Quantitative Approach to Predicting Human Pharmacokinetics of Monoclonal Antibody (DSP-mAbX) from Preclinical Data

Kenta Kadotsuji¹, Susan Willavize², Ted Grasela², Yuta Shibue¹, Jin Shimakura¹, Yoshiko Tomita¹, Takao Watanabe¹, Masashi Yabuki¹ ¹Sumitomo Dainippon Pharma Co.,Ltd., Osaka, Japan, ²Cognigen Corporation., Buffalo, NY

Introduction

DSP-mAbX is a full human monoclonal antibody targeted to a cell surface antigen. The cross-reactivity of DSP-mAbX to the target antigen in human and monkey has already been confirmed. Here, a quantitative translation of DSP-mAbX in vitro and in vivo pharmacology from cynomolgus monkeys to humans is presented. This approach is useful to guide the selection of a safe starting dose for Phase 1 clinical trials based on levels of target occupancy.

Objectives

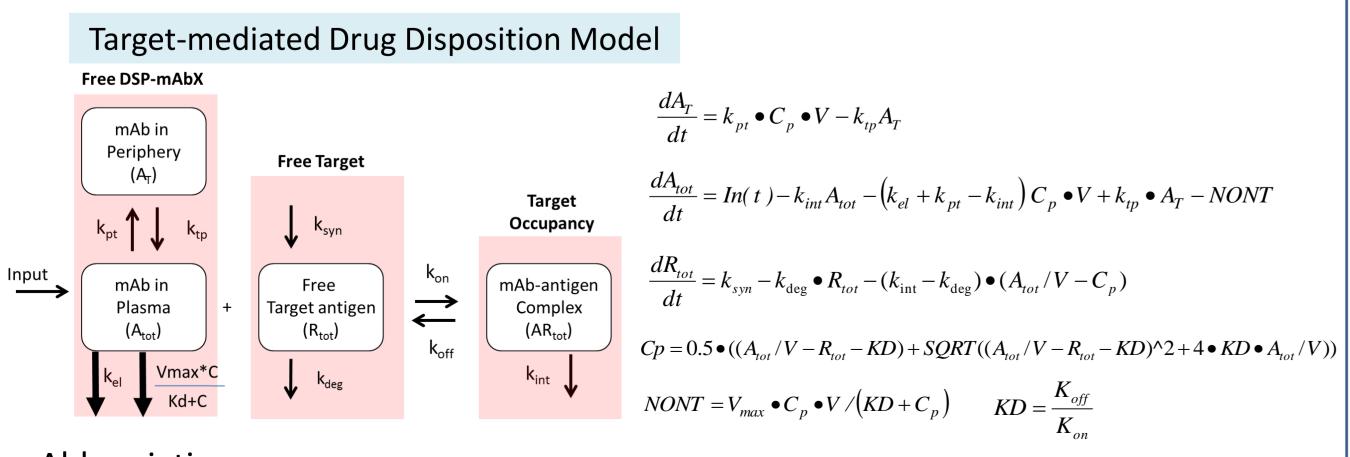
 To construct the TMDD model of DSP-mAbX pharmacokinetics and time profile of target occupancy using monkey data.

•To develop a mechanistic approach to predicting human pharmacokinetics from in-vitro data and in-vivo non-human primate PK data based on the construct of a TMDD model.

• To predict a safe starting dose of DSP-mAbX in human.

