 

administered clinical dose, as indicated in Equation 4-4: 

Fabs = CMP (
mg

mL
) ∙

250 or 100 mL

Clinical dose (mg)
 Equation 4-4 

 

4.2.7. Statistical data analysis 

All presented data are expressed as mean (or weighted means, WX) ± standard deviation (SD; 

or overall SD, OSD).  Statistical tests detailed in Chapter 3, section 3.2.8 were also used in this 

chapter.  Since PK data from more than one study were available for the same route of 

administration, weighted mean values were calculated.  The overall sum of squared errors 

(OSSE, Equation 4-5) was used to estimate the OSD (Equation 4-6), and subsequently the 

coefficient of variation (CV, Equation 4-7).  

OSSE = ∑[(SDi
2 + xi

2) ∙ ni]

n

i=1

− N ∙ WX2 Equation 4-5 
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OSD = √OSSE
N⁄  Equation 4-6 

CV(%) = 100 ∙ √OSD
WX⁄  Equation 4-7 

where SDi is the standard deviation from each individual study [312]. 

A F–test was used to analyse the scedasticity of the HPLC–UV method validation data so as to 

determine whether calibration curve–weighting was needed or not.  Homoscedastic data are 

characterised by SDs that are the same at all sample concentrations; whereas heteroscedastic 

data present SDs that increase with sample concentration.  In the first case, curve weighting is 

not appropriate; but in the second case, weighting should be used to improve curve 

performance.  Because F–test requires variances (SDs squared), i.e. replicates for each 

concentration on the standard curve, the quality control samples (with n = 6) of intra–day 

analysis were used.  The F–value (Fexp) was calculated as the ratio of the variances (s2) for the 

HQC and LQC sets of data.  If data resulted to be heteroscedastic, the goodness of fit for 

calibration curves with weighting  1/x or 1/x2 was compared by means of the sum of the RE (%) 

values, to find the smallest value, i.e., the best fit [309, 313, 314]. 

 

 

4.3. Results 

 

4.3.1. PK analysis of selected clinical data 

The plasma concentration–time profiles of THC after intravenous and oral administration 

extracted from the selected clinical publications, are presented in appendix Figure A-1 and 

Figure A-2, respectively.  The blood concentration–time profiles of CsA are shown in 

appendix Figure A-3 (intravenous) and Figure A-4 (oral).  The profile corresponding to the 

oral administration of six Neoral® capsules is missing as it was not provided in the published 

study.  Appendix Table A-1 and Table A-2 list the PK parameters for THC and CsA, and 

Table 4-4 summarises the derived bioavailability values.   
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Table 4-4.  Bioavailability of selected formulations estimated from published clinical data.  

Absolute oral bioavailability values (Fobserved) were obtained following the administration of 

Marinol® [240, 241] and Neoral® [242–244]; hepatic bioavailability values (Fh) were calculated 

from the intravenous administration of Δ9-tetrahydrocannabinol (THC) [280, 291–294]  and 

cyclosporin A (CsA) [138, 295], assuming strictly liver clearance.  The fraction absorbed and 

non–metabolised in the gut (Fabs∙Fg) were derived from Fobserved and Fh.  Values are expressed as 

weighted mean ± overall SD. 

 Dose Fobserved (%) Fh (%) Fabs∙Fg (%) 

Marinol® 
2 x 10 mg THC [240] 4.1 ± 3.6 56.9 ± 

25.5 

7.2 ± 7.7 

1 x 10 mg THC [241] 3.4 ± 3.8 5.9 ± 7.5 

Neoral® 

2 x 100 mg CsA [242, 243] 46.5 ± 18.1 

75.5 ± 5.5 

61.5 ± 27.7 

3 x 100 mg CsA [244] 41.8 ± 16.9 55.4 ± 25.5 

6 x 100 mg CsA [242] 36.6 ± 12.1 48.4 ± 19.4 

 

Data showed high variability in PK parameters especially in case of THC.  This variability could 

be partially due to the different analytical methods used, which included radioactivity.  Oral and 

IV AUC values normalised by the dose are markedly different, which indicates that orally 

administered doses of THC and CsA do not reach the systemic circulation intact.  Statistical 

analysis showed there was no difference (p=0.6144 and p=0.0727, for THC and CsA, 

respectively) in the Fobserved values among different strengths of the same formulation.  Despite 

variability in the data, the calculated oral exposure of Neoral® (46.5 ± 18.1%, 41.8 ± 16.9%, 

and 36.6 ± 12.1%, for two, three and six 100 mg capsules, respectively) was much higher than 

that of Marinol® (4.1 ± 3.6% and 3.4 ± 3.8%, for two and one 10 mg capsules, respectively). 

 

4.3.2. HPLC–UV method development and validation 

Both THC and CsA detection methods showed good selectivity since matrix related peaks 

from blank lipolysis phases did not interfere with either analyte or corresponding internal 

standard (VitD3 and CBD) at the detection wavelengths.  Typical chromatograms corresponding 

to the lipolysis phases obtained following the in vitro enzymatic hydrolysis of Marino® and 

Neoral® are shown in appendix Figure A-5 and Figure A-6, respectively.   

For THC, the linearity of the method was confirmed over the concentration ranges of 0.005–

0.350 mg/mL, 0.01–6 mg/mL, and 0.25–16 mg/mL for micellar, sediment, and lipid phases, 

respectively, based on least 9 concentration levels and with correlation coefficient (r2) values ≥ 

0.99 in all calibration curves (appendix Figure A-7).  In the case of CsA, the linearity of the 
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method was confirmed over the concentration ranges of 0.1–8 mg/mL and 0.3–1.5 mg/mL, for 

micellar and sediment phases, respectively, based on least 8 concentration levels and with 

correlation coefficient (r2) values ≥ 0.99 in all calibration curves, as well (appendix Figure A-8).  

The homoscedasticity of the data was double checked by plotting the absolute errors against 

the concentration (appendix Figure A-9 and Figure A-10) and by performing F–tests 

(appendix Table A-3).  In all cases, except for CsA in sediment phase, the calculated F value  

was higher than the tabulated one (5.05) [315], which confirmed the heteroscedasticity of the 

data and the need for calibration curve–weighting.  The weighting scheme 1/x2 was the chosen 

one as it provided the smallest Σ RE (%) values (appendix Table A-3).   

The intra–day and inter–day accuracy and precision for THC and CsA in lipolysis phases were 

within the acceptable limits (≤ 15%) for all quality control samples as indicated by the RE and 

RSD values shown in appendix Table A-4.  These results indicate that both THC and CsA 

detection methods were accurate and precise for the determination of these drugs in lipolysis 

phases.  RE and RSE values for THC and CsA were within the acceptable limits (≤ 20%) at the 

LLOQ (appendix Table A-4), which were found to be 0.002 and 0.05 mg/mL for THC and 

CsA, respectively. 

 

4.3.3. In vitro lipolysis 

4.3.3.1. Drug distribution across lipolysis phases.  The effect of the assumed in vivo 

dissolution volume: 250 versus 100 mL  

The intraluminal processing of Marinol® was assessed by in vitro lipolysis assuming two different 

in vivo dissolution volumes: 250 and 100 mL.  This was done to determine the effect of the 

scaling factor on the overall digestion process.  The total recovery of THC was 62.0 ± 5.5%.  

This value is low but constant, and it is a reflection of the loss of drug during the process of 

lipolysis, ultracentrifugation and sample preparation, due to non–specific binding to laboratory 

material.  The distribution of THC across micellar, sediment and lipid phases is shown in Table 

4-5.   
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Table 4-5. Distribution of recovered drug across micellar (MP), sediment (SP) and lipid (LP) 

phases after the lipolysis (in the “classical” buffer) of diverse doses of Marinol® and Neoral®, 

assuming two different in vivo dissolution volumes. Values are expressed as mean (n = 6) ± SD. 

In vivo dissolution 

volume (mL) 
Formulation % drug MP % drug SP % drug LP 

250 
2 x 10 mg Marinol® 47.3 ± 3.3 10.9 ± 1.5 41.6 ± 4.2 

1 x 10 mg Marinol® 67.1 ± 3.8 14.8 ± 1.1 18.1 ± 3.9 

100 

2 x 10 mg Marinol® 30.7 ± 4.3 6.8 ± 1.4 62.5 ± 5.4 

1 x 10 mg Marinol® 51.0 ± 6.6 10.7 ± 1.1 38.4 ± 7.2 

2 x 100 mg Neoral® 95.0 ± 1.0 5.0 ± 1.0 

N/A 3 x 100 mg Neoral® 96.7 ± 0.5 3.3 ± 0.5 

6 x 100 mg Neoral® 98.4 ± 0.2 1.6 ± 0.2 

 

Statistical analysis showed there were significant differences in the amount of drug recovered 

in each phase when different in vivo dissolution volumes were used (p < 0.001).  When higher 

amounts of formulation were dispersed in the model (in vivo dissolution volume of 100 mL), the 

proportion of drug solubilised in the micellar and sediment phases decreased (around 16% and 

4%, respectively), whereas the amount of drug solubilised in the lipid phase increased by 

approximately 20%.   

Assuming an in vivo dissolution volume of 250 mL, the concentration of THC found in the 

micellar phase following the lipolysis of the proportional amounts to two and one 10 mg 

Marinol® capsules were around 19 and 30 μg/mL, respectively.  Similarly, assuming a human 

dissolution volume of 100 mL, the concentrations found for two and one 10 mg Marinol® 

capsules were around 40 and 47 μg/mL, respectively.  These concentration values were used 

for the estimation of the fraction of absorbed dose values (Equation 4-4), which are shown in 

Figure 4-1.  Again, statistical analysis showed significant differences between Fabs values when 

different in vivo dissolution volumes were assumed (p < 0.01).  When higher amounts of 

formulation were dispersed in the model (in vivo dissolution volume of 100 mL), the estimated 

Fabs values decreased for both doses, although this reduction was more pronounced for the 

digestion of one capsule (76 to 47%), compared to the digestion of two capsules (24 to 20%) 

The distribution of CsA across the lipolysis phases was only assessed assuming 100 mL as in 

vivo dissolution volume (Table 4-5).   The recovery of CsA was higher than that of THC (83.8 

± 2.7%), probably due to the fact of CsA being less lipophilic than the cannabinoid, and therefore 
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showing less tendency towards non–specific binding.  After ultracentrifugation, no upper lipid 

phase was observed, which suggests all tri– and diglycerides in Neoral® were hydrolysed.  

Almost all recovered drug was present in the micellar phase (≥ 95%) and very little amount of 

CsA precipitated in the sediment phase.  As expected, the CsA concentration in the micellar 

phase increased with the amount of dispersed lipidic formulation. 

 

 

Figure 4-1. Fraction of absorbed dose of Δ9–tetrahydrocannabinol (THC) in Marinol® 

estimated from lipolysis studies. Coral and blue colours correspond to the lipolysis of the 

formulations using the “classical” buffer, assuming an in vivo dissolution volume of 250 mL and 

100 mL, respectively.  Whilst, green colours represent the lipolysis in the “new” buffer, 

assuming 100 mL of dissolution volume.  Values are expressed as means (n = 6) ± SD.  A one–

way ANOVA followed by Tukey–Kramer multiple comparison test were used for statistical 

analysis.  Statistically significantly different: ****, p < 0.0001; **, p < 0.01 

 

4.3.3.2. Effect of the surfactant concentrations: “classic” versus “new” buffer  

The intraluminal processing of Marinol® and Neoral® was assessed by in vitro lipolysis using 

two different digestion buffers (Table 4-3).  This was done to determine the effect of surfactant 

(bile salt and phospholipids) concentrations on the overall digestion process.  Based on the 

results obtained in previous experiments, the adequate amount of LF to be dispersed in the 40 

mL–volume vessel of the digestion medium was calculated assuming an in vivo dissolution volume 

of 100 mL (Table 4-2).  According to parsimony concept, only drug concentration in the 
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micellar phase is considered for Fabs calculation (Equation 4-4).  Hence, in these experiments 

only drug content in the micellar phase was determined.  

When the classical buffer was used, and 200 and 100 μL of Marinol® were digested, THC 

concentrations in the micellar phase were 40 ± 5 µg/mL and 47± 8 µg/mL, respectively.  

Similarly, when 800, 1200, and 2400 μL of Neoral® were lipolysed, the concentrations of CsA 

in the micellar phase were 0.926 ± 0.012 mg/mL, 1.692 ± 0.066 mg/mL, and 4.709 ± 0.156 

mg/mL, respectively.   

When the new buffer was used instead of the classical one, the concentrations found in the 

micellar phase decreased for THC and increased for CsA.  The concentrations for THC were 

6 ± 2 μg/mL, and 15 ± 1 μg/mL, respectively for the 200 and 100 µL of Marinol®.  For CsA the 

concentrations were 1.729 ± 0.048 mg/mL, 2.637 ± 0.134 mg/mL, and 6.103 ± 0.703 mg/mL, 

following the lipolysis of 800, 1200 and 2400 μL of Neoral®, respectively. 

As previously indicated, the working hypothesis of the in vitro lipolysis model is that the fraction 

of drug dose which is solubilised in the micellar phase is most readily available for absorption.  

In addition, THC and CsA are highly permeable drugs, and LFs are thought to inhibit efflux 

mechanisms [310, 311].  Therefore, it was assumed that all the amount of THC and CsA 

solubilised in the micellar phase would completely permeate into the enterocytes.  Accordingly, 

the concentration values found in the micellar phase were next introduced in Equation 4-4 to 

calculate the predicted fractions of absorbed dose represented in Figure 4-1 (THC) and 

Figure 4-2 (CsA).  The use of lower surfactant concentrations resulted in opposite outcomes: 

the fraction of THC decreased (from 20.2% and 47.2% to 7.6% and 6.5%), whereas the 

proportion of absorbed CsA increased (from 46.3%, 56.4%. and 78.5% to 87.4%, 87.9%, and 

101.7%, respectively). 

Statistical analysis showed that there were significant differences (p < 0.01) in the estimated Fabs, 

when the same volume of lipidic formulation was digested using buffers differing in the level of 

surfactant concentrations.  It was also shown that there were significant differences in the 

estimated Fabs among different doses of the same formulation when using the classical buffer, 

but no statistically significant differences were detected when the new buffer was used.  

Exception was the high-dose of six Neoral® capsules study, which turned up to be statistically 

different from the other two Neoral® studies. 
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Figure 4-2. Fraction of absorbed dose of cyclosporin A (CsA) in Neoral® estimated from 

lipolysis studies assuming an in vivo dissolution volume of 100 mL.  Blue colours correspond to 

the lipolysis of the formulations using the “classical” buffer; whereas green colours represent 

the “new” buffer.  Values are expressed as means (n = 6) ± SD.  An unpaired t-test followed by 

Welch’s correction were used for statistical analysis.  Statistically significantly different: ****, p 

< 0.0001; **, p < 0.01. 

 

 

4.4. Discussion 

 

4.4.1. PK analysis of selected clinical data 

Due to the social stigma associated with smoking cannabis, the harm that smoke may cause, 

and the marked variable bioavailability when inhaled (it depends on the depth of inhalation, puff 

duration and breath hold), there is a tendency to administer medicinal cannabinoids orally.  As 

such, Marinol® is approved for use in certain countries including USA or New Zealand [316].  

Despite its extremely low oral bioavailability (calculated Fobserved values were 4.1 ± 3.6% and 3.4 

± 3.8 for two and one capsules, respectively), the systemic exposure with the oral LF 

formulation is sufficient to produce a therapeutic effect, with only 2 to 44 μg in the brain  

exerting a pharmacological response [317]).  Statistical analysis showed there is no difference 

between the obtained Fobserved values, which suggests Marinol® displays dose proportionality, at 

least in the range of doses tested.  The extremely high, although very variable CL values 

reported here (~ 9 ± 5 mL/min/kg) suggest that THC metabolism is limited by hepatic blood 
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flow [318].  These values are in accordance with previously reported values (8 and 13.3 

mL/min/kg [319]). 

In the case of CsA, Mueller et al. [242] demonstrated a linear relationship between AUC and 

Neoral® dose.  In the present study, the analysis of the calculated Fobserved values derived from 

independent clinical studies, suggested there was no statistical differences among doses, and 

thus confirmed Neoral®’s dose proportionality.  The calculated total clearance (5.14 ± 1.15 

mL/min/kg) is in agreement with previous reports [320].   

 

4.4.2. HPLC–UV method development and validation 

Two HPLC–UV methods were developed and validated for the determination of THC and CsA 

concentration in micellar, sediment and lipid phases obtained after the in vitro lipolysis of their 

lipidic formulations (Marinol® and Neoral®, respectively) and subsequent ultra–centrifugation.  

 

4.4.2.1. HPLC–UV method development 

First attempts to extract THC from lipolysis matrixes consisted in a liquid–liquid extraction 

method (tetrahydrofuran and n–hexane), based on a previous publication on lipophilic 

cannabinoids [79].  However, chromatographs resulting from this method showed background 

lipolysis peaks interfering with the THC signal.  As recommended by Zgair et al. [305], 

tetrahydrofuran was substituted for ice–cold acetonitrile, which markedly decreased the size 

of background noise; and water was introduced in the protocol to yield cleaner spectra.   

Initially, compound separation was achieved by using a Phenomenex Luna C18(2) 100 x 2.1 mm, 

2 μm particle size column, a simple buffer–free solvent mixture of methanol and water in a ratio 

of 90:10 (v/v) as mobile phase, a flow rate of 0.2 mL/min and temperature of 35 °C.  However, 

changing to a 3 μm particle size column, using a combination of acetonitrile and water (75:25 

(v/v)) as mobile phase, and increasing the flow rate and the temperature up to 0.3 mL/min and 

55 °C, respectively, provided better separation efficiency and peak shape, and shorter analysis 

time.     

THC HPLC–UV detection method was used as starting point for the development of a method 

to quantify CsA in the lipolysis phases. n–Hexane did not extract CsA, thus other solvents were 

tested, such as ethyl acetate or diethyl ether, but it was tert–butyl ether that displayed the best 
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extraction efficiency.   CBD was chosen as the most appropriate internal standard, based on its 

elution being a short time before CsA.  Mobile phase solvent ratio and column temperature 

were optimised also to give the final instrumentation conditions described in section 4.2.5.2. 

 

4.4.2.2. HPLC–UV method validation 

Lipolysis data presented acceptable r2 values (≥ 0.99) in all calibration curves, but data were 

heteroscedastic in all cases, except for CsA in the sediment phase.  This was expected since 

the range of concentration values were of more than one order of magnitude [321], but CsA 

in the sediment phase only ranged  from 350 to 1500 μg/mL.  In the light of the evidence of the 

heteroscedastic situation, the weighted least squared linear regression was used to neutralise 

the greater influence of the higher concentrations on the fitted regression line.  Lipolysis data 

was tested using the two most common weighting factors, 1/x and 1/x2, and the latter was 

chosen as the best fit according to the sum of relative errors (appendix Table A-3). 

