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INTRODUCTION



Physiologically-based pharmacokinetic modeling (PBPK)

Venous blood
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A mathematical modeling technique to predict
pharmacokinetics

Combines physiological knowledge and compound
properties

Input parameters can be in silico, in vitro or in vivo

Well established in the industry with user friendly
commercial software available
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Scheme of the Comeept of Drug Disinbution used in this paper.
Instead the injection pictured in the figure, the sdministration of the drug depot
can be made per o, per rectwn, by inhalation, etc.
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PBPK/PD in drug research and development
The applications span from early discovery to late development

DDI risk assessment and waivers

Special populations (renal impairment,
liver impairments, pediatrics)

- Pediatrics studi desiin
Clinical
Target Identification ) . L0 R Candidate post
identification Optimization : marketing
Selection

PK/PD experiment design

EiH dose
proposal and

Compound ranking . - Post-marketing dose
Efficacious dose and dati

ADME gnd. PhysChem exposure proposal recommendations

properties integration . Formulation chanaes

Cotellic

PBPK Informs Drug Labels e.g. Alecensa
Rozlytrek



PBPK model applications in drug development
Increased regulatory acceptance over the years

= DDI-enzyme based NDA applications with PBPK analyses
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Roche’s pRED PBPK strategy

A continuous learn and confirm approach

In vitro In vivo

Animal

- Verify & Learn
* Overarching goal is to predict Compound PBPK
therapeutic window in humans physicochemicaland | A popF]

in vitro data

concentration

as a function of dose using a relevant for animal —
PBPK/PD approach Predict in
Human -

Compound PBPK < Predict

physicochemical and 5

in vitro data MODEL [

relevant for human E /-\

time

Jones, H., N. Parrott, et al. Clinical Pharmacokinetics, 2006. 45(5): p. 511-542.; Jones, H., |. B. Gardner, et al. Clinical Pharmacokinetics, 2011 50(5): 331-347



Roche has a long history of applying PBPK modeling

Successful prediction of EiH doses and exposures

100000 - X./’

* First applied at Roche in 2003 Al
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* Key validation efforts & strategy published 2006 E (B
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» Systematic use since 2010 g by

3 100 - :/-
* Retrospective analysis in 2017 showed 69% wl| Y Ave. fold error 2.1

success rate i 69% within 2-fold
1 ’ T T T
Observed AUC (ng.hr/mL)F g

Parrott N, Delporte M, Lave T, Peck R and Ricci B. CPT (2017) (Abstract Pll-109)



PBPK application in the early small molecule portfolio
Early space is dominated by ranking equations, PBPK is seldom applied

Lead Lead
Identification Optimization

Target Assessment

Simple equations

LipE, eD2Man, Efficacy Index (EI), LipMET
Use: Ranking and design, early doses
Throughput: high (hundreds to thousands of compounds per project)
Implementation: Easy (spreadsheet based, easy to implement in current
project tools)
Speed: Instant
Scope: Limited (single properties or two properties combined at the
most, simplified and assumption heavy)

PBPK modeling

GastroPlus, SimCYP (commercial), in-house (R, Matlab)
Use: Human dose prediction, sensitivity analysis, biopharm, DDI, etc.
Throughput: low-to medium (handful of compounds per project, usually
around CLS)
Implementation: Complex (manual data transfer and model set up.
Learn and confirm cycle needed to gain confidence, data rich)
Speed: Moderate (minutes to hours)
Scope: All ADME and PK/PD properties as well as secondary parameters
(half-life, Cmax, Bioavailability, Cmax)




The limits of PBPK in early drug discovery?
Several barriers identified

Current barriers to use in early discovery
Multiple compounds & limited time

Multiple software needed (e.g., GastroPlus,
SimCYP, Phoenix, etc.)

Lengthy set up & complex data transfers

'l

\ l \ This results in

Limited usage by “non-experts”

Reliance on simplistic equation-based tools
which are easier to implement
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Project overview

Aims:

Faster, simpler, easier and accurate physiologically-based
pharmacokinetic (PBPK) simulations in small molecule teams
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Project overview

This will change the way we discover medicines by:

Bringing PBPK simulations and expertise to early discovery and design
Eliminating manual data transfers and reporting

Providing model-based ADME and PK/PD insights that can lead to
better compound design and selection

Reducing animal experimentation

Enabling predictions with sparse or no data (e.g. Machine Learning)
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A cross functional collaboration

Medicinal

Chemistry

DMPK and M&S

External Collaborators

S+

SimulationsPlus

SCENCE + SOFTWARE « SUCCESS
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CASE STUDY



Example of an a early PoC

Small molecule program
Aim to find suitable molecules that can meet the following criteria

Projected early human dose target <200 mg

Predicted human half-life of 12 - 48 h

HT-PBPK used by the team to generate design insights and find the right
candidates



HT-PBPK insights

Dose and half life predictions in humans
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HT-PBPK insights

Dose and half life predictions in humans
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Predicted

Systematic model verification
Generating confidence in model-based approach

Vss

10 40 100 400 1000 4000 10000 40000

Most of the predictions within 2-3
fold for IV and PO parameters.

