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Abstract
Purpose: To demonstrate through two case studies how population 
pharmacokinetic (PK) modeling should be leveraged for bridging plasma and 
dried blood spot (DBS) PK data across clinical development programs.

Methods: In two case studies (MK-X and MK-Y), population PK models initially 
developed from Ph1 plasma data were updated to include plasma and DBS data 
from healthy subjects (Phase 1 setting) and patient (late-stage trials) plasma-
DBS bridging studies. DBS samples were collected via in-clinic venipuncture 
(MK-X and MK-Y) and in-clinic and at-home fingerstick (MK-Y). An estimated 
population slope converted between DBS and plasma concentrations. Separate 
residual errors for plasma and DBS data were estimated. For MK-Y, residual error 
was further partitioned based on in-clinic vs at-home DBS sampling. Models 
were qualified through standard diagnostics and qualification approaches. 
Interchangeability of matrices was evaluated through various approaches 
including a comparison of post-hoc predicted exposures from plasma vs DBS 
data alone (using slope as a conversion factor).

Results: In both cases, two-compartment population PK models were 
developed. Population PK parameter estimates were similar with and without 
DBS data. The slope parameters were well estimated and consistent with the 
DBS-plasma linear regression slopes and in vitro blood:plasma ratio data. 
Residual error for in-clinic DBS was low and generally comparable to that 
for plasma; however, high residual error (113% CV) was observed for at-home 
DBS (MK-Y). For MK-X, DBS and plasma based post-hoc estimates of plasma 
exposures were interchangeable and lacked bias. Phase 1 results were used to 
inform Phase 2 analysis plans and development of a DBS Go/No Go decision 
tree for later phase implementation.

Conclusion: The literature cites simplified approaches with generally arbitrary 
cut-offs (ISR criteria, regressions, Bland-Altman plots, etc) to bridge plasma and 
DBS concentrations. We have shown that pop PK modeling with prospective 
model-informed analysis plans should be a critical element of plasma-DBS 
bridging strategies. These approaches directly address the development question 
of whether DBS sampling supports pharmacometric aspects of regulatory 
submissions if incorporated in larger-scale patient studies.

Introduction
 • DBS has continued to gain application across the industry as 

a viable alternative to plasma for PK evaluations due to several 
advantages1,2

 • A critical component to using DBS in clinical programs is 
demonstrating interchangeability of plasma and DBS to enable 
bridging across the drug’s development history

 • To date, most published literature has applied statistical 
approaches of Phase 1 studies to enable bridging

 • Merck has developed and gained regulatory feedback on an 
integrated strategy (Figure 1) that includes population PK analyses 
of Phase 1/1b and 2 studies to establish this bridge

 • Two case studies of successful application of this strategy are 
presented

 – MK-X: DBS was considered an attractive option due to a 
targeted indication in a likely aging population

 – MK-Y: DBS was considered an attractive option due to the 
potential of collecting at-home PK samples proximal to use of 
MK-Y during episodic events

Figure 1. Merck’s strategy for DBS
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Purpose
To demonstrate through two case studies how population PK 
modeling should be leveraged for bridging plasma and DBS PK data 
across clinical development programs.

Methods: Case Study 1 (MK-X)
 • A clinical strategy was developed to incorporate DBS in a staged manner in select 

clinical studies (Figure 2) and facilitate DBS-plasma bridging

 • The existing plasma-based population PK model (developed in NONMEM) was 
updated with plasma and DBS data (venous sampling) from a Phase 1 DBS plasma-
bridging study in healthy volunteers

 • The Phase 1 model was used to develop prospective model-based analysis plans and 
Go/No Go DBS criteria for later phases of MK-X development

Figure 2. MK-X DBS clinical implementation roadmap
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Results: Case Study 1 (MK-X)

Figure 3. MK-X healthy volunteer bridging (N=12)
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11 concurrent DBS and plasma samples collected in healthy volunteer study (N=12). 
Based on linear regression, the whole blood concentrations from DBS samples 
correlated well with plasma concentrations (R2 = 0.99). The regression model-estimated 
ratio (95% CI) between DBS and plasma concentrations was 1.29 (1.27, 1.31), in close 
agreement to the in vitro estimated blood:plasma (B:P) ratio for MK-X in humans of 1.22.