Intra–day and inter–day RE and RSD values derived from 1/x2–weighted calibration curves (or 

1/x0 for CsA in sediment phase) (appendix Table A-4) were within the acceptable limits (≤ 

15%) for LLOQ and quality control samples of THC and CsA in lipolysis phases.  According to 

EMA and FDA regulations [306–308], these results suggest that the developed HPLC–UV 

detection methods were accurate and precise for the determination of THC and CsA in lipolysis 

phases. 

 

4.4.3. In vitro lipolysis 

In vitro digestion experiments were performed to assessed the intraluminal processing of the 

THC and CsA lipidic formulations (Marinol® and Neoral®), to measure and compare the 

extent of drug solubilisation in the micellar phase, and to estimate the fraction of absorbed drug 

dose  under different experimental conditions. 

 

4.4.3.1. Drug distribution across the lipolysis phases.  The effect of the assumed 

in vivo dissolution volume: 250 versus 100 mL  

For the estimation of the amount of drug solubilised in the small intestine, two different in vivo 

dissolution volumes were initially considered: 250 mL and 100 mL.  The first value corresponds 
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to the amount of water given to volunteers in clinical trials, and it has been used by the BCS as 

the standard volume for assessing the maximum solubility of drugs in the fasted state [322].  

However, latest publications [301] suggest that while 250 mL is the reasonable volume for the 

assessment of solubility of drugs in the stomach, it might be too high for the estimation of drug 

solubility in the small intestine.  Mudie et al. suggest using a volume of 80 to 100 mL instead of 

250 mL.   

Preliminary experiments with Marinol® were performed to determine which volume was more 

appropriate in the current studies.  The digestion medium of in vitro lipolysis model has 

approximately a 40 mL volume, therefore the amounts of two and one 10 mg Marinol® capsules 

were scaled down accordingly to match the in vivo situation (Table 4-2).  The assumption of a 

lower in vivo dissolution volume (100 vs. 250 mL) led to the dispersion of higher amounts of 

formulation in the model (200 and 100 μL vs. 80 and 40 μL).   

The higher volume of formulation available for digestion was translated into a higher solvent 

capacity of the micellar phase, as indicated by the observed increment in the drug concentration 

values.  These results were expected since the presence of more oil, if digested, would lead to 

the production of more triglyceride hydrolysis products.  The presence of a higher proportion 

of 2–monoglycerides and fatty acids in the lipolysis medium generates mixed micelles which are 

swollen to a greater extent, and thus capable of incorporating higher amounts of the 

hydrophobic drug. 

Nonetheless, the ratio of the volume of sodium hydroxide solution (used to titrate the liberated 

ionised fatty acids during lipolysis experiments) to the volume of the formulation dispersed in 

the experimental medium was higher for the lipolysis of 80 and 40 μL of Marinol® (250 mL) 

than that of 200 and 100 μL of Marinol® (100 mL), which suggests the extent of in vitro lipid 

digestion was lower in the second case.  These results are in accordance with the distribution 

of THC across the lipolysis phases shown in Table 4-5.  The larger volume of undigested oil 

remaining after the lipolysis of 200 and 100 μL of the formulation led to a higher sequestration 

of the lipophilic drug in the lipid phase (62% vs. 42% and 38% vs. 18%) at the expense of the 

micellar (31% vs. 47% and 51% vs. 64%) and sediment (7% vs. 11% and 11% vs. 15%) phases. 

The gastrointestinal volume of liquids in humans (250 and 100 mL) together with the 

concentrations of drug in the micellar phase and the clinical doses were combined to estimate 
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the mass of THC soluble in the intestinal milieu (Equation 4-4).  The Fabs values (Figure 4-1) 

were higher for the 250 mL approach (24% and 76%), compared to the 100 mL one (20% and 

47%).  The combination of the fraction absorbed and non–metabolised in the small intestine 

(Fabs∙Fg) was estimated based on the oral bioavailability observed in human subjects (Fobserved) and 

the fraction of drug non–metabolised in the liver (Fh), calculated assuming the drugs were only 

cleared by the liver when administered intravenously (Table 4-4).  Fabs∙Fg values were 7.2 ± 

7.7% and 5.9 ± 7.5%, for two and one 10 mg Marinol® capsules respectively.  In the best 

scenario possible, considering the fraction of drug extracted at the intestinal wall to be negligible 

(i.e. Fg~1), the estimated Fabs would range from 0% to14.9% and from 0% to 13.4%, for two and 

one capsules, respectively.  Based on this evidence, it seemed that the estimated Fabs values 

assuming an in vivo dissolution volume of 100 mL (20% and 47%), instead of 250 mL (24% and 

76%), were closer to the in vivo situation.  Therefore, 100 mL was deemed to be more 

appropriate in the current studies, and doses dispersed in subsequent lipolysis experiments 

were scaled down according to this volume. 

Contrary to Marinol®, the digestion of Neoral® was complete based on the absence of a lipid 

layer after ultracentrifugation.  This discrepancy is interesting from the point of view that both 

formulations contain long–chain lipids (sesame oil and corn oil), and that higher quantitiesvi of 

lipid were dispersed in the model when mimicking Neoral® digestion compared to Marinol®.  

Nonetheless, the lipids in Neoral® are a combination of mono–, di– and triglycerides [239], 

thus not all the lipid content needs to be digested to be incorporated in the micellar phase.  

Besides, the self–emulsification properties of Neoral® assists in the formation of smaller oil 

droplets with increased surface area, thus facilitating the access of pancreatic lipase to the oil–

in–water interface and increasing the extent of digestion.  The absence of a lipid phase that 

could lead to the sequestration of CsA molecules, and the enhanced solvent capacity of the 

micellar phase due to the presence of lipid digestion products and formulation surfactants, 

accomplished the almost complete solubilisation of CsA in the micellar phase (Table 4-5).   

 

                                                           
vi 35% of Neoral® consists of mono–, di– and triglycerides of corn oil.  Accordingly 280, 420 

and 840 μL of lipid were dispersed when mimicking the digestion of two, three and six 100 mg 

Neoral® capsules. 
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4.4.3.2. Effect of the surfactant concentrations: “classic” versus “new” buffer  

Initially, a lipolysis buffer analogous to those previously used by our and other lipolysis research 

groups [53, 104, 105, 203, 302, 303], characterised by high concentrations of bile salts and 

phospholipids (5 mM and 0.75 mM, respectively), was used for digestion of the lipidic 

formulations.  According to literature data [238, 242] and the PK analysis performed herein, 

both Marinol® and Neoral® showed approximate dose proportionality.  However, Fabs results 

(Figure 4-1 and Figure 4-2) suggested changes in percentage absorbed dependent on dose 

for both formulations.  Hence, it was apparent that a refinement in the lipolysis conditions was 

needed.   

Following the lead of other research groups [323], surfactant levels were reduced down to 

more bio–relevant concentrations (3 mM bile salt and 0.2 mM phospholipid) [95], and lipolysis 

experiments were performed again.  Interestingly, reduction in surfactant concentrations 

caused opposite effects for the two tested model drugs.   

The solubilised fractions of THC decreased (Figure 4-1), whereas the solubilised fractions of 

CsA increased (Figure 4-2).  Marinol® is a Type I lipidic formulation [85], therefore it is highly 

dependent on the presence of bile salts and phospholipids  to create mixed micelles within 

which THC and lipolytic products (fatty acids and 2–monoglycerides) are solubilised.  

Therefore, the lower the surfactant concentration, the fewer the number of micelles and the 

lower the solubilised fraction.   

On the other hand, Neoral® is a SEDDS (Type IIIA lipidic formulation), for this reason it does 

not require additional surfactant agents to generate solubilising structures for CsA.  The 

observed variable and reduced solubility of CsA when using the “classical” buffer could be 

explained by the inhibitory effect on SEDDS formation caused by an excess of bile surfactants 

in the experimental medium.  An excess of bile salt– and phospholipid–derived micellar 

structures could lead to a higher entrapment of Neoral® components, thus reduce the number 

of SEDDS particles, and decrease the inherent solubilisation capacity of Neoral®.  Results 

derived from the use of the “new” more bio–relevant buffer, proved to be more consistent 

within formulations and showed no statistically significant differences between different 

formulation doses, as seems to occur in vivo [242].  The only exception was the study mimicking 
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the administration of a very high dose of CsA (six Neoral® capsules), which proved to be 

statistically different from the other two CsA studies.   

Interestingly, a higher dose of digested Neoral® in vitro led to a higher fraction of solubilised 

dose, whereas in vivo the case seemed to be the opposite.  This phenomenon has already been 

witnessed by Berthelsen et al. [323] when working with Kolliphor® RH40 (the main surfactant 

component in Neoral®), and it was explained by the so–called micellar trapping hypothesis.  

According to the hypothesis, the reduced bioavailability in vivo when using very high levels of 

Kolliphor® RH40, might be caused by a higher amount of undigested surfactant trapping the 

drug, thus decreasing the amount of drug available for intestinal permeation. 

As previously mentioned, the general assumption made by researchers working with the in vitro 

lipolysis model is that the fraction of drug dose which is solubilised in the micellar phase is most 

readily available for absorption.  This assumption represents an oversimplification of the 

absorption process, as drug contained in micelles could precipitate in the lower part of the 

small intestine.  Arguably, the estimated fraction of absorbed drug could be slightly 

overestimated due to gastric degradation, incomplete permeability and the action of efflux 

transporters (especially P–glycoprotein) expressed on the apical side of enterocytes.   

Garret and Hunt [246] proposed in 1974 that THC would be partially degraded in the stomach, 

after measuring the amount of THC that disappeared in aqueous solution 0.1 M hydrochloric 

acid over time at 55 °C.  However, according to Arrhenius law [324], the rate of THC 

degradation might have been overestimated, compared to the in vivo situation (37 °C).  In 

addition, it is possible that the entrapment of drug molecules within the undigested oil droplets 

of the formulation could prevent the contact between the drug and the acids of the stomach, 

and therefore limit gastric degradation.  Friis and Bundgaard [325] measured the kinetics of 

degradation of CsA at pH 1.1 and 3.0 at 37 °C.  Based on the calculated half–lives (63 and 79 

h, respectively) it was concluded that gastric degradation is of very minor importance for the 

absorption of CsA upon oral administration. 

In terms of permeability, THC and CsA belong to class II of the BCS, thus their membrane 

permeability is high, mainly passive and a function of lipophilicity (Peff = 7.56∙10-4 and 1.65∙10-4 

cm/s, for THC [248] and CsA [249], respectively).  Therefore, it is expected that most of the 

fraction of solubilised dose would cross the apical membrane.  With regards to efflux proteins, 
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it has been suggested that high drug permeability would lead to rapid permeation into the 

enterocytes, making the contribution of intestinal uptake transporters generally insignificant 

[14].  Furthermore, Ingels et al. [310] and Konishi et al. [311] have reported the inhibitory effect 

of monoglycerides on P–glycoprotein activity.  Based on this evidence, it can be assumed that 

efflux transporters do not play a role in the bioavailability of BCS II drugs delivered by means 

of LFs. 

Since the overall aim of this thesis was to quantitatively predict the absolute oral bioavailability, 

it was evident that lipolysis results alone were not sufficient for this goal.  The Fabs values 

calculated for Marinol® (7.6 ± 0.6% and 6.5 ± 1.6%) were in the very high end of the THC 

bioavailability range values derived from clinical studies (0.5 to 7.7% and 0 to 7.2%).  Whilst, the 

Fabs values for Neoral® (87.4 ± 0.9%, 87.9 ± 4.5, and 101.7 ± 11.7%) markedly overestimated 

the CsA oral bioavailability range values previously calculated (28.4 to 64.6%, 24.9 to 58.7%, 

and 24.5 to 48.7%).  Because permeability does not represent a barrier to BCS II drugs systemic 

exposure but first–pass extraction does, the introduction of a metabolism phase in the model 

deemed to be the most logical future step.  

 

 

4.5. Conclusions 

 

Marinol® (THC) and Neoral® (CsA) were chosen as model LFs for the future validation of the 

in vitro lipolysis/metabolism approach.  The selection of these medicines was based on availability 

of published clinical data.  PK analysis of selected clinical studies suggested that both 

formulations show dose proportionality in the range of the doses tested.   

In vitro lipolysis has been used to assess the intestinal drug solubilisation of THC in Marinol® 

and CsA in Neoral®, with the aim to quantitatively predict the fraction absorbed in humans.  

An in vivo dissolution volume of 100 mL, rather than 250 mL, used for scaling down lipolysis 

doses, led to better predictions of fraction absorbed in comparison to clinical data.  

The use of a digestion buffer with surfactant concentrations closer to bio–relevant conditions, 

resulted in more accurate prediction of the oral fraction absorbed of THC in Marinol® and 
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CsA in Neoral® in comparison to data derived from the classical buffer previously used in in 

vitro lipolysis studies.   

The digestion of very high dose levels of surfactants might represent a limitation to the 

estimation of fraction absorbed, since the in vitro lipolysis model could not account for the 

micellar trapping phenomenon that could occur in vivo. 

The differences observed between predicted fraction absorbed and observed oral bioavailability 

suggest that in vitro lipolysis is not sufficient alone to accurately predict systemic exposure in 

humans.  The combination with a metabolism phase to account for the loss of drug due to first–

pass metabolism might increase the accuracy of the predictions. 
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Chapter 5: In Vitro Lipolysis/Microsomal 

Metabolism Model for the Estimation of 

the Oral Bioavailability of BCS II Drugs in 

Lipidic Formulations 

 

 

5.1. Introduction 

 

There are a few published studies that describe the attempt of linking in vitro lipolysis to 

additional in vitro models to improve its predictive value.  These studies focused on drug 

permeability models, such as Caco–2 cells monolayer [236] or Ussing chambers [108].  

However, the assessment of intestinal permeability of drugs delivered in lipidic formulations 

(LFs) is challenging, since lipolysis medium components are toxic for epithelial cells [326, 327].  

While the injured mucosa is rapidly repaired in vivo, lack of epithelial restitution leads to acute 

in vitro toxicity.  Alqahtani et al. [236] tried to circumvent this issue by diluting the lipolysis 

medium exposed to Caco–2 monolayers; but the effect of dilution on the critical micellar 

concentration of mix–micelles was not assessed, and therefore the obtained results might be 

of limited relevance.  Dahan and Hoffman [108] used perfused rat intestinal tissue instead, and 

controlled the integrity of the epithelial tissue.  However, no correlation was obtained between 

the ex vivo permeation model results and the in vivo area under the curve (AUC) values.  It was 

concluded that intestinal permeation studies cannot indicate the actual exposure in vivo. 

Despite their admirable efforts of trying to add novelty to the in vitro lipolysis model, it may be 

argued that their approach was not adequate for class II drugs of the Biopharmaceutics 

Classification System (BCS) administered in LFs.  These drugs are expected to show high 

permeability, thus crossing the enterocyte cell membrane does not represent a barrier to oral 

bioavailability, but pre–systemic metabolism does.  It is the opinion of this author that an 
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improvement in the predictability power of the model could be obtained if linked to a 

metabolism model that accounts for the percentage of drug lost due to first–pass extraction. 

Accordingly, the first objective of the experiments described in this chapter was to predict the 

intestinal and hepatic human clearances, and subsequently quantify the fraction of drug dose 

that escapes metabolism at the gut wall and in the liver.  To this end, human intestinal and 

hepatic microsomal metabolism data were gathered using the in vitro half–life and multiple 

depletion curves methods  [328].  For this investigation, following the work described in 

Chapter 4, 9–tetrahydrocannabinol (THC) and cyclosporine A (CsA) were selected as model 

drugs, and Marinol® and Neoral® as model LFs.  The second objective of the studies presented 

herein consisted in combining, for the first time, in vitro lipolysis and microsomal metabolism 

data for the prediction of human oral bioavailability of lipophilic drugs administered in LFs.  If 

successful, the novel in vitro lipolysis/microsomal metabolism approach (Figure 5-1) could 

possibly transform the lipolysis model from a qualitative tool to a quantitative one.   

Furthermore, if predictive of the in vivo response, this novel approach could drastically reduce 

the need for animal experiments, improve accuracy and predictability for formulation design, 

and lead to better designed clinical trials, hence reduce time and cost of pharmaceutical 

research and development. 

 

 

Figure 5-1. Proposed In vitro lipolysis/microsomal metabolism model for the prediction of the 

human oral bioavailability of lipophilic drugs administered in lipidic formulations.  Fabs: Fraction 

absorbed; F: absolute bioavailability; Fg: intestinal bioavailability; Fh: hepatic bioavailability; Eg: 

intestinal extraction; Eh: hepatic extraction 
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5.2. Materials and Methods 

 

5.2.1. Materials  

Verapamil (≥ 99% w/w), dexamethasone (≥ 98% w/w), chlorpromazine (≥ 98% w/w), potassium 

phosphate dibasic anhydrous (K2HPO4), potassium phosphate monobasic anhydrous (KH2PO4), 

magnesium chloride (MgCl2, ≥ 98% w/w), ammonium acetate (≥ 99% w/w), and formic acid 

(~98% v/v) were all purchased from Sigma–Aldrich (Dorset, UK).  Nicotinamide adenine 

dinucleotide phosphate tetrasodium salt hydrate (NADPH, 93% w/w) was a product from Fisher 

Scientific (Leicester, UK).  Dronabinol (synthetic THC), and CsA were products from THC 

Pharm GmbH (Frankfurt, Germany), and Kemprotec Ltd. (Carnforth, UK), respectively.  

Vitamin D3 (VitD3, 98% w/w) was obtained from Alfa Aesar (Heysham, UK).  Cannabidiol (CBD) 

was kindly donated by GW Pharmaceuticals (Cambridge, UK).  Human liver microsomes pooled 

from 50 mixed gender donors (20 mg/mL protein content) were obtained from Gibco 

Invitrogen (Paisley, UK).  Intestinal human microsomes pooled from 13 mixed gender donors 

(10 mg/mL protein content) were a product from Tebu–Bio Ltd. (Peterborough, UK).  All 

solvents were of high-performance liquid chromatography (HPLC) grade or analytical grade and 

were used without any further purification.   

