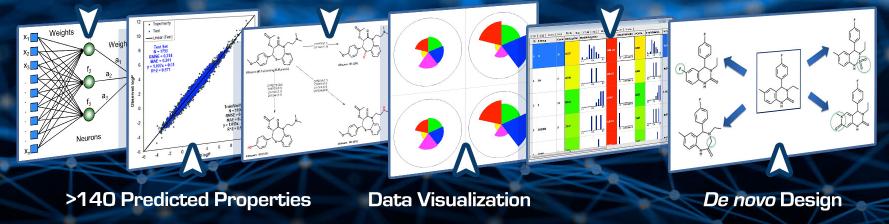
ADMET Predictor 95

ADMET Property Estimation & Model Building

QSAR Model Building CYP Metabolite Prediction R-Table Generation/Analysis



Recent Developments in ADMET Predictor[®] 9.5

© Simulations Plus, Inc., 2019. All rights reserved

Outline

- Introduction to ADMET Predictor
- New Features in Version 9.5
- Software Demonstration

What is ADMET Predictor?

- **Property prediction software** (QSAR/QSPR)
 - Predicts over 140 ADMET properties from chemical structure
 - Identifies ADMET liabilities in the form of numeric risk scores.
- The **HTPK Simulation Module** lets you predict fraction absorbed and bioavailable, as well as other PK parameters, using a virtual human or rat simulation
- ADMET Modeler Module lets you build your own models using our advanced molecular and atomic descriptors

 Also used by Simulations Plus for its commercial models
- **MedChem Studio Module** lets you prioritize lead series, discover SAR trends, and design novel compounds

Prediction Modules

PCB

pKa, Lipophilicity Permeability, Solubility, Pharmacokinetics, Transporters, Clearance Mechanism

Metabolism

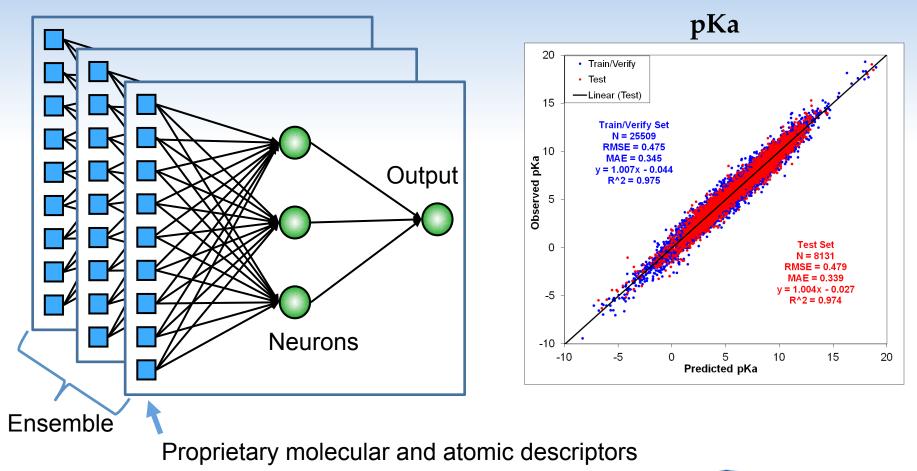
CYP, UGT, AOX Substrate/nonsubstrate, Sites of Metabolism, Kinetics, Inhibition, Total HLM/RLM Clearance