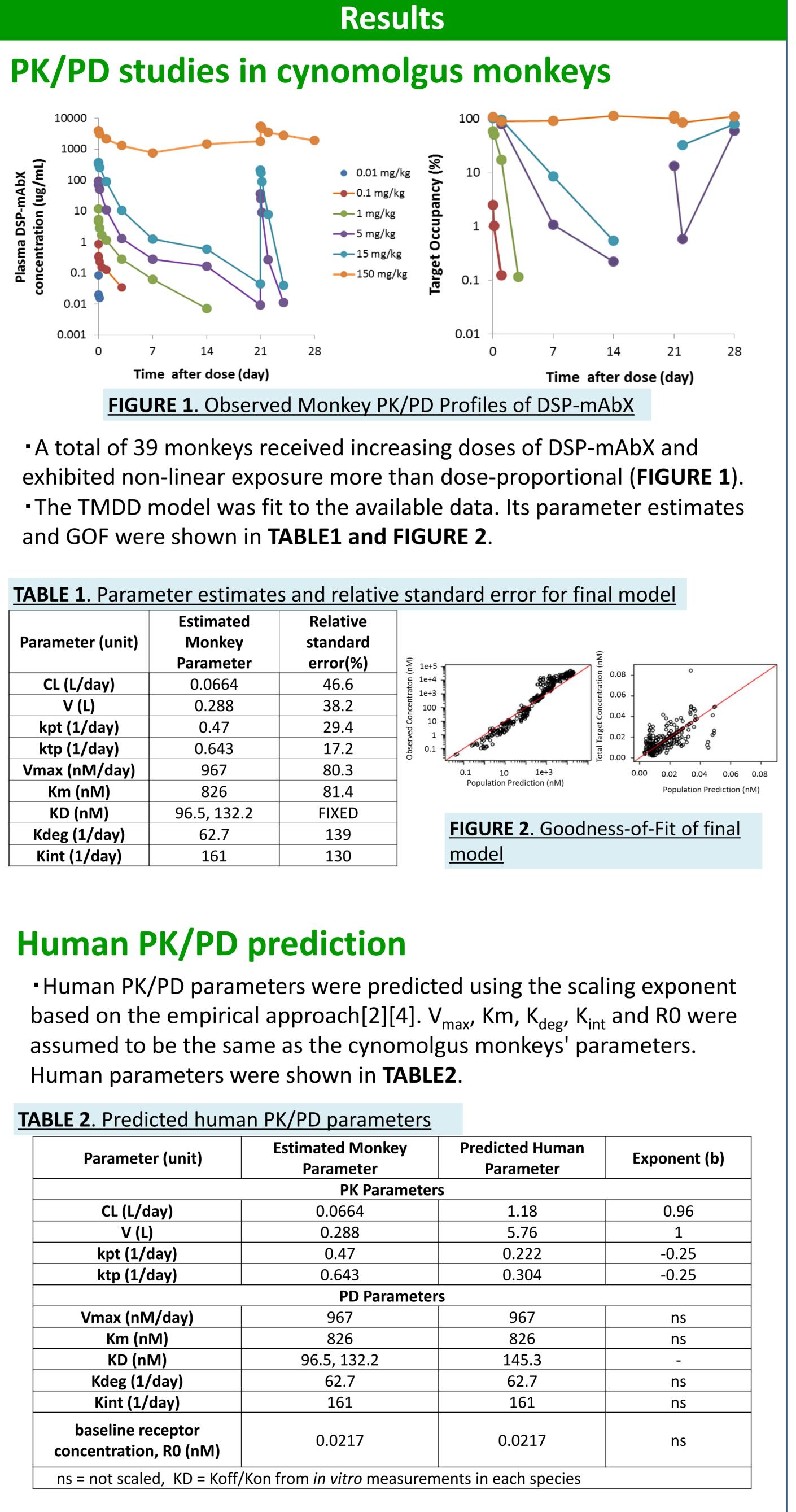
Methods

A TMDD model was developed from the data shown below [1-3].


Data

In vivo PK/PD study

- Animals: cynomolgus monkeys (n=39)
- Test substance: DSP-mAbX (monoclonal antibody)
- Administration route: IV
- Dose: 0.01, 0.1, 1, 5, 15, 150 mg/kg
- Sample collection: Plasma and Blood
- Analysis
 - ECL immunoassay (DSP-mAbX plasma concentration)
- FACS cell based assay (target occupancy)
- Immunogenicity assay (anti-drug antibody)
- Data point exclusion was based on ADA positivity.
- In vitro binding assay
- Antigen: monkey and human target protein
- Antibody: DSP-mAbX
- Analysis: Surface plasmon resonance (Kon and Koff value)


PK Modeling

- Non-linear mixed effects modeling approach with NONMEM VII (ADVAN13)
- Models were evaluated using objective function values, mechanistic plausibility of parameters and performance in visual predictive checks (VPC).

Abbreviations

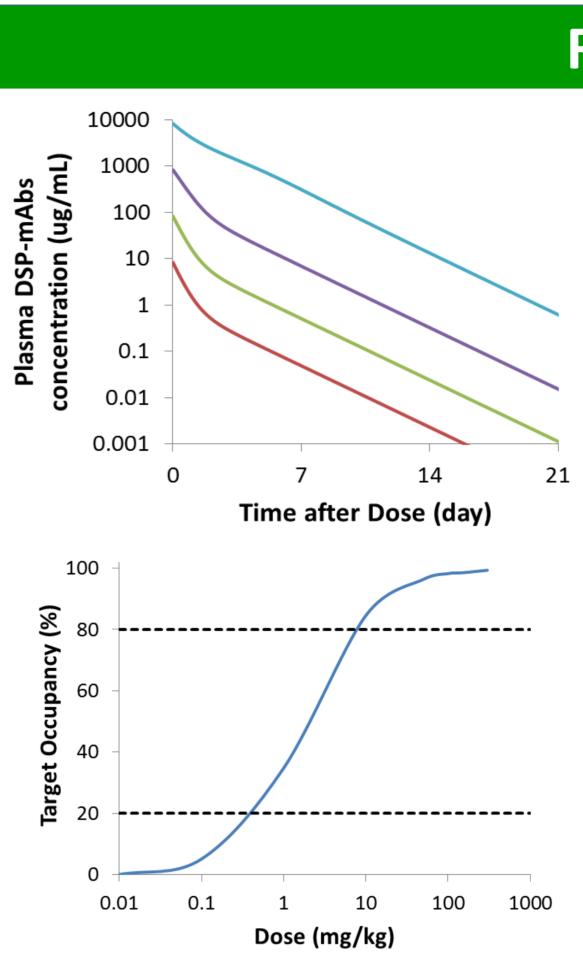

Ksyn, zero-order synthesis rate constant; kint, internalization rate constant; KD, dissociation constant (Koff/Kon); kpt, First-order plasma-to-tissue distribution rate constant; ktp, First-order tissue-to-plasma distribution rate constant; kel, elimination rate constant; NONT, elimination rate by non-specific targets

