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• Presentation of the models in the TGI library available in Monolix

and Simulx

• Example 1: Combination therapy in lung cancer xenografts

• Example 2: PSA in metastatic Castration-Resistant Prostate Cancer 

treated with chemotherapy
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Common tumor growth models
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Common tumor growth models
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Tumor growth models without saturation:

▪ Linear

▪ Quadratic

▪ Exponential

▪ Generalized exponential

▪ Exponential-linear

▪ Simeoni

▪ Koch

Tumor growth models with saturation:

▪ Logistic

▪ Generalized logistic

▪ Hybrid Simeoni-logistic

▪ Gompertz

▪ Gompertz-exponential

▪ Von Bertalanffy

▪ Generalized Von Bertalanffy
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Tumor growth models
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Linear model:

▪ constant zero-order growth rate

𝑑𝑇𝑆

𝑑𝑡
= 𝑘𝑔𝑙

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝑇𝑆 = 𝑘𝑔𝑙 ∗ 𝑡 + 𝑇𝑆0

𝑘𝑔𝑙
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Tumor growth models
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Quadratic model:

▪ combines linear and quadratic growth rates

𝑑𝑇𝑆

𝑑𝑡
= 𝑘𝑔𝑙 + 2𝑘𝑔2 ∗ 𝑡

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝑇𝑆 = 𝑘𝑔𝑙 ∗ 𝑡 + 𝑘𝑔2 ∗ 𝑡
2 + 𝑇𝑆0

𝑘𝑔𝑙

𝑘𝑔2
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Exponential model:

▪ assumes that the growth rate of a tumor is proportional to tumor burden 

(first-order growth)

𝑑𝑇𝑆

𝑑𝑡
= 𝑘𝑔𝑒 ∗ 𝑇𝑆

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝑇𝑆 = 𝑇𝑆0 ∗ 𝑒𝑘𝑔𝑒∗𝑡

Linear scale Log scale
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Tumor growth models
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Generalized exponential model (power law):

▪ assumes that the growth rate of a tumor is proportional to tumor burden 

(first-order growth)

𝑑𝑇𝑆

𝑑𝑡
= 𝑘𝑔𝑒 ∗ 𝑇𝑆𝛾

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝑇𝑆 = 𝑘𝑔𝑒 1 − 𝛾 𝑡 + 𝑇𝑆01−𝛾
1

1−𝛾

Log scale

𝑘𝑔𝑒

𝛾
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Tumor growth models
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Exponential-linear model:

▪ assumes that the growth rate of a tumor is proportional to tumor burden 

(first-order growth)

𝑑𝑇𝑆

𝑑𝑡
= ቊ

𝑘𝑔𝑒 ∗ 𝑇𝑆, 𝑡 ≤ 𝜏
𝑘𝑔𝑙, 𝑡 > 𝜏

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝜏 =
1

𝑘𝑔𝑒
𝑙𝑛

𝑘𝑔𝑙

𝑘𝑔 ∗ 𝑇𝑆𝑂

𝑇𝑆 = ൝
𝑇𝑆0 ∗ 𝑒 𝑘𝑔𝑒∗𝑡 , 𝑡 ≤ 𝜏

𝑘𝑔𝑙 ∗ 𝑡 − 𝜏 + 𝑇𝑆0 ∗ 𝑒𝑘𝑔𝑒∗𝜏, 𝑡 > 𝜏

▪ At t= 𝜏, 𝑇𝑆 =
𝑘𝑔𝑙

𝑘𝑔𝑒

▪ The transition time can not be computed 

if the model is combined with a treatment 

effect or an additional feature
𝑘𝑔𝑒

𝑘𝑔𝑙

Linear scale
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Simeoni model:

▪ approximates the exponential-linear model with a single differential 

equation

▪ 𝜓 should be fixed to a high value (20 for example) for a sharp switch from 

the first-order to the zero-order growth

▪ Differentiable even when combined with any type of treatment effect

𝑑𝑇𝑆

𝑑𝑡
=

𝑘𝑔𝑒 ∗ 𝑇𝑆

1 +
𝑘𝑔𝑒
𝑘𝑔𝑙

∗ 𝑇𝑆
𝜓 ൗ1 𝜓

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0
𝑘𝑔𝑒

𝑘𝑔𝑙

Linear scale Log scale

[Simeoni et al. (2004). Cancer Research, 64(3), 1094–1101.]
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Koch model:

▪ assumes a smooth transition between exponential and linear growth 

phase

𝑑𝑇𝑆

𝑑𝑡
=

2𝑘𝑔𝑒 ∗ 𝑘𝑔𝑙 ∗ 𝑇𝑆

𝑘𝑔𝑙 + 2𝑘𝑔𝑒 ∗ 𝑇𝑆

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝑇𝑆 = 𝑇𝑆0𝑒
2𝑘𝑔𝑒 ൰𝑡+

1
𝑘𝑔𝑙

(𝑇𝑆0−𝑇𝑆

Linear scale Log scale

𝑘𝑔𝑒

𝑘𝑔𝑙

[Koch, G. et al. (2009). Journal of Pharmacokinetics and Pharmacodynamics, 36(2), 179–197.]
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Logistic model:

▪ assumes an exponential growth rate which decelerates linearly with 

respect to the tumor size.