Figure 4. MK-X model structure
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Excerpt from NONMEM Code within $ERROR block
Q1=0
IF (CPT.EQ.2) Q1=1
IF (CPT.EQ.2) IPRED=LOG(F)
Y1=IPRED + EPS(1)

Q2=0
IF (CPT.EQ.3 .AND. F.GT.0) Q2 = 1
IF (CPT.EQ.3 .AND. F.GT.0) IPRED=LOG(F*SLOPE)
Y2=IPRED + EPS(2)

 Y =Q1*Y1 + Q2*Y2

 • The previously developed MK-X 2 compartment plasma PK model was updated with 
plasma and DBS data from a Phase 1 bridging study in healthy volunteers

 • DBS concentrations were treated as a separate “blood” compartment with a “slope” 
parameter correlating plasma and blood concentrations 

 • Separate residual variability estimates were obtained for plasma and DBS data

Methods: Case Study 2 (MK-Y)
 • DBS samples were collected in both a healthy volunteer study (venipuncture and fingerstick sampling) and 

a study in patients (fingerstick sampling). The patient study included at-home DBS sampling at 3 timepoints 
following treatment on the day of patients experiencing an episodic event in addition to 1 in-clinic sample

 • Linear regression and population PK model-based analyses were conducted in a similar manner to MK-X

 • In the population PK model, four separate residual errors by matrix (i.e., blood and plasma) and subject 
population (i.e., healthy volunteers and patients) were estimated

Results: Case Study 2 (MK-Y)

Figure 8. MK-Y bridging study results
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 • Healthy volunteer study demonstrated strong correlations between venous and fingerstick DBS vs plasma

 • Patient trial demonstrated strong correlations between fingerstick and plasma data collected in-clinic

 • The regression model-estimated slopes were consistent with the in vitro-estimated B:P ratio for MK-Y in humans 
of 0.8

 • Similar to MK-X, a population PK model-based bridging analysis was also conducted, and the estimated B:P 
ratio from this analysis was 0.732 (SE 0.0162), consistent with linear regression results

Table 2. MK-Y population model residual error estimates from select models

Plasma Blood

Healthy Patient
Healthy  
(Clinic)

Patient 
(Clinic)

Patient 
(Home)

Model X 0.41 0.55 0.27 0.96
Model Y 0.41 0.53 0.27 0.37 1.13
Model Z 0.41 0.52 0.283† 1.13

†Combined res error term for healthy and patient clinic based DBS.

MK-Y Pop PK model-estimated residual variability serves as a useful diagnostic tool for understanding 
source of variability

 • Blood concentration data were less variable than plasma concentrations in healthy subjects (i.e., 27% for blood 
and 41% for plasma), supporting the adequacy of use of DBS sampling and assay methods for characterization 
of MK-Y concentration

 • High variability (96%) in blood concentrations in patients compared with healthy subjects (27%) suggests that 
other factors may be contributing to the increased residual variability rather than the blood assay itself

 • Further partitioning of the residual variability of blood data in patients (Model Y) revealed that high variability 
was associated with DBS samples self collected by patients in an outpatient setting (113%), and the blood 
residual variability in patients remains reasonable (37%) when DBS samples were collected during a clinical visit

 • The residual variability appeared to be similar irrespective of patient populations, and the primary driver for 
variability differences appeared to be whether a DBS sample is collected in clinic vs in an outpatient setting 
(Model Z), suggesting problematic data/sample collection by outpatients

Discussion
 • The case studies presented herein represent two 

examples of incorporation of DBS PK data into 
existing plasma population PK models

 • In Case Study 1, incorporation of Phase 1 MK-X 
DBS data into the existing plasma population PK 
model facilitated healthy volunteer bridging and 
informed model-based analysis plans for patient 
data and DBS Go/No Go criteria for later phases 
of development. MK-X exposure estimates based 
on DBS data were similar to those based on 
plasma data, supporting that similar PK and PK/PD 
conclusions could be derived using either matrix