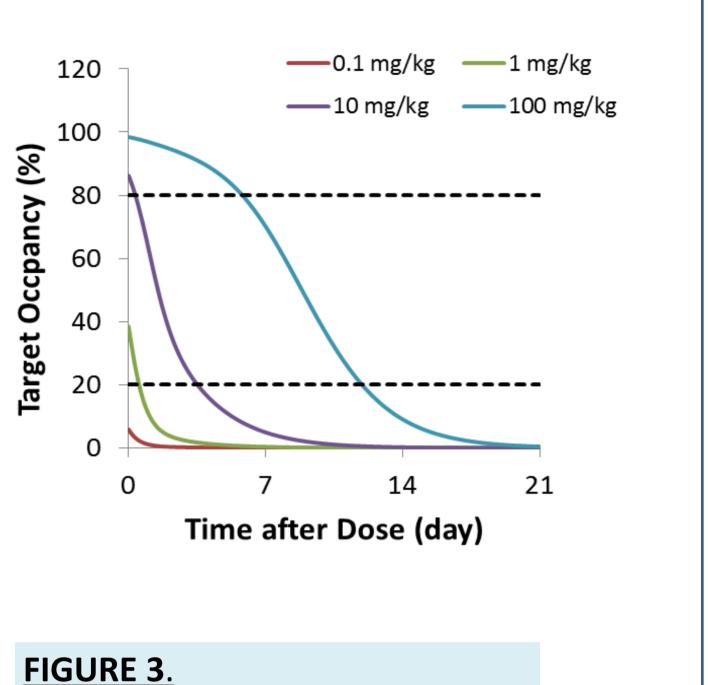
TABLE 1. Parameter estimates and relative standard					
	Estimated	Relative]		
Parameter (unit)	Monkey	standard			
	Parameter	error(%)	Ê 1e+5		
CL (L/day)	0.0664	46.6	Derved Concentration 1e+4 1e+3 100 10 10 10 10 10 10 10 10 1		
V (L)	0.288	38.2			
kpt (1/day)	0.47	29.4			
ktp (1/day)	0.643	17.2	Dpserv		
Vmax (nM/day)	967	80.3	0.1		
Km (nM)	826	81.4	Popula		
KD (nM)	96.5, 132.2	FIXED			
Kdeg (1/day)	62.7	139	FIGU		
Kint (1/day)	161	130	mod		

	Estimated Monkey	Pre	
Parameter (unit)	Parameter		
	PK Parameters		
CL (L/day)	0.0664		
V (L)	0.288		
kpt (1/day)	0.47		
ktp (1/day)	0.643		
	PD Parameters		
Vmax (nM/day)	967		
Km (nM)	826		
KD (nM)	96.5, 132.2		
Kdeg (1/day)	62.7		
Kint (1/day)	161		
baseline receptor concentration, R0 (nM)	0.0217		
ns = not scaled, KD = Koff/I	Kon from <i>in vitro</i> measurem	ents ir	

 Human PK/PD profiles were predicted using the monkey data and the scaling exponent (FIGURE 3). Dosing between 0.1 and 0.5 mg/kg is predicted to achieve 10-20% target occupancy in accordance with the Minimal Anticipated Biological Effect Level (MABEL). Dosing at 10 mg/kg is predicted to achieve target occupancy > 80% in humans.

•A two-compartment model with non-linear and target-mediated drug disposition for DSP-mAbX PK in cynomolgus monkey was developed. The estimated parameters were scaled to predict human PK/PD.

• The developed model aided in selection of a safe starting dose and a pharmacological relevant dose escalation strategy of DSP-mAbx in humans.


 Incorporating target kinetics into a PK model to be used for interspecies scaling is a sensible approach for human PK/PD prediction. We plan to rebuild the TMDD model in human data. Future analysis should include a population modeling-based approach on larger datasets to estimate interindividual variability for model parameters.

[1]. Mager, D.E. & Jusko, W.J. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 2001; 28, 507-32. [2]. Mager DE, Woo S, Jusko WJ. Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab. Pharmacokinet. 2009; 24(1):16-24.

[3]. Gibiansky L, Gibiansky E. Target-mediated drug disposition model for drugs that bind to more than one target. J Pharmacokinet Pharmacodyn. 2010 **37**(4):323-46. [4]. Oitate M. Prediction of human pharmacokinetics of therapeutic monoclonal antibodies from simple allometry of monkey data. *Drug Metab. Pharmacokinet*. 2011; **26**(4):423-430.

Results

Predicted Human PK/PD Profiles of DSP-mAbX

Conclusion

References