Toxicity Cardiac, Liver, Acute, Carcinogenicity, Sensitization, Environmental

HTPK %Fa, %Fb, Cmax, Tmax, AUC, Optimal Dose

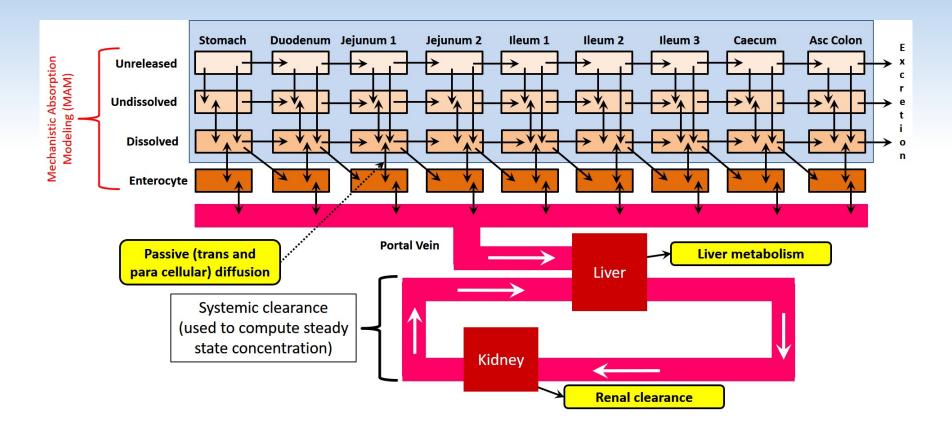
QSAR Models

Most ADMET Predictor predictions are from QSAR models



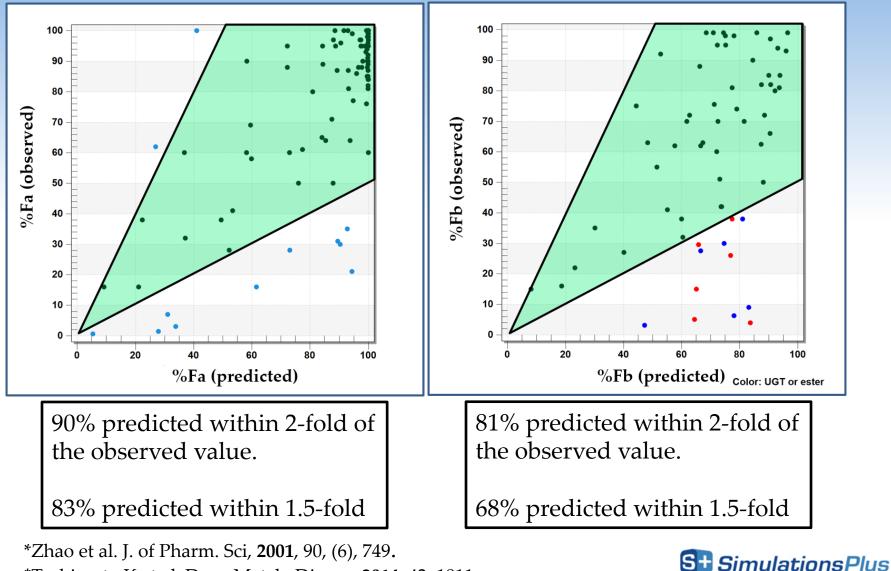
HTPK Simulation Module

ACATTM Model* with Compartmental Simulation



* Advanced Compartmental Absorption and Transit Model

HTPK Simulation Module

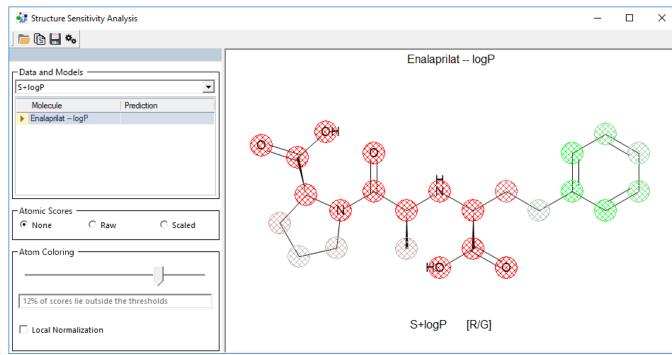


SCIENCE + SOFTWARE = SUCCESS

*Toshimoto K et al. Drug Metab. Dispos, **2014**, 42, 1811.