 • In Case Study 2, population PK modeling facilitated 
the evaluation of the sources of variability between 
the plasma and DBS assays and elucidated that 
the major source was due to at-home versus 
in-clinic sampling, rather than any inherent 
differences between the plasma and DBS assays.  
As only sparse DBS PK samples were collected, 
both in-clinic and at-home, it would not have been 
feasible to partition these sources of variability 
without the use of the population PK model.  
Possible reasons for the increased variability 
observed for the at-home samples include (but are 
not limited to) imprecise diary entry or improper 
collection of DBS samples in an outpatient setting

Conclusions

 ● Population PK modeling is an 
important aspect of DBS:plasma 
PK bridging strategies to ensure 
that pharmacokinetic conclusions 
may be seamlessly derived across 
the two matrices

 ● The literature cites simplified 
approaches with generally arbitrary 
cut-offs (ISR criteria, regressions, 
Bland-Altman plots, etc) to bridge 
plasma and DBS concentrations. 
We have shown that pop PK 
modeling with prospective model-
informed analysis plans should be 
a critical element of plasma-DBS 
bridging strategies. Model-based 
approaches directly address the 
development question of whether 
incorporation of DBS sampling into 
larger-scale patient studies would 
support pharmacometric aspects of 
regulatory submissions

Table 1. Phase 1 MK-X population PK model parameter estimates (% residual 
standard error) for relevant parameters

  Plasma-Only Model† Plasma + DBS Model‡

Parameter
Parameter  

Description
Estimate 
(% RSE)

Estimate 
(% RSE)

slope DBS/plasma ratio – 1.27 (4.61)

σ2plasma Additive residual 
variability for plasma 0.142 (7) 0.144 (7.29)

σ2DBS Additive residual 
variability for DBS – 0.186 (34.7)

† Model developed using Phase 1 plasma data; ‡Model developed using Phase 1 plasma data as well 
as DBS data from a healthy volunteer bridging study.

 • The population PK model-based population slope estimate of 1.27 was similar to the regression-based slope 
(Figure 3) and the in vitro B:P estimate and was well estimated (4.61% RSE)

 • Interindividual variability on the population slope was explored and found not to be significant

 • All model parameters were well estimated and comparable between the plasma and plasma + DBS model

Figure 5. MK-X population PK model diagnostic plots
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Goodness of fit plots for the plasma + DBS population PK model did not indicate any bias in DBS vs plasma data.

Figure 6. Model-based individual MK-X plasma exposure estimates based on DBS 
data alone and plasma data alone (using population slope as a conversion factor)
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plasma using population slope as a conversion factor.
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Individual plasma AUC0-∞ and Cmax for each of the 12 healthy volunteers in the MK-X DBS-plasma bridging study 
were estimated based on (1) the plasma model and plasma data from the bridging study and (2) the plasma + DBS 
model and DBS data from the bridging study (using the population slope as a conversion factor). The comparison 
of DBS and plasma-based MK-X plasma exposure estimates are shown above. These exposure estimates were 
similar, and the DBS-based estimated did not show any over- or underprediction bias compared to the plasma-
based estimates.

Results: Case Study 1 (MK-X) (continued)

Figure 7a. MK-X decision tree #1 (linear 
regression analysis based on patient data only)
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Figure 7b. MK-X decision tree #2 (pop PK 
model-based analysis based on healthy 
volunteer and patient data)
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conversion factor for 
plasma estimates 
based on DBS data.

Proceed with 
DBS in Phase 3

The MK-X Phase 1 DBS-plasma population PK analysis was 
used to define analysis plans and DBS Go/No Go decision trees 
for later phases of development (shown above) based (a) solely 
on patient DBS and plasma data from a later phase patient trial 
(linear regression analysis) and (b) on patient DBS and plasma 
data from a later phase patient trial as well as DBS and plasma 
data from Phase 1 (population PK model-based analysis). 
Regulatory concurrence was gained on this approach. Note 
that the decision tree and cut-off values shown were tailored to 
MK-X and could be different for other compounds.
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