𝑑𝑇𝑆

𝑑𝑡
= 𝑘𝑔𝑒 ∗ 𝑇𝑆 1 −

𝑇𝑆

𝑇𝑆𝑚𝑎𝑥

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝑇𝑆 =
𝑇𝑆𝑚𝑎𝑥 ∗ 𝑇𝑆0

𝑇𝑆0 + 𝑇𝑆𝑚𝑎𝑥 − 𝑇𝑆0 ∗ 𝑒−𝑘𝑔𝑒∗𝑡

Linear scale Log scale

𝑘𝑔𝑒

𝑇𝑆𝑚𝑎𝑥
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Generalized logistic model:

▪ assumes an exponential growth rate kg which decelerates linearly with 

respect to the tumor size.

𝑑𝑇𝑆

𝑑𝑡
= 𝑘𝑔𝑒 ∗ 𝑇𝑆 1 −

𝑇𝑆

𝑇𝑆𝑚𝑎𝑥

𝛾

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝑇𝑆 =
𝑇𝑆𝑚𝑎𝑥 ∗ 𝑇𝑆0

𝑇𝑆0𝛾 + 𝑇𝑆𝑚𝑎𝑥
𝛾 − 𝑇𝑆0𝛾 ∗ 𝑒−𝑘𝑔𝑒∗𝛾∗𝑡

1
𝛾

Linear scale Log scale

𝑘𝑔𝑒

𝛾
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Tumor growth models

15

Gompertz model:

▪ assumes an exponential decay of the relative growth rate

𝑑𝑇𝑆

𝑑𝑡
= 𝛼𝑒−𝛽∗𝑡 ∗ 𝑇𝑆

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝑇𝑆 = 𝑇𝑆0 ∗ 𝑒
𝒂
𝛽

1−𝑒−𝛽∗𝑡

Linear scale

TS0, 
𝒂

𝛽

𝛼
TSmax = TS0 ∗ 𝑒

𝒂
𝛽𝑑𝑇𝑆

𝑑𝑡
= 𝛼 − 𝛽 ln

𝑇𝑆

𝑇𝑆0
∗ 𝑇𝑆

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0
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Gompertz model:

▪ assumes an exponential decay of the relative growth rate

𝑑𝑇𝑆

𝑑𝑡
= 𝑇𝑆 ∗ 𝛽 ∗ 𝑙𝑛

𝑇𝑆𝑚𝑎𝑥

𝑇𝑆

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝑇𝑆 = 𝑇𝑆𝑚𝑎𝑥 ∗ 𝑒
𝑒−𝛽∗𝑡∗ln(

𝑇𝑆0
𝑇𝑆𝑚𝑎𝑥

)

Linear scale

𝛽

𝑇𝑆𝑚𝑎𝑥
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Exponential-Gompertz model:

▪ assumes that the tumor follows at first an exponential growth, and is then 

akin to a Gompertz model once the nutrients start to go scarce

𝑑𝑇𝑆

𝑑𝑡
= min 𝑘𝑔𝑒 ∗ 𝑇𝑆, 𝛽 ∗ 𝑇𝑆 ∗ ln

𝑇𝑆𝑚𝑎𝑥

𝑇𝑆

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝛽

𝑇𝑆𝑚𝑎𝑥

𝑘𝑔𝑒

[Wheldon TE. Mathematical models in cancer research. Bristol: Hilger; 1988]
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Hybrid Simeoni-logistic model:

▪ Hybrid model derived from the Simeoni model that combines exponential, 

linear and logistic growth.

𝑑𝑇𝑆

𝑑𝑡
=
𝑘𝑔𝑒 ∗ 𝑇𝑆 ∗ 1 −

𝑇𝑆
𝑇𝑆𝑚𝑎𝑥

1 +
𝑘𝑔𝑒
𝑘𝑔𝑙

∗ 𝑇𝑆
𝜓 ൗ1 𝜓

,

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

[Haddish-Berhane et al., 2013]

Linear scale

▪ 𝜓 should be fixed to a high 

value (20 for example)

𝑇𝑆𝑚𝑎𝑥

𝑘𝑔𝑒

𝑘𝑔𝑙
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Von Bertalanffy model:

▪ Model based on balance equations of metabolic processes. The growth is 

proportional to the surface of the tumor and is limited with a loss term.

𝑑𝑇𝑆

𝑑𝑡
= 𝑘𝑔 ∗ 𝑇𝑆 ൗ2 3 − 𝑘𝑑 ∗ 𝑇𝑆

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝑇𝑆 =
𝑘𝑔

𝑘𝑑
+ 𝑇𝑆0 ൗ1 3 −

𝑘𝑔

𝑘𝑑
∗ 𝑒−

1
3
∗𝑘𝑑∗𝑡

3

[Von Bertalanffy, 1957]

Linear scale Log scale

𝑘𝑑

𝑘𝑔



MonolixSuite training 2021

𝑘𝑔
𝑇𝑆𝑚𝑎𝑥

Tumor growth models
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Von Bertalanffy model:

▪ Model based on balance equations of metabolic processes. The growth is 

proportional to the surface of the tumor and is limited with a loss term.