 

5.2.2. In vitro microsomal incubations 

To determine the fraction of drug dose that escapes metabolism in the gut wall and in the liver, 

microsomal metabolism stability studies with human intestinal and hepatic microsomes were 

performed.  Clearance values were determined by applying the “in vitro half-life approach”, 

which is based on the measurement of the first–order rate depletion constant of a drug 

substrate [329].  Microsomal incubations were conducted in a similar manner to that described 

previously [172].  Reaction mixtures (1200 μL final volume) consisting of 720 µL of 100 mM 

aqueous potassium phosphate buffer (KH2PO4/K2HPO4, pH 7.4), 240 µL of 2.5 mg/mL human 

microsomal protein in phosphate buffer, 120 µL of 100 mM aqueous MgCl2, and 24 µL of 0.05–

0.5 mM drug substrate (in aqueous acetonitrile, 50% v/v) were placed in a test tube under 

constant stirring, inside a water bath kept at 37 °C.  After 3 minutes of pre–incubation, reactions 

were initiated by the addition of 96 µL of 125 mM NADPH in phosphate buffer.  Final 
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concentrations of each component of the reaction mixture are listed in Table 5-1.  

Experiments were performed at least five times, and the organic solvent concentration 

(acetonitrile) in the incubation was less than 1% (v/v).  Verapamil and dexamethasone were used 

as positive and negative controls (extensive and limited hepatic metabolism), respectively.  

Control experiments without NADPH were carried out as well to monitor the matrix effect 

on THC and CsA metabolism.  At five specified time points (up to 30 and 60 minutes, for 

hepatic and intestinal assays, respectively), 200 µL aliquots were removed and added to glass 

tubes containing the appropriate internal standard in ice–cold methanol or acetonitrile, (to 

precipitate the proteins and stop the reaction).   

The proportion of drug remaining at each time point was determined immediately after 

completion of the experiments. 

 

Table 5-1. Concentrations of microsomal incubations components at t = 0 minutes. 

Compound Concentration 

KH2PO4/K2HPO4  60 mM 

MgCl2  10 mM 

Test compound 1, 2.5, 5,10 μM* 

Human intestinal/hepatic microsomes 0.5 mg/mL 

NADPH 1 mM 

* Due to limited availability of intestinal protein, intestinal metabolism studies were performed 

only at single concentration level (1 μM) 

 

5.2.3. Analytical procedures 

5.2.3.1. HPLC–UV analysis 

5.2.3.1.1. Sample preparation 

Verapamil and dexamethasone [330] microsomal incubation samples were prepared for HPLC–

UV (ultraviolet) analysis by protein precipitation.  Samples were quenched with 1000 μL 2 μΜ 

chlorpromazine in ice–cold methanol (internal standard for both compounds), vortex–mixed 

with for 10 seconds, and then centrifuged at ~1200 g (Harrier 18/80 centrifuge, swing–out 

rotor, MSE, London, UK) at room temperature for 10 minutes.  The upper organic phase was 

carefully decanted into fresh glass tubes and the solvent was evaporated under nitrogen gas at 

35 °C (Techne Dri–Block Sample Concentrator, Cambridge, UK).  The residue was 

reconstituted in 150 µL of aqueous acetonitrile (50%, v/v), vortex–mixed for 5 minutes, and 
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centrifuged again at ~1200 g for 10 minutes.  Finally, 100 µL of the resulting solutions was 

transferred into HPLC vials and 20 μL was injected into the HPLC instrument.   

 

5.2.3.1.2. Chromatographic conditions 

The quantitative determination of verapamil and dexamethasone content in microsomal 

incubations and internal standard, was performed using a HPLC system (Waters Alliance 2695, 

Waters Corporation, Milford, MA, USA) equipped with a photodiode array UV detector 

(Waters 996, Waters Corp.).  Samples temperature was controlled by a fitted chiller at 4 °C.  

Verapamil, dexamethasone and chlorpromazine were detected at 229, 240 and 254 nm, 

respectively.  Separations were achieved using a Phenomenex Gemini-NX 250 x 4 mm, 5 μm 

particle size column (Phenomenex, Macclesfield, UK), protected by a Phenomenex C18 4 x 2 

mm guard cartridge (Phenomenex).  Mobile phase was a mixture of acetonitrile and aqueous 

ammonium acetate (10 mM, pH 4.9) in a ratio of 50:50 (v/v).  The flow rate was set at 0.4 

mL/min for 17 minutes at 40 °C.  Data acquisitions and processing was carried out using 

EmpowerTM 2 software (Waters Corp.). 

 

5.2.3.2. HPLC–MS/MS analysis 

5.2.3.2.1. Sample preparation 

The determination of THC and CsA in microsomal incubation samples was accomplished by 

means of HPLC–MS/MS (tandem mass spectrometry) analysis since lower limits of quantification 

had to be achieved compared to lipolysis samples (Chapter 4 section 4.2.5).  Microsomal 

metabolism samples were treated in a similar manner to the lipolysis samples, with the addition 

of an initial step for protein precipitation. Samples were quenched with 600 μL 1 μΜ internal 

standard (VitD3 for THC, CBD for CsA) in ice–cold acetonitrile, and vortex–mixed for 2 

minutes.  Subsequently, 600 µL of water was added, and samples were vortex–mixed again for 

another 2 minutes.  Next, 3 mL of n–hexane (THC) or methyl tert–butyl ether (CsA) was added, 

and samples were vortex–mixed for 5 minutes.  After centrifugation at ~1200 g for 15 min at 

room temperature, the upper organic layer was transferred to fresh glass tubes and evaporated 

under a gentle stream of nitrogen gas at 35 °C.  Residues were reconstituted in 100 µL of 0.1% 

(v/v) formic acid in acetonitrile, and 10 μL was injected into the HPLC instrument. 
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5.2.3.2.2. Chromatographic conditions 

The chromatographic conditions for the determination THC, VitD3, CsA, and CBD in 

microsomal samples was based on previously validated methods for the quantification of such 

compounds in biological samples (hair, blood or cod liver oil) [331–334], with small variations 

around cone and capillary voltages. 

The quantitative determination of THC and CsA content in microsomal incubations and 

corresponding internal standards was performed by using a HPLC system (Agilent 1100 Series, 

Agilent Technologies, Waldbronn, Germany) equipped with a Quattro Ultima triple–

quadrupole mass spectrometer (Waters Corp.), utilising electrospray ionisation for ion 

production.  Sample temperature was controlled by a fitted chiller at 4 °C.  Separations were 

achieved on a Waters XBridge C18 75 x 2.1 mm, 2.5 μm particle size column (Waters Corp.), 

at a flow rate of 0.3 mL/min and at 60 °C.  Elution was conducted with 0.1% (v/v) formic acid in 

acetonitrile/water 90:10 (v/v) during 7 minutes, and 82.5:17.5 (v/v) during 3.5 minutes, for THC 

and CsA detection, respectively.  Multiple–reaction monitoring in positive ion mode was used 

to trace ions as follows (m/z precursor ion/ product ion): THC (315.2/ 193.0), VitD3 (385.3/ 

259.3), CsA (1219.7/ 1202.7) and CBD (315.2/ 193.0).  Nitrogen was used as drying and 

nebulisation gas at flow rates of 650 L/h and 150 L/h, respectively.  The desolvation and source 

block temperatures were and 350 °C and 125 °C, respectively.  The capillary voltages were 3.6 

kV and 4.5 kV, for THC and CsA detection, respectively.  The cone voltages were 35 V and 45 

V for THC and VitD3 analysis, and CsA and CBD analysis, respectively.  Data acquisitions and 

processing was carried out using MassLynx software (Waters Corp.).   

 

5.2.4. Data analysis 

5.2.4.1. Determination of in vitro intrinsic clearance values 

For the determination of the depletion rate constant, kdep, incubation data were fitted to a 

mono–exponential model, as shown in Equation 5-1: 

Ct

C0

 =  e−𝑘𝑑𝑒𝑝∙t Equation 5-1 

where Ct is the concentration of the compound remaining at each time point, and C0 is the 

concentration of the compound at the beginning of the incubation process.  However, real 

concentrations were not determined, since it is not possible to construct calibration curves in 
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microsomal matrixes.  Instead, analyte/internal standard peak area ratios were determined (Ct) 

and normalised to the value obtained at t = 0 (C0).  The percentage or drug remaining versus 

time was then fitted to a first–order decay function to determine kdep.  For hepatic metabolism, 

the Multiple Depletion Curves Method [328, 335–337] was applied.  Depletion rate constants 

obtained with different initial concentrations (1, 2.5, 5, and 10 μM) were used to calculate the 

theoretical depletion constant at infinitesimally low substrate concentration (kdep,[S]→0), as 

indicated in Equation 5-2.  To facilitate curve fitting, the equation was reorganised to give a 

linear relationship, as shown in Equation 5-3: 

𝑘𝑑𝑒𝑝 = 𝑘𝑑𝑒𝑝([𝑆]→0) ∙ (1 −
[S]

[S] + KM

) Equation 5-2 

1

𝑘𝑑𝑒𝑝

=
1

𝑘𝑑𝑒𝑝,[𝑆]→0

+
1

𝑘𝑑𝑒𝑝,[𝑆]→0 ∙ KM

∙ [S] Equation 5-3 

where [S] is the initial substrate concentration, and KM is the Michaelis–Menten constant. 

The observed in vitro intrinsic clearance (CLint) was calculated by multiplying the rate depletion 

constant (kdep,[S]→0 or kdep, for hepatic or intestinal metabolism, respectively) by the volume of 

incubation medium normalised by the amount of microsomal protein.  Subsequently, CLint values 

were corrected for the fraction of drug unbound in the incubation medium (CLu int).  For CsA, 

the extent of non–specific binding (fuinc) was predicted using Austin et al. equation [338] and a 

logP value equal to 3.35 [248].  It is known that for highly lipophilic drugs such as THC (logP = 

6.97 [248]) either Hallifax and Houston [339] or Austin et al. equations lead to poor predictions 

[340].  On the other hand, experimental measurement of fuinc of these drugs is also extremely 

challenging due to non–specific binding to laboratory material [341, 342].  Assuming that THC 

binds to serum proteins in the same way as to microsomal proteins, it is possible to estimate 

THC fuinc using Equation 5-4: 

fu100% =
fuX%

100 − (100 − X) ∙ fuX%

 Equation 5-4 

where fu100% is the fraction of THC unbound in plasma (fup = 0.0102 [248]), fuX% is the fraction 

of THC unbound in the incubation media (fuinc), and X is the ratio between the total 

concentration of proteins in human serum (approximately 70 mg/mL [343]) and the microsomal 

concentration in the incubations (0.5 mg/mL).  
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5.2.4.2. Calculation of the predicted fraction escaping hepatic metabolism (Fh) 

Physiologically–based scaling factors (standard human microsomal recovery of 32 mg 

microsomes/g liver [173, 175], and average liver weight of 22 g liver/kg body weight [344, 345] 

were applied to transform CLuint (mL/min/mg hepatic protein) into hepatic intrinsic clearances 

(CLuh,int, mL/min/kg body weight).  Hepatic clearances (CLh) were next calculated based on the 

“well–stirred” model [151], as shown in Equation 5-5: 

CLh =
Qh ∙ fub ∙ CLuh,int

Qh + fub ∙ CLuh,int

 Equation 5-5 

where Qh is the hepatic blood flow (21 mL/min/kg [172, 346]), and fub is the fraction of drug 

unbound in blood.  For CsA, the fub value was found in literature (0.04 [174]), whereas for 

THC (0.0096), it was calculated based on the fraction of drug unbound in plasma and the blood 

to plasma concentration ratio (1.063 [248]).  The fraction of drug that escapes first–pass 

metabolism in the liver (Fh) was finally derived from the CLh, as indicated in Equation 5-6: 

Fh = (1 −
CLh

Qh
⁄ ) Equation 5-6 

 

5.2.4.3. Calculation of the predicted fraction escaping gut metabolism (Fg) 

An average of 1410 mg of microsomal content in the human small intestine was used for the 

transformation of in vitro intrinsic clearance (CLuint, mL/min/mg intestinal protein) to gut 

intrinsic clearance (CLug,int, L/h).  The fractions of drug non–metabolised in the gut wall (Fg) 

were estimated using the “Q gut” mathematical model [179, 180], as defined in Equation 5-9 

and Equation 5-8: 

where the gut blood flow (Qgut) represents a mixture of villous blood flow (Qvilli ~18 L/h [347–

349]) and permeability across the enterocytes (CLperm).  CLperm was calculated through the 

effective intestinal permeability (7.56∙10-4 cm/s and 1.65∙10-4 cm/s for THC [248] and CsA [249], 

respectively) and the small intestine cylindrical surface area (0.66 m2 [350]).  The fraction of 

drug unbound in the enterocytes (fug) is commonly assumed to be 1, since this has been shown 

to provide the greatest accuracy of prediction when using the Qgut model [8, 132, 312, 351]. 

Fg =
Qgut

Qgut + fug ∙ CLug,int

 Equation 5-7 

Qgut =
Qvilli ∙ CLperm

Qvilli +  CLperm

  Equation 5-8 
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Alternatively, gut clearance values were calculated as well from the data obtained with hepatic 

microsomes.  In humans, CYP2C9 [352, 353] and CYP3A4 [354, 355] are the main enzymes 

involved in THC and CsA metabolism, respectively.  The abundance data of these metabolising 

enzymes per mg of hepatic (73 pmol CYP2C9 and 155 pmol CYP3A4) and intestinal (8.4 pmol 

CYP2C9 and 43 pmol CYP3A4) microsomes were used to transform CLuh,int values into CLug,int 

[135, 149].  Subsequently Fg was derived from the resulting CLug,int values as explained above. 

 

5.2.4.4. Calculation of the predicted oral bioavailability (Fpredicted) 

When several sites of metabolism are in series, bioavailability is defined as the product of the 

fraction absorbed (Fabs) times the fractions of drug entering the tissue that escape loss at each 

site (Fg∙Fh) [356].  Accordingly, to predict the oral bioavailability of THC in Marinol® and CsA 

in Neoral®, the Fabs values for the different clinical studies (estimated in Chapter 4) were 

combined with Fg and Fh, as indicated in Equation 5-9: 

Fpredicted(%) = Fabs ∙ Fg ∙ Fh ∙ 100   Equation 5-9 

 

5.2.5. Statistical data analysis 

All presented data are expressed as mean ± standard deviation (SD).  Statistical tests detailed 

in Chapter 3, section 3.2.8 were used here as well.   

 

 

5.3. Results 

 

5.3.1. HPLC–MS/MS detection method 

Sample preparation using a combination of protein precipitation (with acetonitrile) and liquid–

liquid extraction (with n–hexane or methyl tert–butyl ether) resulted in clean chromatograms 

with no interfering compounds present, even at concentrations as low as 8 nM (see appendix 

Figure A-11).  THC, CsA and internal standards were clearly separated from the void volume 

(~0.5 min) and eluted at retention times lower than 5 min, allowing injection–to–injection cycle 

times much shorter than those required for UV detection (developed for lipolysis samples). 
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The electrospray ionisation mass spectra of THC and CsA at cone voltages of 35 and 45 V, 

respectively, are shown in appendix Figure A-12.   

For THC and CBD, maximum sensitivity was achieved by monitoring the fragmentation of the 

protonated parent ions m/z 315 ([THC+H]+ and [CBD+H]+) to the daughter fragment m/z 193 

(see appendix Figure A-13A and D) [331, 332].  In the case of CsA, the deamination of the 

ammonium adduct m/z 1220 ([CsA+NH4]
+) to form the ion m/z 1203 ([CsA+H]+) was 

monitored (appendix Figure A-13C) [333].  The transition of the protonated parent ion m/z 

385 ([VitD3+H]+) to the ion m/z 259 (appendix Figure A-13B) was used for the quantification 

of VitD3 [334]. 

 

5.3.2. Hepatic microsomal metabolism: Prediction of the fraction non–

metabolised in the liver (Fh) 

Apart from intraluminal solubilisation, the other important factor that limits the oral 

bioavailability of BCS II drugs, is first–pass metabolism.  To determine the fraction of drug dose 

that is not cleared by the liver, microsomal metabolism stability studies with human hepatic 

microsomes were performed.  The metabolism rates (kdep) of THC and CsA at different initial 

concentrations by human liver microsomes, were obtained by applying the “in vitro half–life 

approach” and fitting the data to mono–exponential decay regressions (see Equation 5-1) 

represented in Figure 5-2.  These kdep values (summarised in appendix Table A-5) were next 

used to determine the theoretical depletion constant at infinitesimally low substrate 

concentration (kdep,[S]→0) and the Michaelis–Menten constant (KM), according to Equation 5-3.  

For THC, kdep,[S]→0 was 0.6689 ± 0.2153 min-1, and KM equalled 2.62 ± 0.93 μM (r2 = 0.96).  With 

regards to CsA, the calculated values were 0.0160 ± 0.0011 min-1, and 5.13 ± 0.48 μM (r2 = 

0.99), for kdep,[S]→0 and KM, respectively. 
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Figure 5-2. Depletion curves at different concentration levels derived from hepatic 

microsomal incubations of Δ9–tetrahydrocannabinol (A) and cyclosporin A (B).  The ratio 

between the drug concentration remaining at each time point (C) and the concentration of 

drug at the beginning of the incubation process (C0), is represented versus time. Values are 

expressed as means (n = 6) ± SD.  Note the difference in the time scales (X–axes) between the 

two figures. 

 

Using the microsomal concentration and the fraction unbound in the incubation mediumvii, 

kdep,[S]→0 was subsequently transformed into unbound intrinsic clearance: CLuint,THC = 2.640 ± 

0.850 mL/min/mg protein; CLuint,CsA = 0.079 ± 0.006 mL/min/mg protein).  Next, physiologically–

based scaling factors (average microsome content in the liver, and average liver weight per kg 

of body weight), were applied to transform CLuint into intrinsic hepatic clearance (CLuh,int).  

Subsequently, the hepatic blood flow and the fraction of drug unbound in blood were 

introduced in the well–stirred model equation (Equation 5-5) to calculate the hepatic 

clearance (CLh,THC = 9.6 ± 3.1 mL/min/kg; CLh,CsA = 2.0 ± 0.1 mL/min/kg).  Finally, it was estimated 

that approximately 54% and 90% of THC and CsA molecules, respectively, would escape first–

pass metabolism in the liver (Equation 5-6: Fh,THC = 0.541 ± 0.174;  Fh,CsA = 0.904 ± 0.064). 

For the sake of comparison, clearance and hepatic bioavailability values were estimated as well 

using the “parallel tube” modelviii [151, 177].  Nevertheless, these alternative values (see 

appendix Table A-6 for THC and Table A-7 for CsA) were not statistically significantly 

different (pTHC = 0.3481, pCsA = 0.1119) from those obtained with the well–stirred model. 

