
 ABSTRACT

 
Purpose. To demonstrate the use of mixture modeling in population PK analysis to predict 
drug concentrations for a subset of subjects with missing data for a key categorical 
covariate.  

Methods. Drug X is mainly metabolized by the polymorphic enzyme CYP2D6 and 
consequently the extent of metabolism is genotype dependent. A population PK model was 
developed for Drug X with the goal of predicting steady-state concentrations for a 
subsequent PK/PD analysis of the clinical effects. A core PK model was developed using 
only those subjects with known CYP2D6 genotype. To estimate the steady-state exposure 
for subjects with missing genotype, a mixture model was developed. Subjects with known 
genotypes were assigned to Population 1 and their genotypes were not estimated. The 
mixture model assigned the subjects with unknown genotype to one of the 4 populations 
defined by the subjects with known genotype (that is, poor (PM), intermediate (IM), 
extensive (EM), and ultra-extensive metabolizer (UM)). Population PK modeling was 
performed using NONMEM

®
 Version 6. Goodness of fit for the core and mixture models was 

assessed by examination of the following data and figures: the outcome (convergence and 
covariance); the agreement in scatterplots of population and individual predicted versus 
measured observations for each classification group; and the scatterplots of weighted 
residuals versus population and individual predicted observations.  

Results. The core model fit the data well; the model converged with 3.3 significant digits 
and a successful covariance step (standard errors less than 33%). Goodness-of-fit plots 
show that the model is without bias. The mixture model minimized successfully with 2.5 
significant digits. The R matrix for the mixture model was algorithmically singular, and 
standard errors were obtained from the S matrix. The plots of population predicted versus 
measured concentrations show that the model provided unbiased predictions for the 
subjects of unknown genotype classified by the mixture procedure. Scatterplots of 
weighted residuals versus population and individual predicted concentrations show no 
trends. Standard errors for the core parameters were less than 20%. This model was 
considered fit-for-purpose in predicting concentrations for subjects with missing genotype.  

Conclusions. Mixture models have been used previously to explain interindividual 
heterogeneity as arising from the mixing of unknown subpopulations. This case study 
illustrates the novel and successful use of a mixture model to obtain predicted drug 
concentrations for a subset of subjects with a missing key categorical covariate.  

 METHODS

 

Study Data 

 Approximately 100 Phase 1 subjects provided nearly 
2500 concentrations and nearly 700 Phase 2 subjects provided over 
4000 concentrations.  

 Number of samples/subject: 7 to 33 in Phase 1 studies, 4 to 7 in 
Phase 2 studies.  

 In the Phase 2 studies, subjects were recruited without regard to 
2D6 genotype.  

 Of those classified: Poor Metabolizers (PM) (6%), Intermediate 
Metabolizers (IM) (36%), Extensive Metabolizers (EM) (55%), Ultra-
Extensive Metabolizers (UM) (3%).  

 Genotype data was unavailable for 100 Phase 2 subjects (~12% of all 
subjects)  

Modeling Methods 

 NONMEM (V6.2.0) was used to develop a structural model describing 
and quantifying the mean pharmacokinetic (PK) characteristics, as well 
as interindividual variability and residual variability in PK.  

 Interindividual variability in parameters was modeled using an 
exponential error model.  

 Residual variability was modeled as a constant coefficient of variation.  

 The first‑order conditional estimation (FOCE) with interaction method 
was used at all stages of the model development process.  

 Assessment of goodness of fit for the core and mixture models was 
based on  

 Estimation outcome (convergence) and covariance step outcome,  

 Agreement in scatterplots of population predictions versus observed 
concentrations,  

 Agreement in scatterplots of individual predictions versus observed 
concentrations, and  

 Lack of trends in scatterplots of weighted residuals versus population 
and individual predicted concentration values.  

 A core base structural model was fitted using data only from subjects 
with known genotype.  

 Mixture modeling  

 Five populations were defined.  