𝑑𝑇𝑆

𝑑𝑡
= 𝑘𝑔 ∗ 𝑇𝑆 ൗ2 3 − 𝑘𝑑 ∗ 𝑇𝑆

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝑇𝑆 =
𝑘𝑔

𝑘𝑑
+ 𝑇𝑆0 ൗ1 3 −

𝑘𝑔

𝑘𝑑
∗ 𝑒−

1
3
∗𝑘𝑑∗𝑡

3

𝑘𝑑 =
𝑘𝑔

𝑇𝑆𝑚𝑎𝑥
1
3

Linear scale Log scale

[Von Bertalanffy, 1957]
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Generalized Von Bertalanffy model:

▪ Generalization to a power law growth

𝑑𝑇𝑆

𝑑𝑡
= 𝑘𝑝 ∗ 𝑇𝑆𝛾 − 𝑘𝑑 ∗ 𝑇𝑆

0 ≤ 𝛾 ≤ 1

𝑇𝑆 𝑡 = 0 = 𝑇𝑆0

𝑇𝑆 =
𝑘𝑝

𝑘𝑑
+ 𝑇𝑆01−𝛾 −

𝑘𝑝

𝑘𝑑
∗ 𝑒− 1−𝛾 ∗𝑘𝑑∗𝑡

1
1−𝛾

Linear scale Log scale

𝑘𝑔, 𝛾

𝑇𝑆𝑚𝑎𝑥

𝑘𝑑 =
𝑘𝑔

𝑇𝑆𝑚𝑎𝑥(1−𝛾)

[Von Bertalanffy, 1957]
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Quadratic

Power law
Exponential

Linear

Simeoni / Exponential-linear
Koch

Logistic

Simeoni-logistic
Generalized logistic

Gompertz

Von Bertalanffy
Generalized Von Bertalanffy

No saturation

Saturation
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Additional TG features
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Different ways to encode the treatment 

and initial tumor size
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[LONGITUDINAL]

input = {kge, kkill, TS0}

EQUATION:

odeType=stiff

if t<0

dTS = kge*TS

else

dTS = kge*TS – kkill*TS

end

TS_0=TS0

ddt_TS = dTS

OUTPUT: 

output = {TS}

TS0 not in data

▪ TS0 as parameter

TS0 in input list

ID TIME Y

1 -45 98

1 -20 150

1 0 .

1 12 112

▪ TS0 is not TS at time 0 but at the initial 
integration time: the time of first dose or 
observation for each individual

▪ If t_0=0 is in the model, TS0 is TS at time 0, and 
TS=TS0 for all negative times
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Encoding initial tumor size
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[LONGITUDINAL]

input = {kge, kkill, TS0}

TS0 = {use = regressor}

EQUATION:

odeType=stiff

if t<0

dTS = kge*TS

else

dTS = kge*TS – kkill*TS

end

TS_0=TS0

ddt_TS = dTS

OUTPUT: 

output = {TS}

TS0 in data

▪ TS0 as regressor

TS0 in input list

▪ TS0 is not TS at time 0 but at the initial 
integration time: the time of first dose or 
observation for each individual

▪ If t_0=0 is in the model, TS0 is TS at time 0, and 
TS=0 for all negative times

ID TIME Y TS0

1 -45 98 98

1 -20 150 .

1 0 . .

1 12 112 .
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[LONGITUDINAL]

input = {V, k, TS0, kge, kkill}

PK:

Cc = pkmodel(V, k)

EQUATION:

odeType=stiff

TS_0=TS0

ddt_TS = kge*TS – kkill*Cc*TS

OUTPUT: 

output = {TS}

ID TIME AMT Y

1 -45 . 98

1 -20 . 150

1 0 0.02 .

1 12 . 112

Amounts and dosing times in dataset

▪ Joint model for drug concentration and tumor size

PK model in structural model

▪ Possible if dosing information is available

▪ PK parameters can be estimated if PK data is 
available, or fixed to literature values

▪ High computation cost in case of dense doses over 
a large treatment period → not recommended for 
modeling
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[LONGITUDINAL]

input = {TS0, EXPOSURE, kge, kkill}

EXPOSURE = {use=regressor}

EQUATION:

odeType=stiff

TS_0=TS0

ddt_TS = kge*TS – kkill*EXPOSURE*TS

OUTPUT: 

output = {TS}

ID TIME EXP Y

1 -45 0 98

1 -20 0 150

1 0 0.02 .

1 12 0.02 112

EXPOSURE in datasetEXPOSURE regressor in structural 

model

▪ EXPOSURE can come from PK concentration, 
AUC, Cmax, etc…

▪ EXPOSURE can be time-varying

▪ Carried-forward interpolation is used

▪ Not necessary to use the same names in data 
and model

▪ Exposure read as regressor
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[LONGITUDINAL]

input = {TS0, EXPOSURE, kge, kkill}

EXPOSURE = {use=regressor}

EQUATION:

odeType=stiff

TS_0=TS0

ddt_TS = kge*TS – kkill*EXPOSURE*TS

OUTPUT: 

output = {TS}

ID TIME EXP Y

1 -45 0 98

1 -20 . 150

1 0 0.02 .

1 12 . 112

EXPOSURE in dataset

▪ Exposure read as regressor

EXPOSURE regressor in structural 

model

▪ EXPOSURE can come from PK concentration, 
AUC, Cmax, etc…

▪ EXPOSURE can be time-varying

▪ Carried-forward interpolation is used

▪ Not necessary to use the same names in data 
and model
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[LONGITUDINAL]

input = {TS0, kge, kkill}

EQUATION:

odeType=stiff

if t<0

dTS = kge*TS

else

dTS = kge*TS – kkill*TS

end

TS_0=TS0

ddt_TS = dTS

OUTPUT: 

output = {TS}

ID TIME Y

1 -45 98

1 -20 150

1 0 .