                                                           
vii To note, when THC metabolism was estimated with fuinc values derived from either Hallifax 

and Houston or Austin et al. equations, it resulted in a complete loss of prediction, as the Fh 

and Fg values turned up to be ~0% (see appendix Table A-6 and Table A-8). 

viii CLh = Qh ∙ (1 − e
−

fub∙CLuh,int
Qh

⁄
) 
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5.3.3. Intestinal microsomal metabolism: Prediction of the fraction non–

metabolised in the gut (Fg) 

First–pass metabolism can occur not only in the liver, but also within the enterocytes in the gut 

wall.  Similarly to the hepatic metabolism experimental procedure, the calculation of the fraction 

of drug dose that escapes metabolism in the gut was performed by means of microsomal 

metabolism stability studies with human intestinal microsomes. The metabolism rates (kdep) of 

THC and CsA by human intestinal microsomes, were obtained from the fitted mono–

exponential decay regressions represented in Figure 5-3.  The obtained kdep values were 0.0462 

± 0.0009 min-1 (r2 = 0.999) and 0.0056 ± 0.0007 min-1 (r2 = 0.95), for THC and CsA, respectively. 

Again, the microsomal concentration and the fraction unbound in the incubation medium, were 

used to transform kdep into unbound intrinsic clearance: CLuint,THC = 0.182 ± 0.003 mL/min/mg 

protein; CLuint,CsA = 0.028 ± 0.004 mL/min/mg protein).  Next, the average microsomal content 

in the small intestine was used to determine the gut intrinsic clearance values (CLug,int,THC = 15.4 

± 0.3 L/h; CLug,int,CsA = 2.3 ± 0.3 L/h).  The “Q gut” model, which accounts for mucosal blood 

flow and permeability across the enterocytes, was applied to finally calculate Fg (Equation 5-7 

and Equation 5-8).  It was estimated that around 37% and 58% of THC and CsA molecules, 

respectively, would escape first–pass metabolism in the small intestine (Fg,THC = 0.368 ± 0.070;  

Fg,CsA = 0.580 ± 0.074).   

Gut clearance values were calculated as well by extrapolating the data derived from hepatic 

microsomes, assuming that CLuint per pmol of enzyme is the same in both gut and liver.  Taking 

into account the relative abundance data of CYP2C9 and CYP3A4, the extrapolated gut 

clearances were 25.7 ± 8.3 L/h and 1.9 ± 0.1 L/h, which correspond to Fh values of 0.258 ± 

0.083 and 0.635 ± 0.045, for THC and CsA, respectively.  Statistical analysis showed that there 

is no significant difference (pTHC = 0.074, pCsA = 0.1876) between the Fg values calculated either 

directly from intestinal microsomes or extrapolated from hepatic microsomes. 

Additionally, the metabolism of CsA was estimated as well using the fu inc value calculated with 

Hallifax and Houston algorithm [339].  Derived values are summarised in appendix Table A-7 

and Table A-9.  Whereas the estimated Fh values calculated including either fuinc, Hallifax or fuinc, 

Austin were not statistically significantly different (p = 0.3259), the Fg values statistically differed 
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(p = 0.0255).  For this reason, it was decided to include both approaches is subsequent 

calculations of absolute oral exposure. 

 

 

 

Figure 5-3. Depletion curves derived from intestinal microsomal incubations of 1 µM Δ9–

tetrahydrocannabinol (THC) and 1 µM cyclosporin A (CsA).  The ratio between the drug 

concentration remaining at each time point (C) and the concentration of drug at the beginning 

of the incubation process (C0), is represented versus time. Values are expressed as means (n = 

6) ± SD. 

 

5.3.4. Linking in vitro lipolysis and metabolism studies: Prediction of the oral 

bioavailability (Fpredicted) 

The estimated absorbed (Fabs, calculated using two different digestion buffers, see Chapter 4) 

and non–metabolised (Fg∙Fh) fractions were combined for the calculation of the predicted oral 

bioavailability, as indicated in Equation 5-9.  Bioavailability results are summarised in Table 

5-2.  Pearson’s correlation test was used for the measurement of the strength of the association 

between Fobserved and Fpredicted.  Statistical analysis showed there was significant correlation 

between Fobserved and Fpredicted when the new buffer was used (Pearson’s r = 0.9638; p = 0.0082), 

but that was not the case for the classical buffer (Pearson’s r = 0.8291; p = 0.0826).   

Predicted bioavailability values calculated using Fh derived from the parallel tube model were 

not statistically significantly different from those calculated with the well–stirred model (see 

appendix Table A-10 for THC, and appendix Table A-11 for CsA).  There were no 

statistically significant differences either when Fpredicted was calculated with Fg derived from 

intestinal data or extrapolated from hepatic data.  When CsA oral bioavailability was calculated 

with data derived from fuinc, Hallifax instead of fuinc, Austin, predicted values were statistically 
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significantly different, but still showed strong correlation (p = 0.0083) with the observed ones, 

according to Pearson’s test.  Nonetheless, the values derived from fuinc, Austin were clearly closer 

to the real ones. 

 

Table 5-2. Absolute oral bioavailability values calculated from the data reported in published 

clinical studies (Fobserved), and calculated with the in vitro lipolysis/metabolism approach (Fpredicted), 

using two different digestion buffers.  Values are expressed as weighted means ± overall SD 

(Fobserved) or as means ± SD (Fpredicted). 

 

Marinol® Neoral® 

2 x 10 

mg THC 

[240] 

1 x 10 

mg THC 

[241] 

2 x 200 

mg CsA 

 [242, 243] 

3 x 200 

mg CsA 

 [244] 

6 x 200 

mg CsA 

[242] 

Fobserved (%) 4.1 ± 3.6 3.4 ± 3.8 46.5 ± 18.1 41.8 ± 16.9 36.6 ± 12.1 

Fpredicted 

(%) 

Classical 

buffer 
4.0 ± 1.4 7.4 ± 2.7 24.3 ± 3.6 29.6 ± 4.5 41.2 ± 6.1 

New 

buffer 
1.5 ± 0.5 1.3 ± 0.5 45.8 ± 6.7 46.1 ± 7.1 53.3 ± 9.9 

Fpredicted 

(Fg=1)a 

(%)  

Classical 

buffer 
10.9 ± 3.8 25.5 ± 9.3 41.0 ± 9.3 51.0 ± 4.1 71.0 ± 5.4 

New 

buffer 
4.1 ± 1.4  3.5 ± 1.4 79.0 ± 5.7 79.5 ± 6.9 91.9 ± 12.4 

Fpredicted 

(Fh=1)b 

(%)  

Classical 

buffer 
7.4 ± 0.9 17.4 ± 0.3  26.9 ± 3.4 32.7 ± 4.4 45.5 ± 6.0 

New 

buffer 
2.8 ± 0.2 2.4 ± 0.6 50.7 ± 6.5 51.0 ± 7.0 59.0 ± 6.8 

a Fpredicted assuming there is not gut metabolism (Fg = 1). 
b Fpredicted assuming all the absorbed drug is transported through the lymph, and therefore 

escapes metabolism in the liver (Fh = 1). 

THC: Δ9–tetrahydrocannabinol; CsA: cyclosporin A.  Classical buffer: 5 mM bile salt, 0.75 mM 

phospholipid; New buffer: 3 mM bile salt; 0.2 mM phospholipid. 

 

 

5.4. Discussion 

 

LFs are mainly used for the oral delivery of BCS II drugs.  Intestinal micellar solubilisation and 

first–pass metabolism (rather than membrane permeability) are the main barriers to the oral 

bioavailability of these kind of drugs.  In vitro, the intraluminal solubility of BCS II drugs 

administered in LFs can be estimated using the lipolysis model, whereas the first–pass extraction 

ratio can be assessed by performing microsomal stability assays.  The work presented herein 
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proposes a novel combination of in vitro lipolysis and microsomal metabolism studies for the 

quantitative prediction of human oral bioavailability of BCS II drugs administered in LFs.   

Marinol® and Neoral® were selected as model LFs and their observed oral bioavailabilities 

were calculated from published clinical studies in humans.  The predicted fraction absorbed was 

calculated by measuring the drug concentration in the micellar phase after completion of the 

lipolysis process (Chapter 4).  It was evident that lipolysis results alone were not sufficient for 

predicting the absolute drug exposure.  Thus, hepatic and metabolism phases were introduced 

to account for the loss of drug due to first–pass metabolism. 

In humans, cytochrome 450 (CYP) 2C9 has been identified as the main enzyme involved in THC 

metabolism.  CYP2C9 hydroxylases THC to 11–hydroxy–THC, which may suffer further 

oxidation to form the carboxylic acid 11–nor–9-carboxy–THC, as depicted in Figure 5-4.  As 

for Phase II metabolism of THC, the glucoronidation of 11–nor–9-carboxy–THC by 

uridinephosphate–glucoronosyltransferases leads to the formation of the O–ester glucuronide, 

which is the main metabolite found in urine [352, 353, 357].  The other enzyme that catalyses 

THC metabolism in humans, but to a much lesser extent, is CYP3A4, which is responsible for 

the 8β–hydroxylation and the 9α,10α–epoxidation of the drug [319, 358]. 

  

 

Figure 5-4. Most common metabolic pathways and metabolites of Δ9–tetrahydrocannabinol 

(THC) in humans, catalysed by CYP2C9 and CYP3A4 enzymes. Biotransformations are 

highlighted in colour red.   
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CsA is extensively metabolised in the liver and small intestine by CYP3A4 to at least thirty 

metabolites, all of which are considerably less active than the parent compound [320, 354, 359, 

360].  Major metabolic pathways that have been identified include the monohydroxylation of 

amino acid 1 (4–(2–butenyl)–N–methyl–threonine) and amino acid 9 (N–methyl–leucine), and 

demethylation of amino acid 4 (N–methyl–leucine).  These metabolites represent 

approximately 70%, 7.5%, and 20% of all CsA degradation products, respectively.  Further 

oxidation of the double bond in amino acid 1 leads to intra–cyclisation and formation of a 

tetrahydrofuran ring (Figure 5-5). 

 

 

Figure 5-5. Most common metabolic pathways and metabolites of cyclosporin A (CsA) in 

humans, catalysed by CYP3A4 enzyme. Biotransformations are highlighted in colour red.  AA 

stands for amino acid. 

 

In the absence of enzyme saturation, CLint defined as the ratio between the maximum rate of 

metabolism (vmax) and the KM (substrate concentration that yields half of vmax), is used as the 

link between fundamental enzyme kinetics and in vivo pharmacokinetic variables.  The “in vitro 

half–life” approach, in which CLint is derived from the mono–exponential slope of a single 

depletion curve, is the fastest method but is built on the assumption that the initial substrate 

concentration is well below KM.  When this basic condition is experimentally confirmed, the 

ability to predict clearance via an estimate of CLint is good [361].  However, this method is not 

suitable when KM is unknown and/or KM and vmax are required to predict nonlinear kinetics or 
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to evaluate drug–drug interactions, specific metabolic pathways, and inter–individual variability 

associated to genetic polymorphism [337].  Obach and Reed–Hagen [328] developed a simple 

way to assess CLint and KM by carrying out the in vitro half–life method at several substrate 

concentrations (multiple depletion curves method) [328, 336, 337].  

 

5.4.1. Prediction of the fraction non–metabolised in the liver  

The fraction of drug that escapes first–pass metabolism in the liver was determined in this work 

by using human liver microsomes and applying the multiple depletion curves method.  To 

confirm the correct experimental set–up, the metabolism of positive (verapamil) and negative 

(dexamethasone) control compounds were assessed.  The elimination rate constant values 

calculated for the control compounds (kverapamil = 0.0658 ± 0.0054 min-1, kdexamethasone = 0.0033 ± 

0.0004 min-1) were in accordance to those characteristic of highly (verapamil) and poorly 

(dexamethasone) metabolised drugs, and were comparable to those values obtained in previous 

reports with similar experimental conditions [172, 174].  kdep,[S]→0  was calculated for THC and 

CsA by incubating the drugs in hepatic microsomal medium at 4 concentration levels.  The 

obtained kdep,[S]→0  values were then transformed into hepatic clearance data, through 

corrections for the fraction of drug unbound to microsomes and to blood proteins, 

physiological scaling factors, and the application of the “well–stirred” model (although the 

parallel tube model proved to be not statistically significantly different).  Traditionally, a value 

of 45 mg human liver microsomes/g liver has been used [155, 176, 362] to transform CLuint into 

CLuh,int, but this figure was derived from rat rather than human liver  [173].  More recent studies 

performed with human hepatic tissue proposed that a value of 32 or 33 mg human liver 

microsomes/g liver [173, 175] should be used instead.  Reported liver weight values average 

around 1500 g for a 70 kg man [344, 345], thus a value of 22 g liver/kg body is commonly used 

for calculations. 

In the case of THC, the calculated CLh (9.6 ± 3.1 mL/min/kg) was slightly higher, but within the 

same range as the total clearance reported in clinical studies after intravenous administration 

of THC (9.00 ± 5.3 mL/min/kg).  For CsA, the estimated CLh (2.0 ± 0.1 mL/min/kg) was lower 

than that calculated from literature pharmacokinetic data (5.1 ± 1.1 mL/min/kg), and this might 

be due to CsA being metabolised by other organs in addition to the liver when administered 
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intravenously.  Eventually, CLh data were transformed into the fraction non–metabolised in the 

liver.  When Fabs and Fh values were combined, the in vitro lipolysis/hepatic metabolism approach 

did not sufficiently predict the in vivo performance of Marinol® and Neoral® using either of the 

two buffers (Table 5-2).  CsA bioavailability was remarkably overestimated, and this fact could 

be explained by the extensive extraction that the drug suffers at the gut wall [139].   

 

5.4.2. Prediction of the fraction non–metabolised in the gut  

Based on the above results, it was evident that the accuracy of the predictions could be 

improved by the inclusion of an intestinal metabolism phase.  Therefore, depletion drug assays 

in gut microsomal media were next performed.  Due to the limited availability of intestinal 

protein, these studies were done at a single concentration level (1 μΜ).  Similar to hepatic 

metabolism, the intrinsic clearance derived from microsomal incubations was transformed into 

intestinal clearance and fraction non–metabolised, by applying the “Q gut” model [350].  The 

transformation of CLuint into CLug,int for human intestinal microsomes is not as straight forward 

as for liver microsomes.  To the best of this author’s knowledge, the amount of human intestinal 

microsomes per g of small intestine has not been reported, presumably because epithelial 

composition changes from duodenum to ileum.  Nonetheless an approximate average value can 

be calculated from published data.  Since the mean intestinal population relative abundance of 

CYP3A is 50 pmol/mg human intestinal microsomes [132, 135, 147, 363] and the small intestine 

contains 70.5 nmol CYP3A [147], a value of 1410 mg human intestinal microsomes/small 

intestine may be used for calculations.   

Results derived from CsA experiments (CLuint = 28 μL/min/mg; Fg = 0.58), were in agreement 

with those reported by other researchers (CLuint = 27.7 μL/min/mg [363]; Fg = 0.53 [350]).  It 

is important to note that these intestinal clearance values might have been overestimated, as it 

has been suggested that lipidic excipients may indirectly reduce gut metabolism by inhibition of 

efflux transporters [70].  The “drug efflux–metabolism alliance” [73, 74] proposes that efflux 

increases the time available for enterocyte-based metabolism.  Accordingly, the impact of lipidic 

excipients on efflux proteins might reduce the time available for metabolism, and thus decrease 

pre–systemic extraction (for further details, see Chapter 1 section 1.4.3.3). 
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5.4.3. Prediction of oral bioavailability  

Finally, by combining the fractions of drug absorbed and drug non–metabolised, it was possible 

to propose estimated oral bioavailability values of THC in Marinol® and CsA in Neoral® for 

different dose levels (Table 5-2).  Pearson’s correlation test showed that there was a strong 

correlation between Fobserved and Fpredicted values only when Fabs was calculated with the new 

buffer.   

In the case of Marinol®, the bioavailability was slightly underestimated, but within the range of 

the clinical values.  This underestimation could be attributed to lymphatic transport.  As 

mentioned before (Chapter 1 section 1.4.3.3), when dealing with oral absorption of highly 

lipophilic drugs co–administered with long–chain triglycerides, such as THC in Marinol®, the 

lymphatic route should be taken into consideration.  Drugs absorbed via the intestinal lymphatic 

system are protected from hepatic first–pass metabolism since the mesenteric lymph enters 

the systemic circulation by–passing the liver.  However, Trevaskis et al. [364] suggested that 

drugs transported via intestinal lymphatics cannot avoid enterocyte–based metabolism, unless 

extremely large quantities of lipids are administered.  Drug association with chylomicrons in 

the enterocyte is an essential step in the lymphatic absorption pathway [61, 365].  Accordingly, 

because the vast majority of THC absorbed would associate with chylomicrons [366], and be 

transported through the lymph, the estimated oral bioavailability of Marinol® could be 

calculated just taking into account the fractions absorbed and not metabolised in the gut (Fh = 

1, Fpredicted = Fabs∙Fg).  The Fpredicted values obtained ignoring the hepatic phase (Table 5-2: 2.8 ± 

0.2% and 2.4 ± 0.6%, for two and one 10 mg Marinol®, respectively), were indeed closer to the 

average Fobserved ones, which suggests the contribution of lymphatic transport to THC oral 

bioavailability.   

In the case of Neoral®, the bioavailability estimations for Kim et al. and Odeberg et al. studies 

(two and three 100 mg capsules) were very accurate.  However, when the digestion of 

exceptionally high doses of formulation was mimicked (Mueller et al. study, six 100 mg 

Neoral®), the in vitro lipolysis/metabolism approach did not sufficiently predict the clinical value.  

As discussed before (Chapter 4, section 4.4.3.2), this is most probably due to CsA micellar 

trapping occurring when very high amounts of Kolliphor® RH40 are used.  This phenomenon 
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cannot be accurately accounted for with the in vitro lipolysis model, and thus it leads to an 

overestimation of Fabs and subsequent Fpredicted.   

The general accuracy of the predicted values of bioavailability, and the strong correlation shown 

with the clinical ones, suggests that the novel in vitro lipolysis/microsomal metabolism model 

could satisfactory quantitatively estimate the oral bioavailability of BCS II drugs administered in 

LFs.  However, the in vitro lipolysis model is not able to predict the micellar trapping of drugs 

caused by undigested lipidic excipients in vivo.  Therefore the lipolysis/metabolism approach 

might have limited applicability when extremely high dose levels of surfactants are ingested. 

Some of the parameters used for calculations (logPTHC, logPCsA, fup,THC, B/PTHC, Peff,THC, Peff, CsA, 

fuinc,THC, and fuinc,CsA) were in silico predictions, due to unavailability of literature data or 

experimental difficulty in obtaining those parameters in the laboratory.  Since each extrapolated 

parameter is associated with an inherent error, it is highly probable that these uncertainties 

accumulated and propagated along the final calculation of Fpredicted.  Accordingly, it is possible 

that the use of experimental parameters would improve the accuracy of predictions made with 

the in vitro lipolysis/metabolism approach. 