8

- Structure Sensitivity Analysis
 - Interactive display that shows how the individual atoms of a chemical structure contribute to a predicted property
 - Allows you to see which regions of a compound are predicted to have the most influence on that property



Green atoms predicted to increase logP, and red atoms to decrease logP

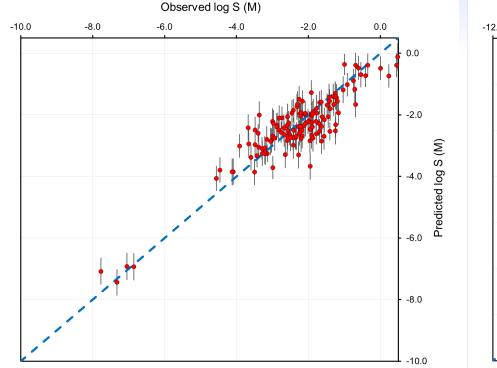
- Structure Sensitivity Analysis (continued)
 - Compliments the Descriptor Sensitivity Analysis (DSA) feature, but is more chemically intuitive
 - Relies on separate models built on a large reference data set using partial least squares (PLS) regression with ECFP keys
 - A new compound is colored according to which ECFP keys it contains and the PLS coefficients of those keys
 - Models include physicochemical, metabolism and toxicity properties; 21 models in total
 - Users can also **build new models** using their own data

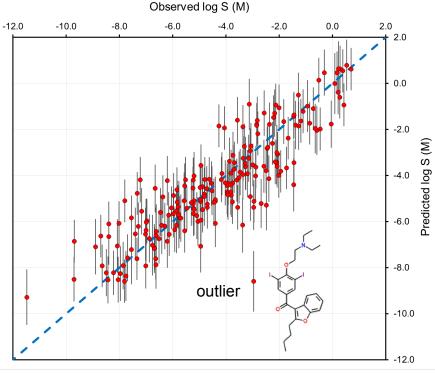
- Regression Uncertainty Analysis
 - Regression-model predictions (built-in and user) now have accompanying uncertainty estimates
 - Compliment our existing classification confidence estimates
 - Uncertainty estimates are computed from the standard deviation of **predictions** from individual models that make up the ensemble (33 models by default)
 - Higher standard deviations lead to higher uncertainty estimates
 - Lower standard deviations lead to lower uncertainty estimates
 - Uncertainties are estimates of the standard deviation of prediction errors

Predicted vs observed solubility for compounds in the <u>test set</u> Compounds with smaller uncertainties tend to have smaller errors

200 Smallest Predicted Uncertainties

200 Largest Predicted Uncertainties





St Simulations Plus SCIENCE + SOFTWARE = SUCCESS

- New Models
 - BCRP substrate/nonsubstrate
 - OCT2 inhibition
 - BSEP inhibition
 - Ames mutagenicity using data from Japanese NIHS
 - AOX substrate/nonsubstrate and sites of metabolism
- Improved Models with New Data
 - Blood-brain barrier penetration (BBB_Filter)
 - Human blood-to-plasma ratio (RBP)
 - Rat plasma protein binding (rat_fup%)
 - Rat liver microsome intrinsic clearance (CYP_RLM_CLint)

- AOX / UGT / Esterase Metabolite Prediction
 - Incorporates relevant substrate and site models
 - Uses customizable rules derived from literature review
- ADMET Prediction Features in MedChem Designer
 - pKa Microstates display
 - Atomic Properties display (atomic descriptors + metabolism)
 - LogD and solubility versus pH profiles
 - AOX, UGT and esterase metabolite generation
 - HTPK features (%Fa, %Fb, Cp-time, etc.)
- Improved Pipeline Pilot and KNIME Workflows
 - Component modernization and simplification

Many more enhancements and convenience features

Acknowledgements

Simulations Plus

- Marvin Waldman
- Bob Clark
- Michael Lawless
- Pankaj Daga
- Aleksandra Mikosz

Workflow Informatics

Chris Lowden

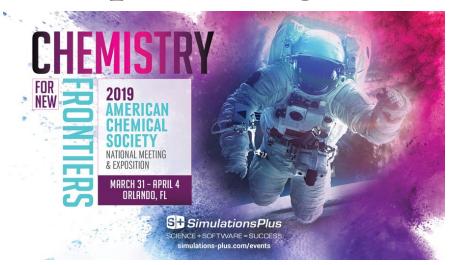
NovaData Solutions

• Mike Mazanetz

david@simulations-plus.com

Connect with us online & live: info@simulations-plus.com simulations-plus.com

Upcoming conference attendance:



Drug Discovery Chemistry

April 8-12 | San Diego, CA | Booth #202 SAN DIEGO CONVENTION CENTER

Marvin Waldman, Ph.D. Robert Fraczkiewicz, Ph.D. Sr. Research Fellow Sr. Research Fellow