1 12 112

No treatment information in dataset

▪ Constant treatment at time 0

If/else in model to apply

treatment after time 0

▪ It is not possible to define an ODE directly in 
the if/else statement: an intermediate variable 
should be used
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[LONGITUDINAL]

input = {TS0 , kge, kkill, T}

T = {use = regressor}

EQUATION:

odeType=stiff

if t<T

dTS = kge*TS

else

dTS = kge*TS – kkill*TS

end

TS_0=TS0

ddt_TS = dTS

OUTPUT: 

output = {TS}

T in dataset

▪ Constant treatment at time T read as regressor

If/else in model to apply

treatment after time T

ID TIME Y T

1 -45 98 5

1 -20 150 5

1 0 . 5

1 12 112 5

▪ It is not possible to define an ODE directly in 
the if/else statement: an intermediate variable 
should be used
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[LONGITUDINAL]

input = {TS0, kge, kkill, Trt}

Trt = {use = regressor}

EQUATION:

odeType=stiff

if Trt ==0

dTS = kge*TS

else

dTS = kge*TS – kkill*TS

end

TS_0=TS0

ddt_TS = dTS

OUTPUT: 

output = {TS}

Treatment arm in dataset

▪ Treatment or not as regressor 0/1

If/else in model to apply treatment

or not depending on the arm

ID TIME Y TrtArm

1 -45 98 1

1 -20 150 1

1 0 . 1

1 12 112 1

▪ The regressor must be a number

▪ If the regressor names in the model and the 
data do not match, the mapping is done by 
order
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Common tumor growth inhibition 

models
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𝑑𝑇𝑆

𝑑𝑡
= 𝑔𝑟𝑜𝑤𝑡ℎ − 𝐾 ∗ 𝑇𝑆

𝑑𝑇𝑆

𝑑𝑡
= 𝑔𝑟𝑜𝑤𝑡ℎ ∗ (1 − 𝐾)

Norton-Simon killing hypothesis:Skipper-Schabel-Wilcox log-kill hypothesis:

[R. Simon and R. Norton: The Norton-Simon hypothesis: designing more effective and less toxic 

chemotherapeutic regimens, Nature Clinical Practice Oncology 3(8) (2006), 406-407.]

K = killing of tumor cells
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Tumor killing hypothesis
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𝑑𝑇𝑆

𝑑𝑡
= 𝑔𝑟𝑜𝑤𝑡ℎ − 𝐾 ∗ 𝑇𝑆

𝑑𝑇𝑆

𝑑𝑡
= 𝑔𝑟𝑜𝑤𝑡ℎ ∗ (1 − 𝐾)

Norton-Simon killing hypothesis:Skipper-Schabel-Wilcox log-kill hypothesis:

The inhibition from 

the Norton-Simon 

model depends on 

the growth rate

Constant treatment Constant treatment

With exponential growth and constant K:
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Exposure-dependent killing kinetics
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Delay in tumor growth inhibition
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Delay for treatment effect
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Signal distribution:

• The delay depends

strongly on the signal 

intensity

Cell distribution:

• The treatment effect is visible 

from the start but attenuated by 

the delay

• The model garantees a minimal 

delay independently on the 

strenght of the treatment effect
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Delay in Simeoni model

40[Simeoni (2004)]

Shortcut to Simeoni model (TGI)



Common resistance models
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Resistance: Claret model
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Claret model

𝑡 < 0;
𝑑𝑇𝑆

𝑑𝑡
= 𝑘𝑔𝑒 ∗ 𝑇𝑆

𝑡 ≥ 0;
𝑑𝑇𝑆

𝑑𝑡
= 𝑘𝑔𝑒 ∗ 𝑇𝑆 − 𝑘𝑘𝑖𝑙𝑙 ∗ 𝑒−𝜆𝑡 ∗ 𝑇𝑆

ANALYTICAL SOLUTION:

𝑡 < 0; 𝑇𝑆 = 𝑇𝑆0 ∗ 𝑒𝑘𝑔𝑒∗𝑡

𝑡 ≥ 0; 𝑇𝑆 = 𝑇𝑆0 ∗ 𝑒
𝑘𝑔𝑒∗𝑡−

𝑘𝑘𝑖𝑙𝑙
𝜆

(1−𝑒−𝜆∗𝑡)

 With the analytical solution, TS0 is 

the tumor size at time 0

lambda

kkill
kge

kge

[Claret et al. (2009)]
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Resistance: Claret model

43[Claret et al. (2009)]

Resistance moduleShortcut to exponential Claret with

analytical solution
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Resistance: Claret model
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𝐾′ = 𝐾 ∗ 𝑒−𝜆∗𝑡

• accounts for the loss of drug-

induced decay over time due to 

declining efficacy of the drug

• 𝜆 – resistance parameter

lambda

kkill
kge

kge

[Claret et al. (2009)]
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Resistant population of tumor cells
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• This model assumes that a fraction of the tumor is resistant to the treatment, 

thus being killed with a smaller rate than the sensitive part of the tumor.