 

 

5.5. Conclusions 

 

In vitro lipolysis and microsomal metabolism studies have been combined for the first time with 

the aim to quantitatively predict the human oral bioavailability of BCS II drugs administered in 

LFs.  This novel approach led to reasonably good predictions of oral bioavailability of THC in 

Marinol®, and CsA in Neoral® (model formulations) based on the similarity between the 

predicted bioavailability values and those reported in clinical trials after oral administration of 

the tested formulations to human subjects. 

The use of a digestion buffer with surfactant concentrations closer to bio–relevant conditions, 

resulted in more accurate predictions of oral bioavailability in comparison to data derived from 

the classical buffer previously used in in vitro lipolysis studies.   

The work presented herein suggests that the novel in vitro lipolysis/metabolism approach has 

potential to transform the in vitro lipolysis studies from a qualitative tool to a quantitative one.  
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Further analyses with additional BCS II drugs administered in LFs, might be needed to confirm 

the predictive power of the model. 
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Chapter 6: Ongoing Experimentation 

and Recommendations for Future Work 

 

 

6.1. Introduction 

 

Further studies should focus on evaluating the predictability power with additional class II drugs 

of the Biopharmaceutics Classification System (BCS) in lipidic formulations (LFs).  However, the 

main barrier to the validation of the in vitro lipolysis/microsomal metabolism approach is the 

limited availability of appropriate human clinical data.  On the contrary, pharmacokinetic data 

in pre–clinical species is more abundant and/or can be generated more easily at research 

institutions.  For this reasons, ongoing work in the laboratory (see section 6.2) is focused on 

the validation of the model by using data derived from pharmacokinetic studies performed with 

rats. 

A plausible reason for not obtaining extremely accurate predictions of oral bioavailability with 

the in vitro lipolysis/microsomal metabolism model is that the dynamic and complicated human 

digesting and metabolic system has been oversimplified for facilitating experimentation (just as 

any in vitro model does).  The human body has been represented by 3 theoretical static 

compartments (small intestine, enterocytes, and liver, see Figure 5-1) without specifying 

anatomy or physiology.  However, the relationship among poorly water–soluble compounds, 

formulation characteristics and systemic exposure after oral administration, is complex and 

cannot always be captured by solely dissolution and metabolism testing.  A more mechanistic 

link is often required to gain better biopharmaceutical understanding of the in vivo absorption, 

distribution, metabolism and excretion processes.  Physiologically–based pharmacokinetic 

(PBPK) models (e.g. GastroPlus®, PK–Sim®, Chloe®PK, Simcyp®, ADME WorkBench…) are 

a powerful technology that can help in building this link between experimental data and in vivo 

performance of drug candidates.  According to this, it is proposed as future work (although it 

has already been started in the laboratory, see section 6.3) a further application of the in vitro 
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lipolysis/microsomal metabolism model as an in vitro input which could be used for in silico 

modelling in GastroPlus® to predict the plasma concentration–time profiles of BCS II drugs 

delivered in LFs. 

 

 

6.2. In vitro lipolysis/microsomal metabolism model for the 

prediction in pre–clinical species of oral bioavailability of BCS II 

drugs in lipidic formulations  

 

6.2.1. Introduction 

Pre–clinical studies of new drug candidates in animals are used to extrapolate pharmacokinetic 

parameters to man, to select appropriate doses for phase I clinical trials, and to evaluate the 

safety for humans.  Importantly, regulatory guidelines such as the US Food and Drug 

Administration or the European Medicines Agency require drug testing in at least two 

mammalian species (murine, canine, primate, porcine, etc.), including one non–rodent species, 

prior to human trials authorisation [367].   

Rats and mice are generally the species of first choice for several reasons, including low cost, 

small size, simple housing conditions, short reproductive cycle, availability of genetically 

engineered strains, and short life span.  The purpose of utilising additional non–rodent species 

lies in most cases in the need to obtain confirmatory data that facilitates extrapolation of 

experimental results to humans (allometric scaling, see Chapter 1 section 1.7.3.2).  On the 

other hand, sometimes rodents are just not considered the most useful species to obtain 

scientific answers.  In particular, since neither rats nor mice eat on command, and generally 

consume a low fat diet, they are not thought to be adequate species for pre–clinical food effects, 

and therefore, for LF testing [368].  For this reason, some researchers have traditionally used 

dogs for validating in vitro lipolysis data [104, 121, 124, 127].  However, some studies suggest 

that the dog is a poor model of human absorption due to higher luminal bile salt concentrations 

[142], longer villi length, increased protein binding and higher intestinal pH in the fasted state 

[369].  Since the dog model has not been proven yet to be more useful than rats in pre–clinical 

testing of LFs, and due to the (understandable) reluctant use of canines in laboratory 
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investigations by many researchers, there are many other publications that described the 

correlation of rat and in vitro lipolysis data [105, 203, 204, 236, 323, 370–372].  

The ongoing investigation presented herein consisted in applying the in vitro lipolysis/microsomal 

metabolism model to predict oral exposure in pre–clinical species, with the final goal of 

validating the model not only with human data but also with animal data.  In particular, 

preliminary studies have focused on the prediction of the oral bioavailability of Δ9–

tetrahydrocannabinol (THC) in a lipidic and non–lipidic vehicle following oral administration to 

rats.  This in vivo study was performed in house by members of Dr. Gerskovich’s group, and 

further details can be found in the publication by  Zgair et al. [370]. 

 

6.2.2. Materials and Methods 

6.2.2.1. Materials 

Materials used for in vitro lipolysis and microsomal stability assays were the same as those 

detailed in Chapter 4 section 4.2.1 and Chapter 5 section 5.2.1, with the exception of using rat 

microsomes instead of human.  Pooled rat (male Sprague Dawley) liver (20 mg/mL protein 

content) and intestinal (10 mg/mL) microsomes were obtained from Gibco Invitrogen (Paisley, 

UK) and Tebu–Bio Ltd. (Peterborough, UK), respectively.  In addition, bovine serum albumin 

powder (≥ 96% w/w) was obtained from Sigma–Aldrich (Dorset, UK). 

 

6.2.2.2. Model formulation and associated pharmacokinetic data 

THC and sesame oil were selected again as the model drug and lipidic vehicle, respectively, for 

two reasons.  Firstly, analytical methods were already developed for the detection of THC in 

lipolysis phases and microsomal incubations.  Secondly, pharmacokinetic experiments in rats 

had recently been performed in the laboratory, thus reliable data that fulfil the eligibility criteria 

previously described (see section 4.2.2) was available.  In these studies, three groups of male 

Sprague Dawley rats (~ 365 g) were used.  One group received an intravenous (IV) bolus of 

THC (4 mg/kg), a second group received an oral dose of 12 mg/kg THC in the LF (12 mg/mL 

in sesame oil), and the third group received an oral dose of 12 mg/mL THC in a lipid–free 

formulation (12 mg/mL in propylene glycol/ethanol/water, 80:10:10 v/v).  The plasma 

concentration–time profiles following IV and oral administration of THC are shown in appendix 
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Figure A-14A and B, respectively; the pharmacokinetic parameters derived from these graphs 

are summarised in appendix Table A-12.  Blood clearance was around 42 mL/min/kg, whereas 

the absolute oral bioavailability (Fobserved) values were 21.5 ± 8.6% and 8.5 ± 5.8% for the lipidic 

and lipid–free formulations, respectively. 

 

6.2.2.3. In vitro lipolysis experiments 

Given the volume of the rat gastrointestinal tract in the fasted state being approximately 3.2 

mL [373], and taking into consideration that in the in vivo study rats were administered with 

0.365 mL of formulation and 1 mL of water, the final volume of liquids in the rat gastrointestinal 

tract was assumed to be approximately 4.565 mL [195].  Because the digestion medium of in 

vitro lipolysis model consists of approximately 40 mL, the amounts of formulation used in the in 

vivo study were scaled–up accordingly.  Thus, the 12 mg/kg dose of THC in the in vivo study 

corresponded roughly to 4.38 mg of THC dissolved in 3.2 mL sesame oil or propylene 

glycol/ethanol/water (80:10:10, v/v) in the lipolysis study. 

The impact of digestion on the solubilisation properties of the lipid–based and lipid–free 

formulations containing THC was examined by means of in vitro lipolysis (as described in 

Chapter 4, section 4.2.4.3) using three different amounts of enzymes, in an attempt to most 

closely reflect the rat in vivo conditions.  To facilitate experimentation and data comparison, the 

experimental medium used for all experiments was the “classic” buffer (see Chapter 4, section 

4.2.4.2), which broadly mimics the physiological environment of human and dog small intestine.  

Initially, lipase activity was kept constant at human levels (500−600 tributyrin units/mL [110]) 

thus 1 g of pancreatic lipase was utilised (n = 6).  However, pancreatic activity in the rat has 

been reported to be at least 5 times lower than that in humans [204].  For this reason, the  

lipolysis experimentation was carried out as well using enzymatic extracts containing 0.2 g of 

pancreatic lipase only (n = 3).  Additionally, a third set of experiments were performed where 

0.8 g of bovine serum albumin was added to 0.2 g of pancreatic lipase (n = 3), in order to analyse 

the contribution of enzymes to the reduction in non–specific binding of THC to the lipolysis 

model material.   

A fourth layer was observed in between the lipid and aqueous–micellar phases, following 

lipolysis and ultra–centrifugation of the lipidic formulation.  This gel–like layer is consistent with 
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previous observations [107, 204, 213, 374], and it has been described as a liquid–crystalline 

phase (CP) which contains lipids and colloidal structures typical of the micellar but not the lipid 

phase.  For this reason, the amount of drug contained in this layer was considered to be readily 

available for absorption and was taken into account, together with that found in the micellar 

phase, for estimation of the fraction absorbed (Fabs, Chapter 4 section 4.2.6).  

High–performance liquid chromatography with ultraviolet detection (HPLC–UV) was used for 

quantification of THC in lipolysis phases, using the same procedure and chromatographic 

conditions explained in Chapter 4 sections 4.2.5.1 and 4.2.5.2.  Partial method validation of 

THC quantitative determination in CP was carried out as described in Chapter 4 section 4.2.5.3. 

 

6.2.2.4. In vitro microsomal incubations 

To determine the fraction of drug dose that escapes metabolism in the gut wall (Fg) and in the 

liver (Fh), microsomal metabolism stability studies with rat intestinal (n = 3) and hepatic 

microsomes were performed (n = 8).  Clearance values were determined by applying the in 

vitro half-life approach at a single substrate concentration level (1 μM), as described in Chapter 

5 section 5.2.2. 

HPLC with tandem mass spectrometry detection (MS/MS) was used for quantification of THC 

in microsomal media, using the same procedure and chromatographic conditions detailed in 

Chapter 5 section 5.2.3.2. 

Data analysis was performed as indicated in Chapter 5 section 5.2.4.  Physiology parameters 

characteristic of Sprague Dawley rats were used to calculate gut and liver clearances.  These 

factors were as follows: rat microsomal recovery of 61 mg microsomes/g liver [375, 376] and 

59.6 mg microsomes/small intestine [8], average liver weight of 40 g liver/kg body weight [376, 

377], 55.2 mL/kg/min hepatic blood flow [346, 378], 1.02% fraction unbound to plasma [248], 

1.063 blood to plasma ratio [248], 13.88∙10-4 cm/s effective permeability [248], 0.33 L/h villous 

blood flow, 0.6 m small intestine length, and 0.0022 m small intestine radius [8]. 

 

6.2.2.5. Calculation of the predicted oral bioavailability and statistical analysis 

The predicted oral bioavailability (Fpredicted) was calculated by combining Fabs derived from 

lipolysis studies and Fg∙Fh derived from microsomal incubations, as indicated in Equation 5-9. 
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The same statistical tests detailed in Chapter 4 section 4.2.7 were used to determine significant 

differences among the means of the experimental groups and to analyse the scedasticity of the 

HPLC data. 

 

6.2.3. Results and Discussion 

6.2.3.1. In vitro lipolysis 

Typical chromatogram corresponding to the CP phase obtained following in vitro enzymatic 

hydrolysis of 3.2 mL 12 mg/mL THC in sesame oil is shown in appendix Figure A-15.  The 

linearity of THC detection method in CP was confirmed over the concentration range of 45–

450 μg/mL, based on ten concentration levels and with a correlation coefficient (r2) value ≥ 0.99 

(appendix Figure A-16).  Data appeared to be heteroscedastic, based on the residuals graph 

(appendix Figure A-17) and the F–test value (Fexp = 10.82).  The weighting scheme 1/x2 was 

selected, as it provided the best fit.  THC detection method in CP was accurate and precise 

based on the intra–day and inter–day relative errors and relative standard deviations which 

were ≤ 15% (see appendix Table A-13). 

The distribution of THC across lipolysis phases when administered either in a lipid–based or a 

lipid–free formulation is summarised in Table 6-1.  The large volume of undigested lipid left 

and the end of the digestion of the sesame oil solution led to almost complete sequestration of 

THC in the lipid phase (around 95%), regardless of the amount of pancreatic lipase added (no 

statistically significantly different).  As expected, the extent of digestion was higher when 1 g of 

lipase was added compared to the 0.2 g scenario, as indicated by the volume of sodium 

hydroxide needed for titration.  However, this was not translated into a higher concentration 

of drug in the micellar and crystalline phases, as THC molecules were trapped by remaining 

undigested oil droplets.   

Interestingly, the amount of enzyme in the digestion medium markedly affected THC 

distribution and solubilisation following processing of the lipid–free formulation.  When 1 g of 

protein was present, higher amounts of drug were found in the micellar phase compared to 

those quantified when only 0.2 g of lipase was utilised, but the amounts in the sediment phase 

were similar.  This phenomenon could originate from the extent of non–specific binding of THC 

to the lipolysis model instrumentation (stirrer, vessel and pH–electrode). It was hypothesised 
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that if THC showed stronger affinity to proteins than to laboratory material, higher amounts 

of proteins in the lipolysis medium would avoid to some extent THC non–specific binding, thus 

the number of THC molecules in the aqueous phase would increase.  To test this hypothesis, 

lipolysis experiments were performed again using 0.8 g albumin (a protein lacking lipolytic 

activity) in addition to 0.2 g of lipase.  Results confirmed this assumption since THC distribution 

in micellar and sediment phases did not statistically differ when using either 1 g of lipase or 0.2 

g of lipase plus 0.8 g of albumin.  

 

Table 6-1. Distribution of recovered drug across micellar (MP), sediment (SP), lipid (LP), and 

liquid–crystalline (CP) phases after the lipolysis of 3.2 mL of formulations containing Δ9–

tetrahydrocannabinol (12 mg/mL) with different amounts of pancreatic lipase and albumin.  Data 

are presented as means ± SD. 

 mlipase (g) % drug MP % drug SP % drug LP % drug CP 

Lipidic 

formulation 

1 (n=6) 1.9 ± 0.2 0.3 ± 0.0 94.1 ± 0.7 3.7 ± 0.7 

0.2 (n=3) 1.9 ± 0.2 0.2 ± 0.0 95.9 ± 1.2 2.1 ± 1.3 

0.2* (n=3) 2.0 ± 0.2 0.1 ± 0.0 94.9 ± 1.2 3.0 ± 1.1 

Lipid–free 

formulation 

1 (n=6) 38.8 ± 3.6 61.2 ± 3.6 

N/A 0.2 (n=3) 17.9 ± 5.0 82.1 ± 5.0 

0.2* (n=3) 32.8 ± 6.7 67.2 ± 8.6 

Lipidic formulation: sesame oil; lipid–free formulation: propylene glycol/ethanol/water 

(80:10:10, v/v); m: mass. 

* 0.2 of pancreatic lipase and 0.8 g of bovine serum albumin.  

 

Drug concentration determined in micellar and crystalline (if present) phases were used to 

estimate the fraction of drug dose values shown in Figure 6-1.  For the LF, Fabs values did not 

statistically significantly differ among experimental groups.  In the case of the lipid–free 

formulation, lipolysis experimentation with just 0.2 g of lipase resulted in lower Fabs values.  As 

explained above this could be attributed to THC non–specific binding to laboratory material.  

Surprisingly, Fabs values were not statistically significantly different between lipidic and non lipidic 

formulations.  These results suggest that an excess of long–chain triglycerides in the 

formulationix (for which pancreatic lipase shows the least affinity as shown in Chapter 3) is 

counterproductive, as the expected enhancement in the Fabs attributed  to micellar solubilisation 

                                                           
ix To put things into perspective, if the same volume of sesame oil formulation were to be 

administered to humans, a 70 kg person would have to ingest 70 large 1 mL capsules in one go. 
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does not occur since lipophilic drug molecules are hardly released from the undigested lipid 

droplets. 

Since the addition of 0.2 g of lipase and 0.8 g of albumin was considered to be the experimental 

set–up that closely reflects the in vivo situation, the derived Fabs values from these studies were 

the ones used for subsequent estimations of oral bioavailability. 

 

 

Figure 6-1. Fraction of absorbed dose of Δ9–tetrahydrocannabinol (THC) following the 

lipolysis of 3.2 mL of a lipidic (sesame oil) and lipid–free (propylene glycol/ethanol/water 

(80:10:10, v/v)) formulations (12 mg/mL) with different amounts of pancreatic lipase and 

albumin. Coral, blue, and green colours correspond to 1 g of pancreatic lipase (n = 6), 0.2 g of 

pancreatic lipase (n = 3), and 0.2 g of pancreatic lipase plus 0.8 g of bovine serum albumin (n = 

3), respectively.  Values are expressed as means ± SD.  A one–way ANOVA followed by Tukey–

Kramer multiple comparison test were used for statistical analysis.  Statistically significantly 

different: **, p < 0.01; *, p < 0.05; ns, not significantly different. 

 

6.2.3.2. Microsomal metabolism 

Whereas in humans CYP2C9 is the main enzyme involved in THC metabolism,  CYP2C11 is 

responsible for THC enzymatic degradation in rats [379].  The fraction of drug that escapes 

first–pass metabolism within enterocytes and hepatocytes was determined by using rat 

intestinal and hepatic microsomes and applying the in vitro half–life approach.  The metabolism 

rates (kdep) of THC were obtained from the fitted mono–exponential decay regressions 

represented in Figure 6-2.  The obtained kdep values were 0.2554 ± 0.0130 min-1 (r2 = 0.98) 

and 0.0186 ± 0.0020 min-1 (r2 = 0.97), for hepatic and intestinal metabolism respectively.  The 
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microsomal concentration and the fraction unbound in the incubation medium, were used to 

protein; CLuint = 0.073 ± 0.08 mL/min/mg gut protein).  Next, microsomal content in the liver 

and in the small intestine was used to determine clearance values (CLh = 16.2 ± 0.2 mL/min/kg, 

based on the well–stirred modelx; CLug = 0.26 ± 0.03 L/h).  Clearance values were used to 

estimate the hepatic and intestinal bioavailabilities: Fh = 70.0 ± 0.6% and Fg = 41.2 ± 4.4% (Q 

gut model).  Reported in vivo total blood clearance was 2.5–fold higher than the hepatic 

clearance derived from these microsomal assays.  This could be attributed to THC being 

metabolised by other organs apart from the liver, when intravenously administered to rats.   

