Population Pharmacokinetics of Nebulized Arformoterol in Subjects with COPD

G Majer1, J Kharidia1, JP Hanrahan1, R Hsu1, D Jaworowicz2, B Cirincione2, J Owen2, T Grasela2 1Sepracor Inc., Marlborough MA: 2Cognigen Corporation, Buffalo NY

Abstract

Aim: (R.R)-Formoterol (ARF) is a highly selective, potent and long-acting B-adrenoceptor agonist currently under development in the US for the longterm maintenance treatment of bronchoconstriction associated with COPD. The objectives of this analysis were to develop a population pharmacokinetic (PPK) model for nebulized ARF, and define the magnitude and variability of systemic exposure in subjects with COPD.

Methods: Data were pooled from one Phase 2 and two Phase 3 studies evaluating nebulized ARF tartrate inhalation solution administered at doses ranging from 5 ug BID to 50 ug QD. Both 1- and 2-compartment (CMT) models were evaluated using NONMEM®. Subject covariates were evaluated using stepwise forward ($\alpha = 0.05$) and backward ($\alpha = 0.001$) selection.

Results: A total of 6.401 ARE plasma concentrations were available from 503 subjects. A 2-CMT model with first-order absorption and elimination best described the data. Weight was a significant predictor of central volume of distribution (Vc/F), total body clearance (CL/F), and intercompartmental clearance (Q), where body weight was positively associated with increases in these parameter values. Mean (SD) Bayesian estimates of the area under the concentration-time curve (AUC) suggested dose-proportionality over this range. Measures of the precision and accuracy were unbiased, with a mean individual prediction error of 1.9%

Conclusions: A PPK model was developed for nebulized ARF, and thus provides a valid and unbiased tool for estimating AUC in support of future exposure-response analyses.

Methods

- PPK analyses were performed using NONMEM[®], Version 5, Level 1.1, using the first-order conditional estimation (EOCE) method with interaction
- Both 1- and 2-CMT models were evaluated, and various combinations of interindividual (IIV), interoccasion (IOV), and residual variability (RV) models were evaluated
- · Covariates evaluated: age, body weight, race (Caucasian, Black, or other), gender, creatinine clearance (CrCL) (estimated by the Cockcroft and Gault method), and alanine aminotransferase.
- Statistical significance was assessed by the change in log likelihood obtained from the NONMEM® objective function
- For univariate forward selection analyses, covariates contributing at least a 3.84 decrease in the minimum value of the objective function ($\alpha = 0.05$ one degree of freedom) were considered significant.
- For univariate backward elimination, a covariate was considered significant if it contributed to at least a 10.83 increase in the objective function value ($\alpha = 0.001$, one degree of freedom) when removed from the model.
- The general procedure followed for the development of the PPK model is outlined below:
 - 1. Base structural model development
 - 2. Subject covariate analyses (forward selection)
 - Evaluation of the full multivariable model and statistical
 - error model 4. Backward elimination analysis of covariates

 - 5. Model refinement and establishment of the final PPK model
 - 6. Model verification

Results

- A total of 6401 drug concentrations from 503 subjects (191 from Phase 2) and 312 from Phase 3) were available for analysis.
- Summary statistics and concentration-time profiles for this population are shown in Table 1 and Figure 1, respectively.

Table 1: Summary Statistics of the Subjects Included in the PPK Analysis of Arformoterol, Total Population (n = 503)					
Age (years) [mean ± SD (range)]	[62.5 ± 9.0 (40.0-87.0)]				
Weight (kg) [mean ± SD (range)] Gender, N (%)	[81.5 ± 20.4 (39.5–194.0)]				
Males	295 (58.7)				
Females	208 (41.3)				
Ethnicity, N (%)					
Caucasian	473 (94.0)				
Black	23 (4.6)				
Asian	3 (0.6)				
Hispanic	3 (0.6)				
Other	1 (0.2)				

Figure 1: Semi-Logarithmic Plots of Single-Dose and Steady-State Arformoterol Cp vs. TSLD, Stratified by Treatment

- · The PPK model for arformoterol was a linear, 2-CMT model with firstorder absorption and elimination.
 - Relative bioavailability (F.) was parameterized using the data from the 5 µg twice-daily dosing regimen as a reference (F,=1).
 - IIV and IOV were utilized to characterize the betweensubject random variability in F, and the random variability in F1 between evaluation visits within each subject,
 - respectively. Significant relationships were identified between body weight (kg) and apparent Vc/F, as well as between CrCL and both the apparent CL/F and Q.