• Several possible variants:

• Redundant properties in some conditions:

• Initial fraction of resistant cells <-> Transfer of sensitive cells to resistant cells

• Killing of resistant cells <-> Transfer of resistant cells to sensitive cells

• Killing of resistant cells <-> Different growth for resistant cells

TSs TSr

ksr

krs

growth growth(r)

kkill*Exposure (kkill(r)* Exposure)

kd kd
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Resistant population of tumor cells
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TS_0=(1-f)*TS0
TSr_0=f*TS0

ddt_TS = (kge*TSs)-kkill * EXPOSURE*TS
ddt_TSr = (kge*TSr)- kkillr * EXPOSURE*TS

TotalTS = TS+TSr

kge, kkillr

kkill

kge

f

Model with initial fraction of resistant cells
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Comparing resistance models
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Evolutionary model (two populations)

𝑑𝑇𝑆𝑠
𝑑𝑡

= −𝐾 ∗ 𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸 ∗ 𝑇𝑆𝑠,

𝑑𝑇𝑆𝑟
𝑑𝑡

= 𝑘ge ∗ 𝑇𝑆𝑟 ,

𝑇𝑆𝑠 𝑡 = 0 = 𝑇𝑆0 ∗ 1 − 𝑓

𝑇𝑆𝑟 𝑡 = 0 = 𝑇𝑆0 ∗ 𝑓

𝑇𝑆 = 𝑇𝑆𝑠 + 𝑇𝑆𝑟

ANALYTICAL SOLUTION for constant exposure

𝑇𝑆 = 𝑇𝑆0 ∗ (𝑓 ∗ 𝑒𝑘𝑝∗𝑡 + 1 − 𝑓 ∗ 𝑒−𝑘∗𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸∗𝑡)
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Common models from literature
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𝑡 ≥ 0; 𝑇𝑆 = 𝑇𝑆0 ∗ (𝑒−𝑘𝑘𝑖𝑙𝑙∗𝑡 + 𝑒𝑘𝑔𝑒∗𝑡 − 1)

𝑡 < 0; 𝑇𝑆 = 𝑇𝑆0 ∗ 𝑒𝑘𝑔𝑒∗𝑡

Stein regression-growth model
Stein regression-growth

Exponential regrowth: 𝑇𝑆0 ∗ 𝑒𝑘ge∗𝑡

Exponential decay: 𝑇𝑆0 ∗ 𝑒−𝑘𝑘𝑖𝑙𝑙∗𝑡

[Stein et al. (2011))
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Ribba model

𝑑𝑃

𝑑𝑡
= 𝑘𝑝 ∗ 𝑃 1 −

𝑇𝑜𝑡𝑎𝑙𝑇𝑆

𝑇𝑆𝑚𝑎𝑥
+ 𝑘𝑄𝑝𝑃 ∗ 𝑄𝑝 − 𝑘𝑃𝑄 ∗ 𝑃 − 𝐾 ∗ 𝑘𝑒 ∗ 𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸 ∗ 𝑃

𝑑𝑄

𝑑𝑡
= 𝑡𝑃𝑄 ∗ 𝑃 − 𝑘𝑄 ∗ 𝑘𝑒 ∗ 𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸 ∗ 𝑄

𝑑𝑄𝑝
𝑑𝑡

= 𝑘𝑄 ∗ 𝑘𝑒 ∗ 𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸 ∗ 𝑄 − 𝑘𝑄𝑝𝑃 ∗ 𝑄𝑝 − 𝑘𝑑 ∗ 𝑄𝑝

𝑑𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸

𝑑𝑡
= −𝑘𝑒 ∗ 𝐸𝑋𝑃𝑂𝑆𝑈𝑅𝐸

𝑃 𝑡 = 0 = 𝑃0

𝑄 𝑡 = 0 = 𝑄0

𝑄𝑝 𝑡 = 0 = 0

𝑇𝑜𝑡𝑎𝑙𝑇𝑆 = 𝑃 + 𝑄 + 𝑄𝑝

[Ribba et al. (2012)]



Good practices for model definition in Monolix



MonolixSuite training 2021

Tumor growth models

52

[LONGITUDINAL]

input = {TS0, kge, kgl}

EQUATION:

TransitionTime = 1/kge*log(kgl/(kge*TS0))

if t<TransitionTime

TS = TS0*exp(kge*t)

else

TS = kgl*(t-TransitionTime)+TS0*exp(kge*TransitionTime)

end

OUTPUT: 

output = {TS}

▪ Model with analytical solution
❑ Example: exponential-linear
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Tumor growth models
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[LONGITUDINAL]

input = {TS0, kge, kgl}

EQUATION:

TransitionTime = 1/kge*log(kgl/(kge*TS0))

if t<TransitionTime

TS = min(1e12, TS0*exp(kge*t))

else

TS = min(1e12, kgl*(t-TransitionTime)+TS0*exp(kge*TransitionTime))

end

OUTPUT: 

output = {TS}

▪ Model with analytical solution
❑ Example: exponential-linear

Saturation to avoid 

infinitely large values
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Tumor growth models
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[LONGITUDINAL]

input = {TS0, kge, kgl, psi}

EQUATION:

odeType=stiff

;defining initial conditions of the model: 