Direct phase II bio–transformation of THC (i.e. conjugation reactions), which cannot be 

estimated in microsomal studies since they occur within the cytosolic fraction, could be another 

plausible reason for the underestimation of THC extraction. 

 

 
Figure 6-2. Depletion curves derived from rat (A) hepatic (n = 8) and (B) intestinal (n = 3) 

microsomal incubations of 1 µM Δ9–tetrahydrocannabinol (THC).  The ratio between the drug 

concentration remaining at each time point (C) and the concentration of drug at the beginning 

of the incubation process (C0), is represented versus time. Values are expressed as mean ± SD.  

Note the difference in the time scales (X–axes) between the two figures. 
 

6.2.3.3. Prediction of the oral bioavailability in rats 

Finally, by combining the predicted fractions of drug absorbed and not metabolised, it was 

possible to propose estimated oral bioavailability values of THC in a lipid–based and lipid–free 

formulations when administered to rats in the fasted state (Table 6-2).  These Fpredicted values 

were 8.5 ± 4.2% and 7.9 ± 2.1%, for the lipidic and non lipidic formulations, respectively.  

Interestingly, the in vitro lipolysis/microsomal metabolism model accurately predicted the Fobserved 

                                                           
x CLh calculated with the parallel tube model was not statistically significantly different from the 

value obtained with the well–stirred model. 
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for the non lipidic formulation (8.5 ± 5.8%), but it did not predict the in vivo performance of the 

sesame oil solution (21.5 ± 8.6%) in rats.  In accordance to the assumption proposed in Chapter 

5 section 5.4.3, Zgair et al. [370] suggested that the primary mechanism of the increased 

absorption of THC in the presence of lipids is intestinal lymphatic transport, and therefore 

avoidance of hepatic first–pass extraction.  Accordingly, the estimated oral bioavailability of 

THC corresponding to the lipidic formulation was re–calculated just taking into account the 

fractions absorbed and not metabolised in the gut (Fabs∙Fg, Table 6-2).  The Fpredicted value 

ignoring the hepatic phase was 12.2 ± 6.0%, which is lower than the Fobserved value.   The reasons 

for this underestimation could be several.  It could be attributed to the differences in 

composition between the in vitro lipolysis digestion medium (which represents human/dog 

conditions) and rat intestinal fluids.  A refinement in the lipolysis buffer concentrations (not 

only in pancreatic lipase activity) to better mimic rat conditions might lead to enhanced 

estimation of drug solubilisation and absorption.   

The co–administration of extremely large quantities of lipid (such as those given to rats in the 

in vivo study) has been reported to reduce the extent of enterocytic metabolism [364].  

Accordingly, it could reasonable to believe that in this situation the Fabs predicted with the in 

vitro lipolysis model is enough to estimate overall exposure.  Indeed, the calculated Fabs (~26%) 

for the lipidic formulation was closer on average Fobserved than Fpredicted. 

Another explanation for underestimation of Fobserved (which can be applied to human predictions 

too) is that in vitro lipolysis, like any other gastrointestinal dissolution model, may have a 

tendency to underestimate drug absorption in vivo, potentially due to non–sink conditions.  

More detailed investigations of time dependent drug absorption are required in order to 

improve the in vitro model in this aspect. 
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Table 6-2. Absolute oral bioavailability values calculated from the data reported in Ref. [370] 

(Fobserved), and calculated with the in vitro lipolysis/metabolism approach (Fpredicted).  Values are 

expressed as means ± SD. 

 Lipid–based formulation   Lipid free formulation 

Fobserved (%) 21.5 ± 8.6 8.5 ± 5.8 

Fpredicted (%) 8.5 ± 4.2 7.9 ± 2.1 

Fpredicted (Fg = 1)a (%)  20.7 ± 10.0 19.2 ± 4.6 

Fpredicted (Fh = 1)b (%)  12.2 ± 6.0 11.3 ± 2.9 
a Fpredicted assuming there is not gut metabolism (Fg = 1). 
b Fpredicted assuming all the absorbed drug is transported through the lymph, and therefore 

escapes metabolism in the liver (Fh = 1). 

 

6.2.4. Conclusions 

These preliminary studies suggest that comparison of in vivo drug absorption patterns in the rat 

with in vitro digestion data obtained using bio–relevant intestinal fluids that simulate human/dog 

conditions may lead to underestimation of solubilisation and absorption of drugs administered 

in lipidic formulations.  Further studies using a digestion buffer that better mimics rat intestinal 

fluids are needed to check the prediction accuracy of the in vitro lipolysis/metabolism model.  

 

 

6.3. In vitro-in silico/in vivo Correlation: Prediction of the 

performance of BCS II drugs in lipidic formulations 

 

6.3.1. Introduction 

In silico modelling and simulation in drug development is being increasingly applied in the 

pharmaceutical industry.  Indeed, it has been estimated that in silico approaches could currently 

represent up to 15% of research and development expenditure [361].  Simulations are 

commonly used to support dose selection for first–in–human studies, potential drug–drug 

interaction effects, and possible exposure differences resulting from a change in formulation. 

PBPK modelling utilises physiological and anatomical parameters for either in silico/in vivo 

extrapolation, in vitro/in vivo extrapolation, or a combination of both, to predict full 

pharmacokinetics (PKs) in humans and animal species [380].  PBPK modelling implies the use of 

hundreds of differential equations and biopharmaceutical parameters.  Such level of complexity 
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represented a substantial disadvantage for the application of PBPK modelling in the past.  

Thankfully, several software products that include whole body PBPK models have been 

developed and are commercially available nowadays.  

At the early stage of a project, it is possible to apply a PBPK model.  Absorption and metabolism 

could be estimated from the in silico predictions and in vitro measurements of the drug, and 

taking into account the physiology of the species of interest.  Whilst, disposition and elimination 

could be obtained by fitting a compartmental PK model to in vivo intravenous (IV) plasma–

concentration profiles (if available).  Logically, PBPK modelling of oral exposure does not 

eliminate the need for in vivo experiments, but it can help to reduce the use of laboratory 

animals by allowing an extrapolation to other dosing regimen within and across animal species, 

and thus help the design of future studies.  

The aim of this preliminary work was to evaluate a further application of the in vitro lipolysis 

model as an in vitro solubility input in a PBPK model which could be used, at the early stage of 

formulation optimisation, to predict the plasma concentration–time profiles of drugs delivered 

by means of lipidic formulations (LFs).  The physicochemical properties and metabolic 

extraction of Δ9–tetrahydrocannabinol (THC) and cyclosporin A (CsA) were defined by in silico 

predictions and in vitro estimations.  In vivo IV data were included in the model to fit the 

distribution and elimination phases.  Marinol® and Neoral® oral profiles served as 

observational control.   

 

6.3.2. Materials and Methods 

6.3.2.1. Software 

All simulations were conducted using GastroPlus® version 9.00 (Simulations Plus Inc., 

Lancaster, CA, US)[248],  For orally administered drugs, GastroPlus® implements an advanced 

compartmental absorption and transit (ACAT, Figure 6-3) model to simulate and predict the 

fraction of drug absorbed through the gastrointestinal tract.  The model offers the possibility 

of performing non–compartmental and compartmental PK simulations of plasma 

concentration–time profiles, as long as the minimum PK input values have been provided.  
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Figure 6-3. Advanced compartmental absorption and transit (ACAT) model, by GastroPlus®. 

 

6.3.2.2. In silico and in vitro input parameters 

The input parameters used to perform simulations of bioavailability and plasma concentration–

time profiles of THC in Marinol® and CsA in Neoral® are summarised in appendix Table 

A-14.  When values were unknown, default GastroPlus® values were used.  The ACAT model 

does not contemplate oil solutions as dosage forms, thus the option “immediate release: 

solution” was chosen as the most similar input.   

The inputs for solubility were the aqueous solubility measured at pH 7.4 and the solubility found 

in the aqueous–micellar phase following lipolysis and ultra–centrifugation of the LFs in the new 

buffer (pH 6.8, 3 mM bile salt concentration, and 0.2 mM phospholipid concentration, see 

Chapter 4 section 4.2.4.2).  These values are used by GastroPlus® to calculate the bile salt 

solubilisation ratio (SR), which represents the affinity of a drug to bile salt micelles.  Drug 

solubility in each compartment of the gastrointestinal tract is determined according to 

Equation 6-1:  

CGI,pH = Caq,pH ∙ (1 +
MWH2O

ρH2O
⁄ ∙ SR ∙ Cbile) Equation 6-1 

where Caq,pH is the buffer solubility at a given pH calculated from the reference solubility, pKa 

and solubility factor; CGI,pH is the in vivo solubility in a compartment of the gastrointestinal tract 

with specific pH and bile salt concentration (Cbile); and MWH2O and ρH2O are the molecular weight 

and density of water, respectively [381]. 
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In order to mimic the delay that LFs provoke in gastric emptying time, this value was fixed at 

0.75 h, which broadly represents the semi–fed state.  In addition, gastrointestinal volumes 

corresponding to the different compartments of the ACAT model were reduced to better 

replicate human physiological conditionsxi.  

The fraction of drug dose escaping metabolism at the gut wall (Fg), previously derived from 

microsomal incubations (see Chapter 5, section 5.3.3) was used to fix the intestinal extraction 

ratio (Eg = 1 – Fg). 

 

6.3.2.3. In vivo data 

The plasma concentration–time profiles of the IV clinical studies of THC [280, 291–294] and 

CsA [138, 295] were used as input of the ACAT model to define the PK compartmental model.  

The plasma–concentration profiles of the oral clinical studies of Marinol® [240, 241] and 

Neoral® [242–244] were utilised for the validation of the oral predictions. 

The distribution and elimination phases were described by a compartmental PK model which 

was fitted to the in vivo IV data.  Since more than one PK experiment was available for each 

compound, the average dose–normalised plasma concentration–time profiles across 

experiments was calculated and fitted to the PK compartmental model.  A three compartment 

model was chosen for both compounds as it provided the best fit, based on visual inspection 

and statistical analysis (Akaike and Bayesian information criteria, AIC and BIC). 

 

6.3.3. Results and Discussion 

In these preliminary studies, a generic ACAT model for predicting oral exposure based on in 

silico predictions (logP, pKa, permeability…), in vitro ADME estimations (bio–relevant solubility, 

and gut microsomal extraction), and the in vivo IV plasma concentration–time profiles, was 

applied to predict the oral in vivo performance of THC and CsA when administered to humans 

as Marinol® and Neoral®, respectively.  The ability of the PBPK model to predict oral exposure 

of these LFs in humans was assessed by comparing the predictions of maximum concentration 

(Cmax), area under the curve up to the last measurable concentration (AUCt), time at which 

                                                           
xi Personal communication, Zoe Kane and Alison Wilby, Pharmaceutical Modelling and 

Simulation Scientists, Quotient Clinical Ltd. 



6.  Ongoing Experimentation and Recommendations for Future Work 

Page | 127  
 

Cmax occurs (tmax), and profile shape (if available) against observations in the clinical studies.  The 

simulated oral profiles are shown in Figure 6-4 (THC) and Figure 6-5 (CsA), whereas the 

resulting PK parameters are summarised in appendix Table A-15. 

Interestingly, GastroPlus® predicted that both drugs would be completely absorbed (Fabs 

~100%).  Further investigation (by means of a parameter sensitivity analysis) led to the 

realisation that the model was not sensitive to any bio–relevant solubility input.  The most 

plausible reason could be an error in the estimation of CGI,pH (see Equation 6-1).  In order to 

calculate these values, several default values and in silico predictions had to be used by the model.  

Probably, optimum predictability and better quality results could have been obtained if more 

parameters that influence CGI,pH had been measured in vitro. 

 

 
Figure 6-4. Simulated (blue line) and observed (red circles) plasma concentration–time profiles 

following singe oral administration of (A) 20 mg and (B) 10 mg Marinol® to humans.  

 

 
Figure 6-5. Simulated (blue line) and observed (red circles) plasma concentration–time profiles 

following single oral administration of (A) 200 mg and (B) 300 mg Neoral® to humans.  
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In the case of THC, simulated tmax values were within the range of the observed ones, and Cmax 

values were within two–fold (10 mg) and three–fold (20 mg) of the in vivo ones.  Absolute oral 

exposure was clearly overestimated, as illustrated by the AUCt values, which were around 3 

times higher than the reported ones. 

In the case of CsA, the simulations were more accurate, as it can be inferred from the similarity 

between simulated and observed profile shapes.  Tmax values were within 25% or less of the 

observed ones, Cmax values were less than 2–fold of the in vivo ones, and absolute bioavailability 

values were within  5%, 10% and 20% of the clinical values for 200, 300 and 600 mg Neoral® 

respectively.  The higher accuracy in CsA predictions, compared to those of THC, could be 

due to the fact that more values measured in vitro (rather than predicted by in silico tools) were 

included as input parameters.  

These results illustrate the value of PBPK simulations for potential use in early discovery and 

formulation development.  Besides, these results demonstrate the importance of quality in vitro 

experimental data when refining the early PBPK results derived from mainly in silico predictions. 

 

6.3.4. Conclusions 

In general, the ACAT model provided reasonable predictions despite relying merely on some 

basic default values, and the use of in silico and in vitro data combined with average plasma 

concentration–time profiles from human IV PK studies.  Better understanding of the software 

and underlying equations is needed to correct the lack of sensitivity shown for the in vitro 

lipolysis input. 
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Chapter 7: General Discussion and 

Concluding Remarks 

 

 

7.1. General Discussion: Summary, Future Perspectives, Impact on 

the Research Field, and Advantages and Limitations of the In Vitro 

Lipolysis/Microsomal Metabolism Model 

 

In recent years, the discovery of new active lipophilic molecules has increased enormously.  The 

development of effective oral dosage forms for these drug candidates continues to be a pressing 

problem for the pharmaceutical industry.  Many of these compounds are poorly water–soluble 

but permeate readily across biological membranes (belonging to class II of the Biopharmaceutics 

Classification System (BCS)).  Hence, their dissolution rate and/or maximum solubility in the 

gastrointestinal tract represents the rate–limiting step to absorption.   The co–administration 

of hydrophobic drugs with food, and in particular fatty food, has been known for some time to 

enhance absorption.  The use of formulations containing lipids to mimic the absorption 

promotion provided by food has received growing interest in recent years.  Lipids are believed 

to assist absorption by facilitating the formation of colloidal structures within the intestinal 

milieu that are capable of maintaining hydrophobic drugs in solution, thereby avoiding 

precipitation.  Importantly, the generation of these colloidal species does not often arise directly 

from the co–administered lipid, but it is more frequently a result from the intraluminal 

processing (enzymatic digestion and subsequent dispersion) of these lipids prior to absorption. 

 

Unfortunately, a considerable gap exists between the need for lipidic formulations (LFs), as 

justified by the great number of poorly water–soluble drugs filling the drug discovery pipelines, 

and its application, as evidenced by the low number of commercially available drug products 

relying on oral LFs (around 2% to 4% of the market share in US, UK and Japan in 2005 [6, 237]).  

The reasons for this could be attributed to many different causes, including insufficient drug 

solubility in the lipidic excipient matrix (which prevents administration of an entire therapeutic 
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dose in a single oral capsule), or insufficiently assessed physicochemical stability of drugs 

solubilised in lipidic excipients.  Another equally plausible explanation is that the need for a LF 

cannot be determined with certainty at an early enough point during the drug development 

process.  In order to do so, it would require reliable conviction that a conventional formulation 

(salt formation, particle size reduction, etc.) of a poorly water–soluble drug will not provide 

efficient exposure in humans prior to actual clinical testing.  Nowadays, this information cannot 

be reliably estimated from in vitro and/or animal studies, and by the time a drug candidate has 

entered clinical trials, project timelines often simply cannot accommodate the development of 

an alternative formulation. 

However, a growing opinion in the scientific community has suggested that the main 

contributing factors to the reluctant use LFs are the lack of standardised in vitro tests and poor 

understanding of the biotransformations and behaviour of LFs after oral administration.  In this 

thesis, the causes for substrate specificity of pancreatic lipase have been investigated to provide 

a better mechanistic knowledge of the lipolysis process itself, and the factors governing lipase 

activity.  The results presented here hopefully help to rationalise the performance of LFs and 

eventually aid in the development of optimised formulations.   

 

Traditional dissolution testing cannot provide adequate predictions to enable successful rational 

development of LFs, as they overlook the lipolysis of excipients taking place in the 

gastrointestinal tract, which greatly influence the solubilisation of a co–administered poorly 

water–soluble drug.  The in vitro lipolysis model emerged as a dissolution methodology capable 

of mimicking the in vivo enzymatic lipid digestion process and micellar drug solubilisation.  

Although this pH–stat method has been increasingly utilised for the assessment of LFs, 

experimental conditions are still under evaluation.  There are several experimental factors than 

can impact the extent and rate of lipid digestion, and therefore the fate of loaded drugs.  Calcium 

chloride concentration and lipase concentration are some of the factors that have been 

previously reported in literature.  Research data presented in this thesis has contributed to the 

standardisation and harmonisation of in vitro lipolysis by providing a unique set of working 

conditions (in terms of titrant concentration, and maximum and minimum titrant addition rate) 

capable of assessing a wide range of LFs.  Another important factor known to affect the 
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performance of LFs is bile concentration.  Results presented herein have confirmed the 

significant impact of the level of bile salts and phospholipids on drug solubilisation; and 

accordingly it has been proposed the use of concentrations closer to physiological conditions 

in order to achieve more accurate predictions of in vivo performance.  

 

When evaluating LFs by means of in vitro lipolysis and subsequent ultra–centrifugation, 

researchers commonly search for the highest aqueous micellar solubilisation, and the lowest 

lipid (if present) and sediment recovery among the tested formulations in the hopes of a higher 

in vivo exposure.  The reason for this is that drug molecules in the micellar phase are assumed 

to be absorbed (enter the enterocytes), but the fraction of drug in lipid and sediment phases is 

expected to have delayed or no absorption.  Investigators have usually attempted to achieve 

rank–order correlations of the performance of LFs by comparing in vivo pharmacokinetic 

parameters obtained in animals with the proportion of drug solubilised in the micellar phase.  