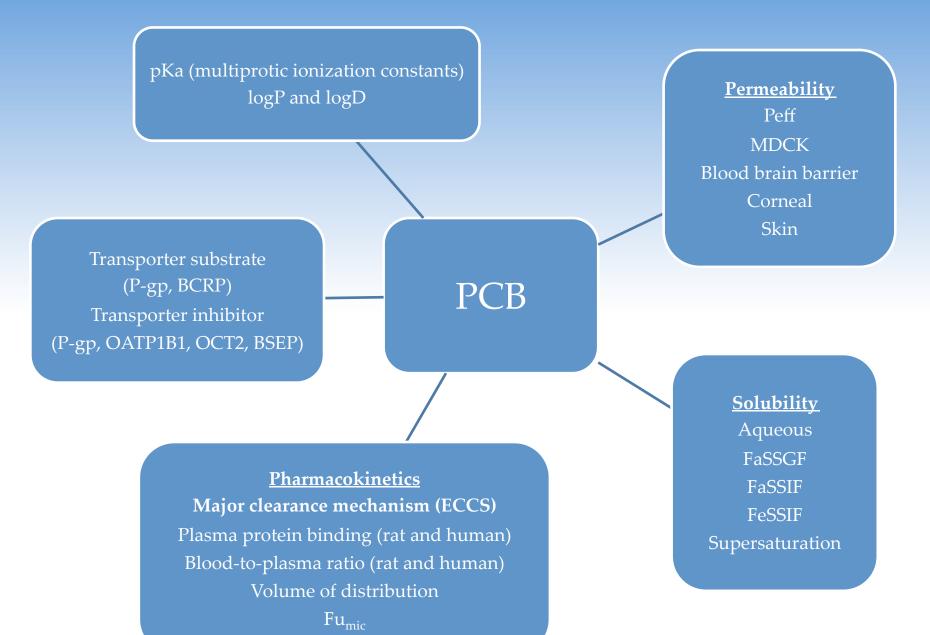
t Fraczkiewicz, Ph.D. Eric Jamois, Ph.D. Sr. Research Fellow Business Development Director

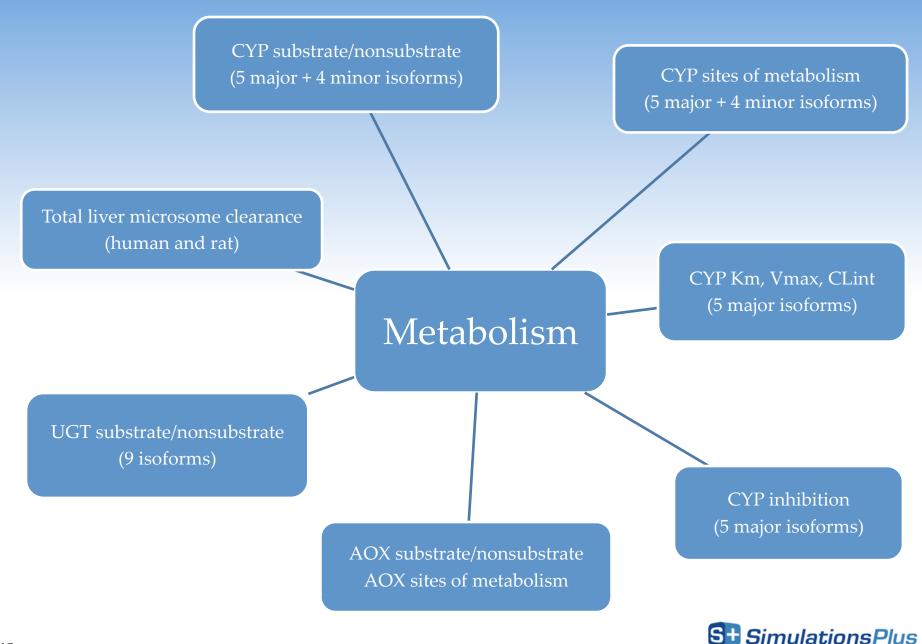
Robert Fraczkiewicz to speak during short course two: "Trends in physical properties of drugs," Monday, April 8, 10AM - 1PM