 Subjects with known genotypes were assigned to Population 1, and 
their genotypes were not estimated.  

 The other 4 populations were used to assign the subjects with 
unknown genotypes to 1 of the 4 genotype classification groups (that 
is, PM, IM, EM, UM).  

 It was assumed that genotype data was missing completely at random 
(independently of any observed or unobserved variables).  

 Details on parameterization and coding can be seen in Figure 1.  

Figure 1. Parameterization and Coding Details 

 
 

 The mixture aspects of the model were added to a model of the same 
form as the core base model and all parameters were re-estimated.  

 Using the SAME option in NONMEM, the interindividual random effect 
terms for subjects of various genotypes were assumed to arise from 

the same distribution of interindividual variability.
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 RESULTS

 
 A 2-compartment model with first-order absorption was found to best fit 

the classified data. Goodness-of-fit plots for the model without genotype 

are shown in Figure 2.  

 Elimination rate was dependent on genotype.  

 Parameter estimates for the “Core Base Model” fitted to the subjects 
with known genotype are listed in Table 1 and goodness-of-fit plots are 

shown in Figure 3.  

 Parameter estimates for the “Base Mixture Model” fitted to all data are 
listed in Table 1 and goodness-of-fit plots for genotype-unknown 

subjects are shown in Figure 4.  

 Parameter estimates for “Core Base Model” and “Base Mixture Model” 
were similar, indicating that the unknown genotypes were classified 
appropriately.  

 The proportion of unknowns belonging to each genotype was not 
estimated with good precision. However, this was not required to 
adequately predict the concentration profiles for most subjects.  

EST=MIXEST 

 

PM=0; IM=0; EM=0; UM=0 

 

IF (MIXNUM.EQ.1.AND.GEN2.EQ.1) PM=1 

IF (MIXNUM.EQ.1.AND.GEN2.EQ.2) IM=1 

IF (MIXNUM.EQ.1.AND.GEN2.EQ.3) EM=1 

IF (MIXNUM.EQ.1.AND.GEN2.EQ.4) UM=1 

 

IF(PM.EQ.1.OR.MIXNUM.EQ.2) THEN 

   PM=1 

   TK=THETA(4) 

ENDIF 

IF(IM.EQ.1.OR.MIXNUM.EQ.3) THEN 

   IM=1 

   TK=THETA(9) 

ENDIF 

IF(EM.EQ.1.OR.MIXNUM.EQ.4) THEN 

   EM=1 

   TK=THETA(10) 

ENDIF 

IF(UM.EQ.1.OR.MIXNUM.EQ.5) THEN 

   UM=1 

   TK=THETA(11) 

ENDIF 

   K=TK*EXP(PM*ETA(2)+IM*ETA(3)+EM*ETA(4)+UM*ETA(5)) 

 

$MIX 

 

NSPOP=5 ;Known + unknown(PMs,IMs,EMs,and UMs) 

 

;calculate probability for population with known genotype vs. unknown  

PKN=0.835962 

PUKN=1.0-PKN 

 

;set up indicator for known vs unknown subjects 

KNW=1  ;  IF(GEN2.GT.4.5)KNW=0 

 

;P(1) must equal PKN  ;1=P(1)+P(2)+P(3)+P(4)+P(5) 

 

A=EXP(THETA(12)) 

B=EXP(THETA(13)) 

C=EXP(THETA(14)) 

D=1+A+B+C 

 

;pop1 represents 'knowns' only 

P(1)=KNW*PKN + (1-KNW)*PUKN*0 

;pop2 represents 'unknown'PMs 

P(2)=KNW*0 + (1-KNW)*PUKN*A/D 

;pop3 represents 'unknown' IMs 

P(3)=KNW*0 + (1-KNW)*PUKN*B/D 

;pop4 represents 'unknown' EMs 

P(4)=KNW*0 + (1-KNW)*PUKN*C/D 

;pop5 represents 'unknown' UMs 

P(5)=KNW*0 + (1-KNW)*PUKN*(1/D) 

 

 CONCLUSIONS

 

 Genotypic metabolizer status is an important determinant 

of individual subject plasma concentrations for Drug X.  