;t_0=0 

TS_0=TS0

;model description: 

if TS < 1e12

dTS = (kge*TS/(1+(kge/kgl*max(0,TS))^psi)^(1/psi))

else

dTS = 0

end

ddt_TS = dTS

OUTPUT: 

output = {TS}

▪ Model based on ODE system
❑ Example: Simeoni

Saturation to avoid 

infinitely large values
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Tumor growth models
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[LONGITUDINAL]

input = {TS0, kge, kgl, psi}

EQUATION:

odeType=stiff

;defining initial conditions of the model: 

;t_0=0 

TS_0=TS0

;model description: 

if TS < 1e12

dTS = (kge*TS/(1+(kge/kgl*max(0,TS))^psi)^(1/psi))

else

dTS = 0

end

ddt_TS = dTS

OUTPUT: 

output = {TS}

▪ Model based on ODE system
❑ Example: Simeoni

Saturation to avoid mathematically

undefined situations
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Tumor growth models
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[LONGITUDINAL]

input = {TS0, kge, kgl, psi}

EQUATION:

odeType=stiff

;defining initial conditions of the model: 

;t_0=0 

TS_0=TS0

;model description: 

if TS < 1e12

dTS = (kge*TS/(1+(kge/kgl*max(0,TS))^psi)^(1/psi))

else

dTS = 0

end

ddt_TS = dTS

OUTPUT: 

output = {TS}

▪ Model based on ODE system
❑ Example: Simeoni

• Initial integration time

• Can be negative

• Default value if not indicated: 

time of first dose or observation, 

vary between individuals

• Initial conditions such as TS_0 are

values at that time
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▪ Model based on ODE system
❑ Example: Simeoni

Without t_0 = 0 With t_0 = 0
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Combination therapy in lung cancer xenografts

Example 1



MonolixSuite training 2021

Introduction

59

Case study based on data published and modeled in:
• Imbs et al. (2018). Revisiting Bevacizumab + Cytotoxics Scheduling Using Mathematical Modeling: Proof of Concept 

Study in Experimental Non-Small Cell Lung Carcinoma. CPT: PSP.

• Schneider et al. (2019). Optimal Scheduling of Bevacizumab and Pemetrexed/Cisplatin Dosing in Non-Small Cell 

Lung Cancer. CPT: PSP.

Context:

• Bevacizumab-pemetrexed/cisplatin is a first-line therapeutic for advanced nonsquamous

non-small cell lung cancer. 

• Bevacizumab potentiates pemetrexed/cisplatin (chemotherapy) cytotoxicity by inducing 

transient tumor vasculature normalization. 

• The increase in neoplasm vascular quality because of bevacizumab typically occurs within a 

period of a few days after administration.

Goal of the study: 

Estimate the optimal gap between administration of bevacizumab and chemotherapy to reach 

full activation
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Survival

Tumor size 

Dataset overview:

• 77 xenografts of initially 120000 H460 Luc+ dTomato+ cells, 

tracked with fluorescence

Measurements: 

• OBSID = 1 - tumor size (relative fluorescence unit)

• OBSID = 2 - survival

Treatments:

• 3 drugs, each given 3 times every 2 weeks

• 5 treatment arms: 

• Control (n=15)

• Chemo (n=15) = pemetrexed + cisplatin 

• Beva-Chemo: Bevacizumab and Chemo at the same time 

(n=15) 

• Beva_s3: Bevacizumab then Chemo after 3 days (n=16)

• Beva_s8: Bevacizumab then Chemo after 8 days (n=15)
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 Which tumor growth model?

Data for control group in log scale

Data for control group in log scale

• Not exponential nor linear models

• No clear carrying capacity
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Tumor growth inhibition data
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Data for all groups except Control: bevacizumab seems to make a difference with

concomitant administration and 3-days gap, but not with 8-days gap

Data for Chemo group: treatment

effect is small, and seems delayed
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Survival data
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Survival data split by Group
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1. Tumor growth model estimated on Control group

2. Tumor growth inhibition model for chemotherapy estimated

on Chemo group

3. Tumor growth inhibition model for chemotherapy combined

with bevacizumab estimated on all groups

4. Joint model tumor size and survival

The modeling workflow can be done in 4 steps:

Use last estimates

Use last estimates

Use last estimates
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Step 1: Tumor growth models
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 The exponential-linear (or Simeoni) model with a sharp switch 

between exponential and linear phases gives the best results

Exponential-linear Koch Logistic
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Possible inhibition model for the 

effect of chemotherapy:

Killing hypothesis:

• Log-kill

• Norton-Simon

Dynamics:

• First-order

• Michaelis-Menten

• Hill

• Exponential

Delay:

• Cell distribution

• Signal distribution

➔ 16 combinations

➔ The library allows to easily test 

different hypotheses
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[LONGITUDINAL]

input = {TS0, kge, kgl, psi, kkill, tau, V, k}

PK: 

EXPOSURE = pkmodel(V, k)

EQUATION:

odeType=stiff

;initial conditions of the model: 

t_0=0

TS_0=TS0

K1_0=0 

K2_0=0 

K3_0=0 

;model description: 

K = (kkill*EXPOSURE)

ddt_K1 = (K-K1)/tau 

ddt_K2 = (K1-K2)/tau 

ddt_K3 = (K2-K3)/tau 

ddt_TS = (kge*TS/(1+(kge/kgl*max(0,TS))^psi)^(1/psi))*(1-K3)

OUTPUT: 

output = {TS}

Best model from the library: 

