Modeling of Cilostazol absorption and pharmacokinetics in Beagle Dogs and design of in-vitro dissolution experiment to model the in-vivo absorption

Viera Lukacova, Anand Prabhakaran, Walter S. Woltozs, Michael B. Bolger
Simulations Plus, Inc., Lancaster, California, USA

Abstract
Purpose: The purpose of this study was to evaluate the in-vitro in-vivo (IVIV) correlation for a Class II compound and to design an in-vitro dissolution experiment that improves the IVIV correlation by taking into account the sink created by the removal of dissolved drug from the intestinal lumen due to high permeability.

Methods: GastroPlus™ (Simulations Plus, Inc.) was used to construct a model describing the in-vivo dissolution, absorption, and distribution of the poorly soluble drug Cilostazol, including the particle size distribution of the administered formulation. The plasma concentration-time (Cp-time) profiles in dogs for two formulations with different particle size distributions were simulated utilizing the built-in dissolution model (based on particle size distribution and the drug’s pH-dependent solubility) as well as the in-vitro dissolution profile measured in FaSSIF media. Observed absorption and plasma concentration profiles were used to fit the in-vitro dissolution profile for both formulations and these profiles were compared with the in-vitro dissolution profiles. DDDPlus™ (Simulations Plus, Inc.) was then used to design a multi-phase in-vitro dissolution experiment to obtain an in-vitro dissolution profile corresponding to the desired in-vivo profile.

Results: Using the built-in dissolution model (utilizing the particle size distribution and the drug’s solubility), the Cp-time profile measured in beagle dogs was closely reproduced for two different particle size distributions, while using the in-vitro measured dissolution profile greatly overestimated the plasma concentrations caused by fast initial dissolution that quickly reached solubility limit. The poor agreement between in-vitro and in-vivo dissolution profiles was caused by the inability of a simple in-vitro dissolution experiment (with a much smaller sink) to reproduce slow and nearly linear in-vivo dissolution caused by the fact that permeability becomes the rate limiting step in vivo. In vivo, the low solubility ceiling only allows a small amount of drug to dissolve until the permeability sink removes some of the drug at a rate slower than observed in vitro. A new, multi-phase, in-vitro dissolution experiment was designed to model these permeability-rate-limited sink conditions and produce an in-vitro profile that could be used to simulate in-vivo dissolution.

Conclusions: The study showed the importance of careful design of in vitro dissolution experiments for Class II compounds. For these compounds, in vivo dissolution is not only affected by the particle size and overall solubility of the drug, but also by the permeability, which creates sink conditions in the gastrointestinal tract, thus promoting more drug to dissolve.

Data
The study was conducted using literature data for in vitro dissolution profiles of three Cilostazol formulations (Nano Crystals – particles 0.1 to 0.4 um, Jet Milled – particles 0.3 to 13.7 um, and Hammer Milled – particles 0.3 to 122 um) in water, FaSSIF and FeSSIF media [1], as well as plasma concentration – time profiles after oral administration of Cilostazol to beagle dogs [1,2]. Drug properties were obtained from ADMETPredictor™ (pKa, Peff, Dw, Fup) or used directly as reported [1] in literature (logD, solubility).

References

Methods
• GastroPlus™ was used to fit the model for prediction of Cp-time profiles [1] of the three Cilostazol formulations (dose of 100mg/body) employing a dissolution model where the drug dissolution is a function of solubility and particle size distributions. The fitted Absorption-PK model was validated by comparison of simulated profiles for three different dose levels with measured plasma-concentration time profiles of another Cilostazol formulation [2]. Fitted values for Clearance (0.917 L/h/kg) and Volume of Distribution (1.048 L/kg) were close to literature values [1] obtained from the Cp-time profile for IV administration (CL=0.6 L/h/kg, VD=0.72 L/kg).

2. The fitted Absorption-PK model was coupled with the in vitro dissolution profiles for the three formulations with varying particle sizes. Simulated Cp-time profiles for Jet Milled and Hammer Milled formulations were fitted to the experimental data by optimizing their dissolution profiles. Obtained in vivo dissolution profiles were compared with the experimental in vitro dissolution profiles.

3. DDDPlus™ was used to design in vitro dissolution experiments to replicate the fitted in vivo dissolution profiles. First the ability of the model to reproduce the in vitro dissolution of Cilostazol in water, FaSSIF and FeSSIF media was verified. As shown on the figures, there was an excellent match between simulated (solid lines) and experimental (squares) profiles for Nano Crystals (blue), Jet Milled particles (red) and Hammer Milled particles (green) in all three media.

4. For the Class II compound, with low solubility and high permeability, the absorption of the drug is normally limited by its dissolution. However, due to the low solubility, dissolution in vivo was limited by the permeability sink. To model this situation, a multi-phase experiment was designed with gradually increasing volume of dissolution media. The volume increase in vitro will model the decrease of dissolved drug concentration due to drug absorption in vivo.