However, even achievement of rank–order correlation is not always successful.  This is not 

surprising since in vitro lipolysis experiments mimic pre–enterocyte processes only.  Thus, data 

gathered from this model might overlook critical processes occurring at earlier and later stages 

of the absorption process, such as gastric lipid hydrolysis, active drug transport through the gut 

wall, intra–enterocyte events such as enzymatic degradation, lymphatic transport, and efflux 

transporters; and post–enterocyte events such as hepatic first–pass metabolism. 

To increase the predictivity of in vivo performance of LFs, investigations are divided into two 

“lines of thought”.  On one side, some research groups have dedicated efforts to add in a gastric 

step to the in vitro lipolysis model.  Gastric lipolysis represents on average 17% of the total 

extent of lipolysis, thus it is likely to be important for the digestion of some LFs, such as those 

with great lipidic content (Type I) or those containing long–chain triglycerides (since they are 

the substrates which are lipolysed to the lowest extent).  Arguably, development of predictive 

gastric lipolysis models in combination with intestinal lipolysis models should be prioritised.  

However, this is currently hindered by the lack of availability of a suitable gastric lipase.  On the 

other side, to get a more complete picture of the absorption process, researchers have focused 

on the use of cultured intestinal epithelial cells, Caco2 cell line and Ussing chambers, to 

investigate drug permeability across the gut wall, following in vitro lipolysis.  Unfortunately, these 
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attempts have been relatively unsuccessful, although they are expected to be further researched 

in the future.   

In this thesis it has been hypothesised, for the first time that the coupling of a metabolism phase, 

instead of a permeability one, to the in vitro lipolysis model would enable better predictions of 

in vivo performance of LFs.  Since BCS II drugs are highly permeable, and excipients in LFs are 

expected to reduce or eliminate the effects of influx and efflux transporters, the other 

remaining factor that is overlooked by the in vitro lipolysis model and that affects drug systemic 

exposure is drug extraction at the gut wall and in the liver.  This novel in vitro 

lipolysis/metabolism approach did not aim at qualitative rank–ordering of LFs based on 

correlation with animal data, but tried to go one step further and quantitatively predict directly 

the oral bioavailability in humans.  The satisfactory predictions obtained in this thesis could be 

an indication that linking in vitro lipolysis and metabolism is the right path to follow for further 

improvement and development of an in vitro model that could accurately predict in vivo exposure 

and therefore facilitate, promote and rationalise the selection of LFs.   

 

 

7.2. Concluding remarks 

 

The overall goal of this thesis was to further develop and improve the in vitro lipolysis model to 

better characterise lipidic formulations, and thus allow prediction of in vivo exposure in humans.  

In order to do so, different in vitro lipolysis model working conditions were evaluated and 

eventually optimised for tighter control over pH levels so as to better mimic in vivo conditions 

(Chapter 2).  Next, the mechanisms behind pancreatic lipase activity was investigated to better 

understand the lipolysis process (Chapter 3).  Once established, the in vitro lipolysis model was 

utilised to assess the fraction of absorbed dose of hydrophobic drugs administered in LFs 

(Chapter 4) and validate such results by comparing them with the in vivo pharmacokinetic data 

observed in humans, collected from published clinical studies.  Because the data derived from 

in vitro lipolysis experimentations did not sufficiently predict the in vivo performance of LFs, 

hepatic and intestinal metabolism phases were introduced to account for the loss of drug due 

to first–pass metabolism (Chapter 5).  Eventually, a novel approach was proposed (named in 
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vitro lipolysis/microsomal metabolism model) for the quantitative estimation of human oral 

bioavailability of BCS II drugs in LFs by combining the predicted fraction absorbed and non–

metabolised values (Chapter 5).  This novel methodology could drastically reduce the need for 

animal experiments, improve accuracy and predictability for formulation design, and lead to 

better designed clinical trials, hence reduce time and cost of industrial research and 

development. 

The key conclusions from these investigations are summarised as follows. 

A) 1 M NaOH titrant concentration, 3.5 mL/min maximum titrant dosing rate and 3 μL/min 

minimum titrant dosing rate, were found to be the conditions that better maintain pH 

environment within physiological range (6.75–6.85) during the hydrolysis of triglycerides 

with different carbon chain lengths. This optimised set of conditions also allowed the 

differentiation of the lipolysis of different lipid loads. 

B) The in vitro lipolysis by pancreatic lipase under bio−relevant conditions at physiological pH 

of equimolar amounts of TGs with different chain lengths was evaluated for the first time.  

Results proved there is a specific chain length range (C2–C8) for which pancreatic lipase 

showed higher activity.  The specific surface area of the dispersed oil droplets, the 

solubility of 2−monoglycerides within mixed micelles, and the relative stability of the fatty 

acids as leaving groups in the hydrolysis reaction, are suggested to be the physicochemical 

properties which would determine the total extent of lipolysis. 

C) Marinol® (THC in sesame oil) and Neoral® (CsA dissolved in a mixture of lipids, co–

solvents and surfactants) were chosen as model LFs for the validation of the in vitro 

lipolysis/metabolism approach.  The selection of these medicines was done based on 

availability of published clinical data.    

D) In vitro lipolysis was used to assess the intestinal drug solubilisation of THC in Marinol® 

and CsA in Neoral®.  An in vivo dissolution volume of 100 mL, rather than 250 mL, used 

for scaling down lipolysis doses, led to better predictions of fraction absorbed in 

comparison to clinical data.  The use of a digestion buffer with surfactant concentrations 

closer to bio–relevant conditions, resulted in more accurate predictions in comparison to 

data derived from the classical buffer previously used in in vitro lipolysis studies.  The 

digestion of very high doses of surfactants might represent a limitation to the model, since 
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in vitro lipolysis, at the moment, can not account for the micellar trapping phenomenon 

that could occur in vivo. 

E) In vitro lipolysis and microsomal metabolism studies were combined for the first time with 

the aim to quantitative predict the human oral bioavailability of BCS II drugs administered 

in LFs.  This novel approach led to reasonably good predictions of oral bioavailability of 

THC in Marinol®, and CsA in Neoral® based on the similarity between the predicted 

bioavailability values and those reported in clinical trials after oral administration of the 

tested formulations to human subjects.  The novel in vitro lipolysis/metabolism approach 

has the potential to transform the in vitro lipolysis studies from a qualitative tool to a 

quantitative one. 

F) Further studies are needed to confirm the predictive power of the model.  This could be 

done by predicting the in vivo performance of additional BCS II drug in LFs when 

administered to humans or to pre–clinical species (with prior refinement in the lipolysis 

buffer concentration to properly mimic animal lipid digestion).  A further application of 

the in vitro lipolysis model could be an in vitro input for in silico modelling to predict the 

plasma concentration–time profiles of drugs delivered in LFs. 
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Appendix  
 

 

Appendix A. Pharmacokinetic data following administration of model 

drugs and lipidic formulations 

 

 
Figure A-1. Observed mean ± SD plasma concentration–time profiles following intravenous 

administration of THC, extracted from literature. (Figures A and B, and D adapted with 

permission from Ref. [280] and [292], Copyright© 1983 and 1980, respectively, American 

Society for Clinical Pharmacology and Therapeutics; Figure C from [291], Copyright© 1981, 

Plenum Publishing Corporation; Figures E and F from [293], Copyright© 1992, Oxford 

University Press; and Figure G from [294], Copyright© 2004, Wiley–Liss, Inc.) 
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Figure A-2. Observed mean ± SD plasma concentration–time profiles following oral 

administration of Marinol®, extracted from literature. (Figure A adapted with permission from 

Ref. [240], Copyright© 2003, Lippincott Williams; and Figure B from [241], under the terms of 

the US Patent and Trademark Office, 2012) 

 

 

Figure A-3. Observed mean ± SD blood concentration–time profiles following intravenous 

administration of CsA, extracted from literature. (Figures A and B adapted with permission 

from Ref. [295] and [138], Copyright© 1995 and 1992, respectively, American Society for 

Clinical Pharmacology and Therapeutics) 

 

 
Figure A-4. Observed mean ± SD plasma concentration–time profiles following oral 

administration of Neoral®, extracted from literature. (Figure A adapted with permissions from 

Ref. [244], Copyright© 2003, Elsevier B.V.; and Figure B from Ref. [243], under the terms of 

the US Patent and Trademark Office, 1999) 
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Table A-1.  Pharmacokinetic parameters reported in literature [240, 241, 280, 292–294] or calculated from the extracted plasma concentration–time profiles (in blue 

colours), after intravenous and oral (as Marinol®) administration of Δ9-tetrahydrocannabinol.  Values are expressed as means ± SD, unless otherwise stated. 

 Intravenous Oral 

 Wall et al. [280] 
Hunt et al. 

[291] 

Ohlsson et 

al. [292] 
Kelly & Jones [293] 

Naef et al. 

[294] 

Naef et al. 

[240] 

Goskonda et 

al. [241] 

n 6 (Women) 6 (Men) 4 11 4 (Users) 4 8 12 18 

Dose (mg) 2.2 4 2 5 5 5 4 20 10 

t1/2,z (min) 1740 2160 1272 ± 90 88 117 ± 17 93 ± 31 98.2 313 392 ± 208 

tmax (min) – – – – – – – 60 to120 92 ± 77 

Cmax (ng/mL) – – – – – – – 7.2 ± 2.0 6.12 ± 3.02 

AUCt (ng∙min/mL) 12100 ± 4620 16800 ± 4000 1277 4330 ± 620 9907 ± 3785 7094 ± 2248 7509 1368 734 ± 503 

AUC∞ (ng∙min/mL) 15211 22750 1416 4762 9451 8069 7028 ± 5829 1865 ± 1661 762 ± 527 

AUC∞/dose 

(ng∙min/mL/mg) 
5500 ± 2100 4200 ± 1000 636 ± 45 866 ± 124 1981 ± 757 1419 ± 450 1757 ± 1457 93 ± 83 76 ± 53 

Vz (L/kg) 9.9 10.2 0.06 ± 0.03 1.769 1.31 ± 0.57 1.33 ± 0.44 0.982 – – 

Vss (L/kg) 4.12 4.63 9.86 ± 2.47 9.44 1.03 ± 0.21 1.00 ± 0.48 0.59 ± 0.29 – – 

CL (mL/min/kg) 3.39 ± 0.85 3.24 ± 0.90 10.22 ± 1.72 13.17 10.01 ± 8.88 9.93 ± 3.69 10.47 ± 5.35 – – 

AUC∞/dose 

(ng∙min/mL/mg) 
2277 ± 2020 (88.7%)* 93 ± 83 (89.2%) 76 ± 53 (69.7%) 

CL (mL/min/kg) 9.05 ± 5.35 (59.1%)* – – 

t1/2,z: terminal phase half–life; Cmax: maximum peak plasma concentration; tmax: time at which Cmax occurs; AUC: area under the blood concentration–time profile from time 

zero to the last measurable concentration point (AUCt), and extrapolated to the infinity (AUC∞); Vz: terminal phase volume of distribution; Vss: volume of distribution in the 

steady–state; CL: blood clearance (derived from CLplasma and blood to plasma ratio = 1.063 [248]); N.P.: not provided either numerically or graphically, (–): not applicable 

* Values are expressed as weighted means ± overall standard deviation (coefficient of variation).
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Table A-2.  Pharmacokinetic parameters reported in literature [138, 242–244, 295] or calculated from the extracted blood concentration–time profiles (in blue colours), 

after intravenous and oral (as Neoral®) administration of cyclosporin A.  Values are expressed as means ± SD, unless otherwise stated. 

 Intravenous Oral 

 Gomez et al. 

[295] 

Hebert et al. 

[138] 
Odeberg et al. [244] Kim et al. [243] Mueller et al. [242] 

n 5 5 3 6 12 24 24 

Dose (mg) 150 225 300 300 200 200 600 

t1/2,z (min) 429 314 232 ± 15 444 420 ± 156 558 ± 150 

tmax (min) – – 79.8 109.8 96 ± 6 90 ± 24 102 ± 36 

Cmax (ng/mL) – – 1307 ± 127 1256 ± 438 1243 ± 35 1026 ± 218 1813 ± 400 

AUCt (ng∙min/mL) 541575 741555 302705 ± 107433 322752 ± 11646 N.P. N.P. 

AUC∞ (ng∙min/mL) 400968 ± 112875 608290 ± 98073 309120 ± 61680 351480 ± 127560 333167 ± 11655 208260 ± 61740 589860 ± 142140 

AUC∞/dose 

(ng∙min/mL/mg) 
2673 ± 753 2704 ± 436 1030 ± 206 1172 ± 425 1666 ± 58 1041 ± 309 983 ± 237 

Vz (L/kg) 2.17 1.79 – – – – – 

Vss (L/kg) 1.27 ± 0.44 1.16 ± 0.42 – – – – – 

CL (mL/min/kg) 5.30 ± 1.40 4.97 ± 0.80 – – – – – 

AUC∞/dose 

(ng∙min/mL/mg) 
2688 ± 615 (22.9%)* 1125 ± 373 (33.1%)* 1250 ± 389 (31.1%)* 983 ± 237 (24.1%) 

CL (mL/min/kg) 5.14 ± 1.15 (22.4%)* – – – 

t1/2,z: terminal phase half–life; Cmax: maximum peak blood concentration; tmax: time at which Cmax occurs; AUC: area under the blood concentration–time profile from time 

zero to the last measurable concentration point (AUCt), and extrapolated to the infinity (AUC∞); Vz: terminal phase volume of distribution; Vss: volume of distribution in the 

steady–state; CL: clearance; N.P.: not provided either numerically or graphically, (–): not applicable 

* Values are expressed as weighted means ± overall standard deviation (coefficient of variation) 



 Appendix 

 

Page | 139  
 

Appendix B. HPLC–UV Method development for the determination 

of Δ9–tetrahydrocannabinol and cyclosporin A in lipolysis samples 

 

 

Figure A-5.  Representative HPLC–UV chromatograms (λ = 220 nm), spiked with the internal 

standard vitamin D3 (VitD3), of micellar (A), sediment (B) and lipid (C) phases obtained after 

lipolysis and ultra–centrifugation of Marinol® (Δ9–tetrahydrocannabinol, THC, in sesame oil).  
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Figure A-6. Representative HPLC–UV chromatograms (λ = 211 nm), spiked with the internal 

standard cannabidiol (CBD), of micellar (A) and sediment (B) phases obtained after lipolysis 

and ultra–centrifugation of Neoral® (cyclosporin A, CsA, in a mixture of corn oil, ethanol, 

propylene glycol, and Kolliphor® RH 40).  

 

 

Figure A-7. Plot of peak area ratios of Δ9–tetrahydrocannabinol (THC) and internal standard 

(IS) versus sample concentration in (A) micellar (MP), (B) sediment (SP), and (C) lipid (LP) 

phases, obtained for the intra–day validation of the HPLC–UV detection method.  
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Figure A-8. Plot of peak area ratios of cyclosporin A (CsA) and internal standard (IS) versus 

sample concentration in (A) micellar (MP) and (B) sediment (SP) phases, obtained for the intra–

day validation of the HPLC–UV detection method.  

 

 

Figure A-9. Residuals plotted against low, medium and high quality control concentration 

samples in (A) micellar (MP), (B) sediment (SP), and (C) lipid (LP) phases, obtained for the 

intra–day validation of the HPLC–UV detection method of Δ9–tetrahydrocannabinol (THC). xcalc 

is the regressed concentration computed from the non–weighted calibration curve, and xnom is 

the nominal standard concentration. 
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Figure A-10. Residuals plotted against low, medium and high quality control concentration 

samples in (A) micellar (MP) and (B) sediment (SP) phases, obtained for the intra–day validation 

of the HPLC–UV detection method of cyclosporin A (CsA). xcalc is the regressed concentration 

computed from the non–weighted calibration curve, and xnom is the nominal standard 

concentration. 

 

Table A-3. Sum of relative errors (RE) for various curve–weighting values and F values 

corresponding to data obtained during intra–day validation of the HPLC–UV detection method 

of Δ9–tetrahydrocannabinol (THC) and cyclosporin A (CsA) in lipolysis phases.  

Drug 
Lipolysis 

phase 

∑ 𝐑𝐄 (%) 
Fexp 

𝟏
𝐱⁄  𝟏

𝐱𝟐⁄  

THC 

MP 100.8266 100.8634 818.3 

SP 254.9426 158.3603 3.7∙105 

LP 192.2304 161.7768 988.2 

CsA 
MP 138.6973 135.5478 3651.6 

SP  3.7 

MP: Micellar phase; SP: sediment phase; LP: lipid phase. 
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Table A-4. Intra–day and inter–day accuracy and precision for the detection of Δ9–tetrahydrocannabinol (Marinol®) and cyclosporin A (Neoral®) in lipolysis phases. 

 
Lipolysis 

phase 

Quality 

control 

sample 

xnom  

(mg/mL) 

Intra–day (n = 6) Inter–day (n = 6) 

xcalc (mg/mL) 
Accuracy RE 

(%) 
Precision RSD (%) xcalc (mg/mL) Accuracy RE (%) Precision RSD (%) 

M
a
ri

n
o

l®
 

Micellar 

LLOQ 0.002 0.002 ± 0.000 9.8 11.9 - - - 

Low 0.01 0.01 ± 0.00 3.8 4.8 0.01 ± 0.00 3.6 4.7 

Medium 0.05 0.05 ± 0.001 1.6 1.9 0.051 ± 0.004 6.0 7.9 

High 0.35 349 ± 11 2.2 3.1 0.336 ± 0.020 5.5 5.9 

Sediment 

Low 0.01 0.01 ± 0.00 1.9 2.5 0.01 ± 0.00 1.4 1.4 

Medium 0.1 0.11 ± 0.004 9.9 3.2 0.101 ± 0.005 3.6 4.5 

High 6 5.8 ± 1.86 3.6 3.2 5.595 ± 0.296 7.0 5.3 

Lipid 

Low 0.25 0.26 ± 0.035 10.3 13.5 0.249 ± 0.019 5.3 7.6 

Medium 5 5.079 ± 0.176 3.0 3.5 5.144 ± 0.120 3.0 2.3 

High 16 16.788 ± 1.099 6.6 6.5 15.040 ± 1.155 7.9 7.7 

N
e
o

ra
l®

 

Micellar 

LLOQ 0.05 0.051 ± 0.002 4 4.8 - - - 

Low 0.1 0.101 ± 0.009 7.6 9.2 0.102 ± 0.005 3.1 5.1 

Medium 3 3.164 ± 0.151 6.5 4.8 2.895 ± 0.209 6.4 7.2 

High 8 7.651 ± 0.568 7.1 4.8 8.312 ± 0.588 6.4 7.1 

Sediment 

Low 0.3 0.304 ± 0.015 4.6 5.0 0.305 ± 0.010 3.0 3.4 

Medium 0.7 0.679 ± 0.022 3.6 3.3 0.694 ± 0.025 3.1 3.6 

High 1.2 1.187 ± 0.029 2.1 2.5 1.193 ± 0.030 2.1 2.5 

LLOQ: Lowest validated limit of quantification; xnom: nominal concentration; xcalc: calculated concentration (means (n=6) ± SD); RE: relative error; RSD: relative standard deviation 
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Appendix C. HPLC–MS/MS Method development for the 

determination of Δ9–tetrahydrocannabinol and cyclosporin A in 

microsomal incubation samples 

 

 

Figure A-11. HPLC–MS/MS chromatograms of 2.5 ng/mL of Δ9–tetrahydrocannabinol (A) and 

9.5 ng/mL cyclosporin A (C) in 0.1% (v/v) formic acid in acetonitrile.  Representative 

chromatograms of the internal standards vitamin D3 (B) and cannabidiol (D) are also included. 
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Figure A-12. MS/MS spectra of of Δ9–tetrahydrocannabinol (A) and cyclosporin A (B) in 0.1% 

(v/v) formic acid in acetonitrile. 
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Figure A-13. Proposed mechanism for the fragmentation for Δ9–tetrahydrocannabinol (A), 

vitamin D3 (B), cyclosporin A (C) and cannabidiol (D), in positive ionisation mode.  Numbers 

indicate the m/z values for each fragment. 
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Appendix D. Additional data derived from the microsomal 

metabolism of Δ9–tetrahydrocannabinol, cyclosporin A, and control 

compounds 

 

Table A-5.  Rate depletion constants (kdep, min-1) obtained following the incubation of Δ9–

tetrahydrocannabinol (THC), cyclosporin A (CsA), and control compounds at different initial 

substrate concentrations with hepatic microsomes.  Values are expressed as means (n = 6) ± 

SD. 