- The significance of CrCL as a predictive covariate was an unexpected. finding because only ~1% of arformoterol is excreted unchanged in the urine.
- Because CrCL, a surrogate index for renal function, is calculated based upon other important covariates (such as age, body weight, and gender), it may serve as an indirect marker of these variables.
- Additional analyses revealed that the impact of body weight upon. arformoterol clearance was mainly responsible for the artifactual finding of CrCL significance.

Final Model

- In the final population model, body weight replaced CrCL as the important predictor of CL/F and Q.
- Final PPK model parameter estimates summary statistics, and diagnostic plots are provided in Table 2. Table 3. and Figure 2.

Table 2: Final Parameter Estimates and Standard Errors for the Final PK Model								
	Final Parameter Estimate		Magnitude of IIV					
Parameter	Population Mean	%SEM	%CV	%SEM				
K _a (1/hr)*	6.90	7.6	71.34, 83.31	22.4, 18.6				
F ₁	0.736	5.1	26.17	29.5				
CL/F (L/hr)	427	5.1	32.40	17.2				
Vc/F (L)	5510	5.3	40.25	17.2				
Q (L/hr)	404	8.3	39.62	46.4				
Vp/F (L)	6980	10.9	34.93	63.3				
IOV in F ₁ (%CV)	-	-	28.76	9.0				
Power for body weight on V _c /F	0.532	18.2	-	-				
Power for body weight on CL/F	0.388	23.2	-	-				
Slope for body weight on Q	4.58	27.9	-	-				
RV, proportional component (%CV)	14.97	8.9	-	-				
RV, additive component (SD)	0.50	FIXED	-	-				

IIV in K, corresponding to the population of subjects enrolled in Phase 2 and Phase 3. respectively

- Equations describing the influence of body weight on respective parameters:
 - TVCL; (L/hr) = 427-(WTKG;/81.5)0.388
 - TVVc; (L) = 5510 (WTKG;/81.5)0.532
 - TVQ. (L/hr) = 404+4.58 (WTKG-81.5)

Table 3: Summary Statistics of the Individual Bayesian Predicted PK Parameter Estimates from the Final PPK Mode

Total Population							
Parameter	Mean	SD	Minimum	Median	Maximum		
K _a (1/hr)	6.51	2.52	0.75	6.62	15.09		
F ₁ ⁺	0.79	0.24	0.33	0.75	2.18		
CL/F (L/hr)	429.9	103.9	184.5	424.4	768.4		
Vc/F (L)	5528	1829.4	2313	5324	12750		
Q (L/hr)	412.5	115.1	164.5	396.0	1025.4		
Vp/F (L)	7036	551.5	3996	6982	12422		

5 μg BID dose used as reference point, where the F, parameter is set to unity.

- Race was not identified as a statistically significant covariate, suggesting that exposure to arformoterol is not significantly different between Caucasians, Blacks, and other races/ethnicities,
- Use of corticosteroids (29.6% patients on a stable regimen 14 days prior to and during study) did not alter arformoterol PK.
- The mean (SD) apparent Bayesian clearance for individuals taking corticosteroids was 418.2 (105.4) L/hr compared to 435.8 (99.8) L/hr for subjects not taking corticosteroids.

Figure 2: Goodness-of-Fit Plots for the Final PPK Model Incorporating Body Weight as a Predictor of Vc/F, CL/F, and Q

 Model verification, based on measures of precision and accuracy for the model predictions at the individual level (i.e., by accounting for IIV and IOV) were unbiased with a mean individual prediction error percent (IPE%) of 1.9% (Figure 3).

Figure 3: Plots of the Distributions of the IPE% for the Final PPK Model

 Examination of Bayesian estimates of the AUC (Figure 4) suggested that the PK were essentially dose-proportional over the range of dosing regimens evaluated.

Figure 4: Plot of AUC vs. Total Daily Dose After Including Relative Bioavailability in the PK Model

Conclusions

- The population pharmacokinetics of nebulized arformoterol in subjects with COPD were linear, dose proportional for the range of doses evaluated, and best described using a 2-CMT model with a first-order absorption process.
- Body weight (kg) was found to be a significant positive predictor of both the apparent clearance and central volume of distribution. The change in CL/F with body weight was not considered of clinical significance.
- Other subject covariates (including age, gender, renal clearance. and race) had no additional predictive value once body weight was incorporated into the PK model for CI /F and Vc/F.
- Exposure to arformoterol was not significantly different based upon. race, gender, or corticosteroid use.
- These results support the utility of the model as a valid and unbiased instrument for estimating individual specific exposure for subsequent PK/PD analyses.

Support for this study provided by Sepracor Inc., Marlborough MA