 Using the subjects with known genotype to anchor the PK 

parameter estimates provided a means of classifying 

subjects with unknown genotype and of estimating their 

PK parameters.  

 As indicated by the similar parameter estimates and the 

concordance of observed and predicted concentrations, 

the classification of the unknown subjects was relatively 

unbiased and reasonable estimates of the concentrations 

for these subjects were obtained.  

 Parameters associated with the proportion of unknown 

subjects in each subpopulation could not be precisely 

estimated. This result may be a reflection of the small 

number of unknown subjects (~100) and the rareness of 

some of the genotypes.  

 Mixture models have been used previously to explain 

interindividual heterogeneity as arising from the mixing of 

unknown subpopulations.
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 This case study illustrates the 

novel and successful use of a mixture model to obtain 

predicted drug concentrations for a subset of subjects 

with a missing key categorical covariate.  
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Figure 2. Goodness-of-Fit Plots for Model Without Genotype 

 
 

Figure 3. Goodness-of-Fit Plots for Core Base Model (Genotype Known Subjects) 

 
 

Figure 4. Goodness-of-Fit Plots for Base Mixture Model (Genotype Unknown Subjects) 

 

 
 

Table 1. Key Parameter Estimates and Standard Errors for the Core Base Pharmacokinetic Model and the Base Mixture 

Pharmacokinetic Model 

 
 

      

   

   

Parameter 

Core Base Base Mixture 

Final Parameter Estimate 
Magnitude of Interindividual 

Variability (%CV) Final Parameter Estimate 
Magnitude of Interindividual 

Variability (%CV) 

Population 
Mean %SEM

1
 Final Estimate %SEM

1
 

Population 
Mean %SEM

1
 Final Estimate %SEM

1
 

Vc: central volume (L) 125 FIXED 66.56 12.7 125 FIXED 63.56 7.1 

ka: absorption rate constant (/h) 0.172 2.8 NE NA 0.167 1.0 NE NA 

K (/h)-PM 0.151 14.7 

70.36 11.3 

0.150 19.5 

68.77 9.9 
K (/h)-IM 0.374 8.2 0.392 6.7 

K (/h)-EM 0.706 10.5 0.746 4.9 

K (/h)-UM 1.22 33.0 1.32 19.0 

K12: distributional rate constant 
1 (/h) 

0.00498 FIXED NE NA 0.00498 FIXED NE NA 

K21: distributional rate constant 
2 (/h) 

0.0267 FIXED NE NA 0.0267 FIXED NE NA 

ALAG1: absorption lag time (h) 0.343 5.6 NE NA 0.348 1.4 NE NA 

ln(A): A/D = proportion of 
unclassifieds that are PM 

    13.7 3372.3 NE NA 

ln(B): B/D = proportion of 
unclassifieds that are IM 

    14.2 3246.5 NE NA 

ln(C): C/D = proportion of 
unclassifieds that are EM 

    14.7 3142.9 NE NA 

RV (%CV) 39.62 4.3 NA NA 40.25 1.2 NA NA 

MVOF 66870.177 77209.074 

Abbreviations: ALAG1, absorption time lag; EM, extensive metabolizer; IM, intermediate metabolizer; K, first-order elimination rate; K12, distribution rate constant from central to 
peripheral compartment; K21, distribution rate constant from peripheral to central compartment; ka, absorption rate constant; MVOF, minimum value of the objective function; NA, 
not applicable; NE, not estimated; %CV, percent coefficient of variation; %SEM, percent standard error of the mean; PM, poor metabolizer; RV, residual variability; UM, ultra-
extensive metabolizer; Vc, central volume of distribution. 
1
The standard errors were estimated by NONMEM using the S matrix. 

 