 THC CsA Dexamethasone Verapamil 

1 μM 0.6555 ± 0.0048 0.0144 ± 0.0004 0.0033 ± 0.0004 0.0658 ± 0.0054 

2.5 μM 0.3023 ± 0.0189 0.0102 ± 0.0011 

N/A 5 μM 0.2108 ± 0.0214 0.0080 ± 0.0008 

10 μM 0.1436 ± 0.0049 0.0055 ± 0.0005 

 

Table A-6. Hepatic microsomal data for Δ9–tetrahydrocannabinol, calculated assuming 

different fractions of drug unbound in the incubations (fuinc). Values are expressed as means (n 

= 6) ± SD. 

fuinc 0.5068a 0.00289b 0.00638c 

CLuint (mL/min/mg) 2.640 ± 0.850 462.904 ± 148.996 209.685 ± 67.492 

CLuh,int (mL/min/kg) 1858.3 ± 598.1 32588.4 ± 10489.3 147618.5 ± 47514.4 

CLh 

(mL/min/kg) 

WS 9.6 ± 3.1 19.7 ± 6.3 20.7 ± 6.7 

PT 12.0 ± 3.9 21.0 ± 6.8 21.0 ± 6.8 

Fh (%) 
WS 54.1 ± 14.4 6.3 ± 2.0 1.5 ± 0.5 

PT 42.8 ± 13.8 0.0 ± 0.0 0.0 ± 0.0 

CLuint: In vitro intrinsic clearance; Cluh,int: in vivo intrinsic hepatic clearance; CLh: hepatic 

clearance; Fh: fraction escaping hepatic metabolism; WS: well–stirred model; PT: parallel tube 

model. 
a Calculated assuming binding to serum proteins is analogous to binding to microsomal proteins 

(Equation 5-4); b Calculated according to Hallifax and Houston [339]; c Calculated according 

to Austin et al. [338]. 
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Table A-7. Hepatic microsomal data for cyclosporin A, calculated assuming different fractions 

of drug unbound in the incubations (fuinc). Values are expressed as means (n = 6) ± SD. 

fuinc 0.7127a 0.4062b 

CLuint (mL/min/mg) 0.045 ± 0.003 0.079 ± 0.006 

CLuh,int (mL/min/kg) 31.6 ± 2.2 55.5 ± 3.9 

CLh 

(mL/min/kg) 

WS 1.2 ± 0.1 2.0 ± 0.1 

PT 1.2 ± 0.1 2.1 ± 0.1 

Fh (%) 
WS 94.3 ± 6.6 90.4 ± 6.4 

PT 94.2 ± 6.6 90.0 ± 6.3 

CLuint: In vitro intrinsic clearance; Cluh,int: in vivo intrinsic hepatic clearance; CLh: hepatic 

clearance; Fh: fraction escaping hepatic metabolism; WS: well–stirred model; PT: parallel tube 

model. 
a Calculated according to Hallifax and Houston [339]; b Calculated according to Austin et al. 

[338]. 

 

Table A-8. Intestinal microsomal data for Δ9–tetrahydrocannabinol, calculated assuming 

different fractions of drug unbound in the incubations (fu inc). Values are expressed as means (n 

= 6) ± SD. 

fuinc 0.5068a 0.00289b 0.00638c 

CLuint (mL/min/mg) 0.182 ± 0.003 45041.938 ± 848.147 20403.009 ± 384.192 

CLug,int (L/h) 15.4 ± 0.3 2702.5 ± 50.9 1224.2 ± 23.1 

Fg (%) 36.8 ± 0.7 0.3 ± 0.0 0.7 ± 0.0 

CLug,int (L/h)* 25.7 ± 8.3 4506.3 ± 1450.4 2041.2 ± 657.0 

Fg (%)* 25.8 ± 8.3 0.2 ± 0.1 0.4 ± 0.1 

CLuint: In vitro intrinsic clearance; Clug,int: in vivo intrinsic gut clearance; Fg: fraction escaping 

intestinal metabolism. 
a Calculated assuming binding to serum proteins is analogous to binding to microsomal proteins 

(Equation 5-4); b Calculated according to Hallifax and Houston [339]; c Calculated according 

to Austin et al. [338]; * Derived from hepatic microsomal data. 

 

Table A-9. Intestinal microsomal data for cyclosporin A, calculated assuming different fractions 

of drug unbound in the incubations (fuinc). Values are expressed as means (n = 6) ± SD. 

fuinc 0.7127a 0.4062b 

CLuint (mL/min/mg) 0.016 ± 0.002 0.028 ± 0.004 

CLug,int (L/h) 1.3 ± 0.2 2.3 ± 0.3 

Fg (%) 70.8 ± 9.1 58.0 ± 7.4 

CLug,int (L/h)* 1.1 ± 0.1 1.9 ± 0.1 

Fg (%)* 75.3 ± 5.3 63.5 ± 4.5 

CLuint: In vitro intrinsic clearance; Clug,int: in vivo intrinsic gut clearance; Fg: fraction escaping 

intestinal metabolism. 
a Calculated according to Hallifax and Houston [339]; b Calculated according to Austin et al. 

[338]; * Data obtained by extrapolating intestinal metabolism from hepatic microsomal data. 
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Table A-10. Predicted oral bioavailability values of Δ9–tetrahydrocannabinol in Marinol® using 

the in vitro lipolysis/metabolism approach. Values are expressed as means ± SD. 

 
Classical 

buffer 
New buffer 

Classical 

buffer (*) 

New buffer 

(*) 

2 x 10 mg 

Marinol® capsules 

WS 4.0 ± 1.4 1.5 ± 0.5 2.8 ± 1.3 1.1 ± 0.5 

PT 3.2 ± 1.1 1.2 ± 0.4 2.2 ± 1.1 1.2 ± 0.4 

1 x 10 mg 

Marinol® capsule 

WS 9.4 ± 3.4 1.3 ± 0.5 6.6 ± 3.2 0.9 ± 0.5 

PT 7.4 ± 2.7 1.0 ± 0.4 5.2 ± 1.9 0.7 ± 0.4 

Classical buffer: 5 mM bile salt, 0.75 mM phospholipid; New buffer: 3 mM bile salt; 0.2 mM 

phospholipid; WS: well–stirred model; PT: parallel tube model. 

(*) Data obtained by extrapolating intestinal metabolism from hepatic microsomal data 

 

 

 

 

Table A-11. Predicted oral bioavailability values of cyclosporin A in Neoral® using the in vitro 

lipolysis/metabolism approach.  Values are expressed as means ± SD 

 
Classical 

buffer 

New 

buffer 

Classical 

buffer (*) 

New buffer 

(*) 

2 x 100 

mg 

Neoral® 

capsules 

WS 
fuinc, Hallifax 30.9 ± 4.5 58.4 ± 8.6 32.9 ± 3.3 62.1 ± 6.2 

fuinc, Austin 24.3 ± 3.6 45.8 ± 6.7 26.6 ± 2.7 50.2 ± 5.1 

PT 
fuinc, Hallifax 30.9 ± 4.5 58.3 ± 8.6 32.9 ± 3.6 62.0 ± 6.2 

fuinc, Austin 24.2 ± 3.5 45.6 ± 6.7 26.5 ± 2.5 49.9 ± 5.0 

3 x 100 

mg 

Neoral® 

capsules 

WS 
fuinc, Hallifax 37.7 ± 5.7 58.7 ± 9.1 40.0 ± 4.3 62.4 ± 7.0 

fuinc, Austin 29.6 ± 4.5 46.1 ± 7.1 32.4 ± 3.5 50.5 ± 5.7 

PT 
fuinc, Hallifax 37.6 ± 5.7 58.6 ± 9.1 37.6 ± 4.0 62.4 ± 7.0 

fuinc, Austin 29.4 ± 4.4 45.9 ± 7.1 29.4 ± 3.1 50.2 ± 5.6 

6 x 100 

mg 

Neoral® 

capsules 

WS 
fuinc, Hallifax 52.4 ± 7.8 67.9 ± 12.6 55.7 ± 5.8 72.2 ± 11.0 

fuinc, Austin 41.2 ± 6.1 53.3 ± 9.9 45.1 ± 4.7 58.4 ± 8.9 

PT 
fuinc, Hallifax 52.4 ± 7.8 67.9 ± 11.6 55.7 ± 5.8 72.2 ± 11.0 

fuinc, Austin 41.0 ± 6.1 53.1 ± 7.1 44.9 ± 4.7 58.1 ± 8.8 

Classical buffer: 5 mM bile salt, 0.75 mM phospholipid; New buffer: 3 mM bile salt; 0.2 mM 

phospholipid; WS: well–stirred model; PT: parallel tube model; fuinc, Hallifax and fuinc, Austin: fraction 

of drug unbound to microsomes, calculated according to Hallifax and Houston [339] and Austin 

et al. [338]. 

(*) Data obtained by extrapolating intestinal metabolism from hepatic microsomal data 
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Appendix E. Pharmacokinetic data derived from the intravenous and 

oral administration of Δ9– tetrahydrocannabinol to rats 

 

 

 
Figure A-14. Observed mean + SD plasma concentration–time profiles of Δ9–

tetrahydrocannabinol (THC) following (A) intravenous (4 mg/kg, n = 5) and (B) oral (12 mg/kg) 

administration to rats.  Red colours represent the lipidic formulation (sesame oil, n = 6), 

whereas green colours represent the lipid–free formulation (propylene glycol/ethanol/water 

(80:10:10, v/v), n = 5). (Adapted with permission from Ref. [370], under the terms of CC BY, 

2016) 

 

Table A-12. Pharmacokinetic parameters (means ± SD) derived from the intravenous and oral 

administration of Δ9–tetrahydrocannabinol to rats.  

 
Intravenous 

Oral 

 Lipidic formulation Lipid–free formulation 

n 5 6 5 

Dose (mg/kg) 4 12 12 

t1/2 (min) 276 ± 268 444 ± 382 414 ± 268 

tmax (min) – 180 120 

Cmax (ng/mL) – 172 ± 83 65 ± 38 

AUCt (ng∙min/mL) 97440 ± 44811 63000 ± 24838 24840 ± 17441 

F (%) – 21.5 ± 8.6 8.5 ± 5.8 

Vd (L/kg) 7.9 ± 4.6 – 

CL (mL/min/kg) 41.9 ± 23.8 – 

Lipidic formulation: sesame oil; lipid–free formulation: propylene glycol/ethanol/water 

(80:10:10, v/v); t1/2: half–life; Cmax: maximum peak plasma concentration; tmax: time at which Cmax 

occurs; AUCt: area under the plasma concentration–time profile from time zero to the last 

measurable concentration point; F: observed oral bioavailability; Vd: volume of distribution; CL: 

blood clearance (derived from CLplasma and blood to plasma ratio = 1.063 [248]).  

(Adapted with permission from Ref. [370], under the terms of CC BY, 2016) 
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Appendix F.  Additional data resulting from the in vitro lipolysis of the 

lipidic and lipid–free formulations of Δ9– tetrahydrocannabinol 

 

 

Figure A-15. Representative HPLC–UV chromatograms (λ = 220 nm) of the liquid–crystalline 

phase obtained after lipolysis and ultra–centrifugation of 3.2 mL 12 mg/mL Δ9–

tetrahydrocannabinol (THC) in sesame oil, spiked with the internal standard vitamin D3 (VitD3). 

 

 

Table A-13. Intra–day and inter–day accuracy and precision for the detection of Δ9–

tetrahydrocannabinol in the liquid–crystalline phase obtained after lipolysis and ultra–

centrifugation of 3.2 mL of 12 mg/mL sesame oil.  

Quality control sample Low Medium High 

xnom (mg/mL) 45 200 450 

Intra–day 

(n = 6) 

xcalc (mg/mL) 44 ± 5 195 ± 21 437 ± 15 

Accuracy RE (%) 9.8 7.1 2.9 

Precision RSD (%) 11.9 10.7 3.3 

Inter–day 

(n = 6) 

xcalc (mg/mL) 49 ± 5 205 ± 11 450 ± 5 

Accuracy RE (%) 12.3 4.5 5.0 

Precision RSD (%) 10.8 5.0 2.5 

xnom: nominal concentration; xcalc: calculated concentration (means (n=6) ± SD); RE: relative 

error; RSD: relative standard deviation. 
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Figure A-16. Plot of peak area ratios of Δ9–tetrahydrocannabinol (THC) and internal standard 

(IS) versus sample concentration in the liquid–crystalline phase (CP), obtained for the intra–day 

validation of the HPLC–UV detection method. 

 

 
Figure A-17. Residuals plotted against low, medium and high quality control concentration 

samples in the liquid–crystalline (CP) phase, obtained for the intra–day validation of the HPLC–

UV detection method of Δ9–tetrahydrocannabinol (THC). xcalc is the regressed concentration 

computed from the non–weighted calibration curve, and xnom is the nominal standard 

concentration. 
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Appendix G. Additional data derived from the in silico simulations of 

the oral profiles of Marinol® and Neoral® 

 

Table A-14. In silico estimates and in vitro experimental values for Δ9–tetrahydrocannabinol and 

cyclosporin A physicochemical and biopharmaceutical properties. 

 

Δ9–Tetrahydrocannabinol Cyclosporin A 

Estimate 

(in silico)* 

Observed 

(in vitro) 

Estimate 

(in silico)* 

Observed 

(in vitro) 

Molecular formula C21H30O2 C62H111N11O12 

Molecular weight 314.47 g/mol 1202.64 g/mol 

logP/logD 6.97 – 3.35 – 

Acid pKa 10.17 – 10.3 – 

Solubility factor 7143 a  4000 a – 

Solubility at pH 7.4  2.8 μg/mL [246]  5 μg/mL [247] 

Effective permeability 7.56 μm/s   1.65 μm/s [249] 

Dosage form Immediate release: solution 

Gastric emptying time 0.75 h 

Initial dose  
10, 20 mg [240, 

241] 
 

200, 300, 600 

[242–244]  

Dosage volume 240 mL 

Mean precipitation 

time 
900 s 

Diffusion coefficient 3·10-6 cm2/s 

Drug particle density 1.2 g/mL 

SGF solubility 0 mg/mL (pH 1.2, bile salt concentration: 0 mM) b 

FaSSIF solubility (pH 

6.8, bile salt 

concentration: 3 mM) 

 15, 6 μg/mL c  
1.729, 2.637, 

6.103 g/mL c 

FeSSIF solubility 0 mg/mL (pH 5, bile salt concentration: 15 mM) b 

Body weight 70 kg 

Blood/plasma ratio 1.063   2 [382] 

fup (%) 1.02   8 [174, 382] 

Eg (%)  74.2 d  42.0 d 

SGF: Simulated gastric fluids; FaSSIF: fasted state simulated intestinal fluids; FeSSIF: fed state 

simulated intestinal fluids; fup: fraction of drug unbound to plasma; Eg: gut extraction. 

* Obtained using ADMET Predictor® (Simulations Plus, Inc.) [248] or ACD/I-Lab [245]. 
a Value estimated by dividing the number 20 by the intrinsic aqueous solubility in mg/mL, as 

indicated in the manual (based on the publication by Bergstrom et al. [383]).  b According to 

the manual, if the experimental value is unknown, the input should be zero.  c Solubility found 

in the micellar phase following in vitro lipolysis of the formulation.  d Estimated from intestinal 

microsomal incubations. 

 



 

 

P
age

│
1
5
4 

Table A-15. Pharmacokinetic output parameters obtained following the simulations of the oral profiles of Marinol® and Neoral® at different dose levels with GastroPlus®. 

 

Marinol® Neoral® 

10 mg 20 mg 200 mg 300 mg 600 mg 

Observed Simulated Observed Simulated Observed Simulated Observed Simulated Observed Simulated 

Fabs (%) – 100 – 100 – 99.8 – 97.6 – 97.6 

Fabs∙Fg (%) – 26 – 26 – 57.8 – 56.6 – 56.6 

F (%) 3.4 ± 3.8 15.4 4.1 ± 3.6 15.4 46.5 ± 18.1 48.1 41.8 ± 16.9 47.0 37 ± 12 47 

Cmax 

(ng/mL) 
6.12 ± 3.02 11.3 7.2 ± 2.0 19.6 549 ± 103 471 572.5 906.45 906 ± 200 1806 

tmax (h) 1.53 ± 1.28 2.64 1 to 2 1.81 1.5 ± 0.33 1.92 1.33 1.72 1.7 ± 0.6 1.68 

AUCt 

(ng∙h/mL) 
12.23 ± 8.38 38.32 22.8 66.8 2691 ± 97 2677 2522 3519 4915 ± 1184 7894 

Fabs: Fraction absorbed; Fg: intestinal bioavailability; F: absolute bioavailability; Cmax: maximum plasma concentration; tmax: time at which Cmax occurs; AUCt: area under the 

plasma concentration–time profile.  

Observed values were collected from references [240–244] 
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