Simeoni tumor growth with

Norton-Simon linear killing and 

signal distribution

Step 2: TGI
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[LONGITUDINAL]

input = {TS0, kge, kgl, psi, kkill, tau}

PK: 

;=======cisplatin

ka_cis = 66.5421

k_cis = 0.2868

Vd_cis = 65.1131

compartment(cmt = 2, concentration = C_cis, volume = Vd_cis)

oral(adm = 2, cmt = 2, ka = ka_cis)

elimination(cmt = 2, k = k_cis)

;=======pemetrexed 

ka_pem = 28.6

k_pem = 2.1328

Vd_pem = 102.7673

compartment(cmt = 3, concentration = C_pem, volume = Vd_pem)

oral(adm = 3, cmt = 3, ka = ka_pem)

elimination(cmt = 3, k = k_pem)

EXPOSURE = C_cis + C_pem

EQUATION:

odeType=stiff

;initial conditions of the model: 

t_0=0

TS_0=TS0

K1_0=0 

K2_0=0 

K3_0=0 

;model description: 

K = (kkill*EXPOSURE)

ddt_K1 = (K-K1)/tau 

ddt_K2 = (K1-K2)/tau 

ddt_K3 = (K2-K3)/tau 

ddt_TS = (kge*TS/(1+(kge/kgl*max(0,TS))^psi)^(1/psi))*(1-K3)

OUTPUT: 

output = {TS}

Model from the library: 

Simeoni tumor growth with

Norton-Simon linear killing and 

signal distribution

Extension of the model:

1. PK model combining

cisplatin and pemetrexed

Step 2: TGI
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[LONGITUDINAL]

input = {TS0, kge, kgl, psi, kkill, tau, delta, Tlag}

PK: 
;=======bevacizumab

ka_b = 2.6875

k_b = 0.1143

Vd_b = 2.3800

compartment(cmt = 1, concentration = C_bev, volume = Vd_b)

oral(adm = 1, cmt = 1, ka = ka_b, Tlag)

elimination(cmt = 1, k = k_b)

;=======cisplatin

ka_cis = 66.5421

k_cis = 0.2868

Vd_cis = 65.1131

compartment(cmt = 2, concentration = C_cis, volume = Vd_cis)

oral(adm = 2, cmt = 2, ka = ka_cis)

elimination(cmt = 2, k = k_cis)

;=======pemetrexed 

ka_pem = 28.6

k_pem = 2.1328

Vd_pem = 102.7673

compartment(cmt = 3, concentration = C_pem, volume = Vd_pem)

oral(adm = 3, cmt = 3, ka = ka_pem)

elimination(cmt = 3, k = k_pem)

EXPOSURE = C_cis + C_pem

EQUATION:

odeType=stiff

;initial conditions of the model: 

t_0=0

TS_0=TS0

K1_0=0 

K2_0=0 

K3_0=0 

;model description: 

K = (kkill*EXPOSURE)*(1+delta*C_bev)

ddt_K1 = (K-K1)/tau 

ddt_K2 = (K1-K2)/tau 

ddt_K3 = (K2-K3)/tau 

ddt_TS = (kge*TS/(1+(kge/kgl*max(0,TS))^psi)^(1/psi))*(1-K3)

OUTPUT: 

output = {TS}

Model from the library: 

Simeoni tumor growth with

Norton-Simon linear killing and 

signal distribution

Extension of the model:

1. PK model combining

cisplatin and pemetrexed

2. PK model for bevacizumab

and new effect: activation 

of killing with delay

Step 3: Combination therapy
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▪ The final project is given in: starting_material/2_TGI/r01_trtcomb.mlxtran

▪ Inter-individual variability was removed on several parameters

▪ Correlation group with eta_kge, eta_kgl, eta_TS0

▪ Good RSEs
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Survival model: delayed Weibull after TS reaches a threshold TSth

…

; computing time when TS>TSth

TimeTSth_0  = 0

if TS < TSth

xTime = 1

else

xTime = 0

end

ddt_TimeTSth = xTime

; hazard

if TS < TSth

h = 0

else

h = p/Te * max(1e-6,(t-TimeTSth)/Te)^(p-1)

end

OBSERVATION:

Survival = {type = event, hazard = h, maxEventNumber = 1}

…

Definition of single exactly observed random event

Definition of hazard function with time
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TTE VPC split by group
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PSA in metastatic Castration-Resistant Prostate Cancer 

treated with chemotherapy

Example 2
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Introduction: PSA + survival dataset

▪ Published in:
❑ Desmée, S. et al. (2017). Using the SAEM algorithm for mechanistic joint models 

characterizing the relationship between nonlinear PSA kinetics and survival in prostate 
cancer patients. Biometrics, 73(1), 305–312. 