CL

PO parameters highly correlated
(good ranking)

400 1000 4000 10000 40000

t1/2

Observed Observed 19



PoC summary
Model-informed drug discovery

HT-PBPK insights >

Better decision making and compound selection based on a
truly multidimensional ADME optimization (e.g., t1/2 vs dose)

0 Good and predictive assays available for the project (e.g., heps)

20



Not just a case study: Evaluation of early predictions

Can we predict PK using PBPK without the learning-confirming cycle (naive

predictions)?

Ca 250 structurally diverse Roche
compounds

Simple research questions (rats)

- How does PBPK predict the IV PK in rats
using in vitro and ML-predicted data
(ADMET predictor)

- How does PBPK predict the oral PK in rats
using in vitro and ML-predicted data
(ADMET predictor)

- How does PBPK modeling predict oral
absorption (when the CL is known)

Naga, D., Parrott N. and Olivares-Morales A (in preparation)
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PBPK predictions for a large number of discovery compounds
Clearance predictions within 3 fold for 63-76% of simulations

IV PBPK predictions: Clearance
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PBPK predictions for a large number of discovery compounds
Oral AUCinfin rats predictions within 3 fold for 50-56% of observations

PO PBPK predictions: AUCInf
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Science and Technology: HT-PBPK modeling vs PBPK
A game changing technology and the core of our project
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[ADMET predictor]

HT-PBPK (ADMET predictor) vs PBPK (GastroPlus)
Excellent reproducibility between the two approaches

In vitro inputs Machine Learning inputs

[ADMET predictor]

[GaétroPIus] [GastroPlus]
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What can be predicted with HT-PBPK?

A

\
Systemic circulation
[ (F) ]—>CL,
Stomach
CL,
| | Portal vein (fa'FG
E Ee
G 4
G
Duodenu .
m Jejunum lleum Colon
Wall f. f a3
a, az2 fa,4
Lumen Release L
% > a “ ——— = Solution
\ Precipitation

Species: rat and human
Dosage form: IR tablet or IV Bolus
Pharmacokinetics
o PK profiles: single dose and steady
state
- PK parameters: AUC, Cmax, t,,,
CLyepatic IVIVE), CL o, from NCA
(renal + metabolic), Bioavailability
(Fb), fraction absorbed (Fa), Vss
(Rodgers-Rowland-Lukakova)
PK/PD
o Dose needed to reach a given
efficacious concentration (Ceff) as:
» Caverage
« Cmax
=« Cmin
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A paradigm shift in the early PBPK strategy

Focus on speed, ranking and compound prioritization from design to optimization

Lead Clinical

Target Assessment Lead identification Obtimizati Candidate
ptimization :

Selection

High-throughput PBPK predictions
Focus on compound optimization and ranking
Rely on predictive models of properties (machine learning) for
design compound
Reduced learn and confirm cycle (at the project level)
Constant PBPK prediction monitoring per project

Tailored PBPK modeling
Single or limited compounds before EiH
Traditional learn and confirm approach still apply (single
species or two species validation)
Further applications (DDls, Biopharmaceutics, etc.)




Implementation of HT-PBPK in pRED
In house app and ADMET predictor service for de novo compounds

Existing compounds

Retrieve and define
compounds Seamless
E E> properties (in vitro | >
and in silico)
Database

I

De novo compound design

ADMET Predictor

ADMET Predictor + In
House App

HT-PBPK simulations for
all compounds in scope
(parameters and PK
profiles)

Project Team

In House App
Read simulation outputs,
enable visualization, data
integration and advanced

analytics

ADMET predictor
service

HT-PBPK simulations

(basic parameters)

&
—

PK database

Model validation
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In house app for HT-PBPK simulations

..............

The App provides a simplified way:

e To interact with the ADMET predictor - The landing page allows the user
to log onto our central data

repository select the data set or
e To retrieve and generate input data set rerun a query.

guided analysis

e To visualize the results
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In house App

Workspaces:

Rowcount

SRN Count

SMILES Count
CEFF_HUMAN_NG_ML(Min/max)
CEFF_RAT_NG_ML(Min/max)

PN

DataSets:

Q Downloading

Trying to downioad

Startng.

v) Show detais

- | Cancel |
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Pre-defined results visualization

The interface to the ADMET o ANAMAMAAARAARR B
predictor is designed according W ;;

to Roche specification. i
Once the data is loaded one | L

is able to filter the data, set
prediction parameters and
select the desired prediction

The data retrieval and cleaning is fully automated, visualization are readily shared to project teams
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Conclusions

« HT-PBPK simulations are now available for small molecule project teams using our in
house data as input (in vitro, ML, etc.)

« The simulation process is seamless by creating an internal workflow and connecting
ADMET predictor to our systems

« Simulations are easy to set up with minimal user intervention

* Pre-allocated visualization allow project teams to gain insights that are not generally
available without PBPK modeling (bioavailability, half-life, Vss, etc.)

 Integration within our data systems allow for almost automatic model development and
evaluation (e.g., PK predictions and learn-confirm cycles)
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Doing now what patients need next