❑ Data from the control arm of phase 3 clinical trial VENICE 

▪ Dataset overview:
❑ 400 men with metastatic Castration-Resistant Prostate Cancer (mCRPC)

❑ treated with docetaxel and prednisone (first-line reference chemotherapy)

▪ Observations:
❑ PSA concentration

❑ Death or censoring time

75
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Data set
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LOQ

1 = PSA concentration 

→ marker of tumor size

2 = death

Regressors

Covariates for 

stratification

Dummy doses 

to visualize

start and end 

of treatment

Treatment period



MonolixSuite training 2021

Introduction: PSA + survival dataset
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 TGI data shows 

emergence of 

resistance

Time=0: Start of treatment

Treatment period
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[LONGITUDINAL]

input = {TS0, kge, kkill, lambda}

TS0 = {use=regressor}

EQUATION:

odeType=stiff

TS_0=TS0

K = kkill*exp(-lambda*t) 

TSsat = min(TS,1e9)

if t<0; before treatment (kkill = 0)

TSDynamics = kge*TSsat

else ; during treatment

TSDynamics = kge*TSsat-K*TS

end

ddt_TS = TSDynamics

OUTPUT: 

output = {TS}

Model from library:

• Exponential growth and log-kill treatment effect

• No fixed initial time

• TS0 read as regressor

• Treatment effect applied after time 0
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TGI model with Claret resistance
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[LONGITUDINAL]

input = {TS0, TimeEndTrt, kge, kkill, lambda}

TS0 = {use=regressor}

TimeEndTrt = {use=regressor}

EQUATION:

odeType=stiff

TS_0=TS0

K = kkill*exp(-lambda*t) 

TSsat = min(TS,1e9)

if t<0 | t>TimeEndTrt ; before and after treatment (kkill = 0)

TSDynamics = kge*TSsat

else ; during treatment

TSDynamics = kge*TSsat-K*TS

end

ddt_TS = TSDynamics

OUTPUT: 

output = {TS}

Model from library:

• Exponential growth and log-kill treatment effect

• No fixed initial time

• TS0 read as regressor

• Treatment effect applied after time 0

Customization of the model:

• TimeEndTrt read as regressor

• Treatment effect applied between time 0 and 

TimeEndTrt
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TGI model with Claret resistance
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➔Need for a maximal tumor size

➔ After comparing several options, the Simeoni-logistic

function gives the best result

Result for exponential tumor growth and log-kill
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TGI model with Claret resistance
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Comparing Norton-Simon and log-kill treatment effects → LK gives the best results

Log-kill Norton-Simon
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Comparing different hypotheses
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Comparing resistance models:

→ two population model than Claret resistance

Claret 2 pop

Comparing delays:

→ Cell distribution gives better results than

signal distribution

Signal distribution Cell distribution
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Final model
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VPC bias

84

VPC split by maximal time of observation

 Under-prediction for small maxTime and over-prediction for large 

maxTime might be a VPC dias due to non-random dropout
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VPCSimulations for VPCTumor progression 

without dropout

Empirical percentiles Prediction intervals

Dropout and VPC



MonolixSuite training 2021

Dropout and VPC

VPCSimulations for VPCTumor progression 

with dropout

Empirical percentiles Prediction intervals



Q & A



Additional tumor growth features
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Additional TG features
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Additional TG features

90[Hahnfeldt et al (1999)]

Logistic growth with dynamic TSmax due to angiogenesis

Endogenous inhibition of previously 

generated vasculature by inhibition of 

endothelial cell proliferation, via 

inhibitors released through the tumor

surface

Intrinsic loss rate

Stimulatory capacity of the 

tumor upon the vasculature 

via angiogenic factors
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Additional TG features

91[de Pillis et al. (2006)]

Exponential growth with immune dynamics model

Effector cells are inactivated 

through contact with tumor

cells according to a mass-

action dynamic 
Effector cells are recruited by tumor cells through a 

Michaelis–Menten term

Constant source rate and death 

proportional to the population 

of effector cells 

Killing of tumor cells by effector 

immune cells
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Additional TG features

92[de Pillis et al. (2006)]
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[LONGITUDINAL]

input = {TS0, kge, kgl, psi}

EQUATION:

odeType=stiff

;defining initial conditions of the model: 

t_0=0 

TS_0=TS0

;model description: 

ddt_TS = (kge*TS/(1+(kge/kgl*TS)^psi)^(1/psi))

OUTPUT: 

output = {TS}

▪ Model based on ODE system
❑ Example: Simeoni

Statement to use the stiff ODE solver.

Default ODE solver: non-stiff
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Tumor killing hypothesis
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𝑑𝑇𝑆

𝑑𝑡
= 𝑔𝑟𝑜𝑤𝑡ℎ − 𝐾 ∗ 𝑇𝑆

𝑑𝑇𝑆

𝑑𝑡
= 𝑔𝑟𝑜𝑤𝑡ℎ ∗ (1 − 𝐾)

Norton-Simon killing hypothesis:Skipper-Schabel-Wilcox log-kill hypothesis:

With exponential-linear growth: With a Gompertz growth and multiple doses:

Constant treatment “the chance of eradicating the tumor is 

maximized by delivering the most effective dose 

level of drug over as short a time as possible”
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Dropout and VPC

VPCSimulations for VPCTumor progression 

with dropout and 

censored observations

Empirical percentiles Prediction intervals
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Dropout and VPC

VPCSimulations for VPCTumor progression 

with dropout and 

censored observations

Simulated censored observations are 

sampled from the conditional distribution: 𝑝 𝑦𝐵𝐿𝑄 𝑦𝑛𝑜𝑛𝐵𝐿𝑄, ෠𝜓, መ𝜃)

Empirical percentiles Prediction intervals



MonolixSuite training 2021

VPC correction for censored observations
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Adding censored observations until time 1500 for all ids:

Censored observations 

added after dropout

Dropout
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VPC correction for censored observations
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 Empirical 

percentiles take 

into account 

missing times via 

simulated 

observations 

(based on the 

model)