> S+ Simulations Plus SCIENCE + SOFTWARE = SUCCESS simulations-plus.com/events

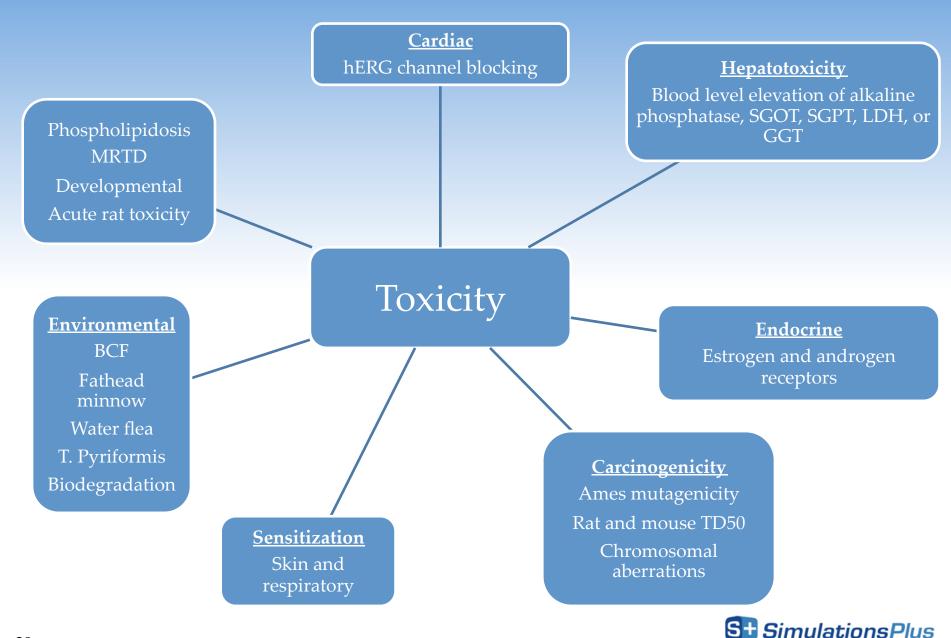
THANK YOU FOR ATTENDING

Additional Slides

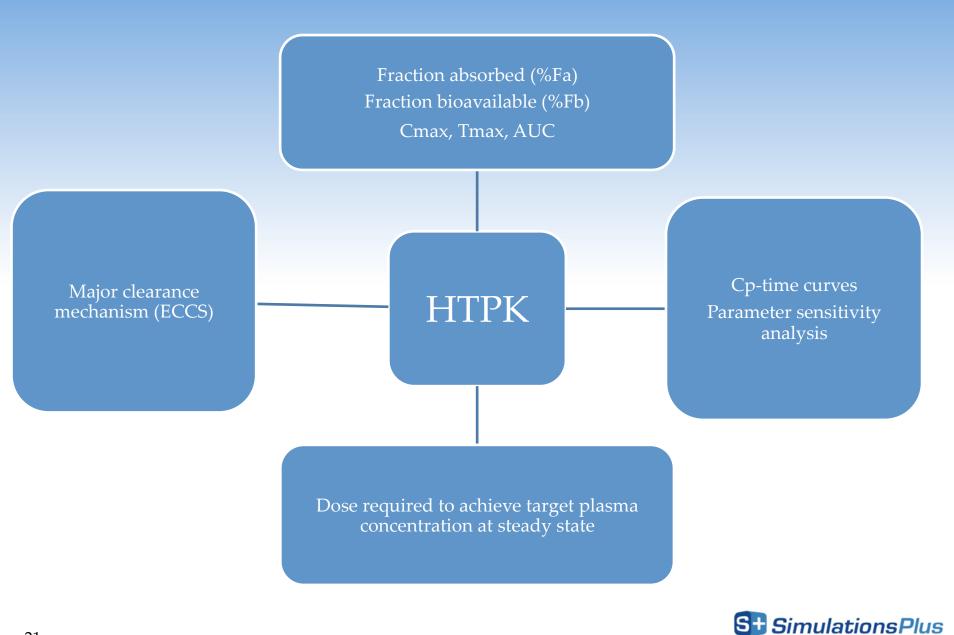




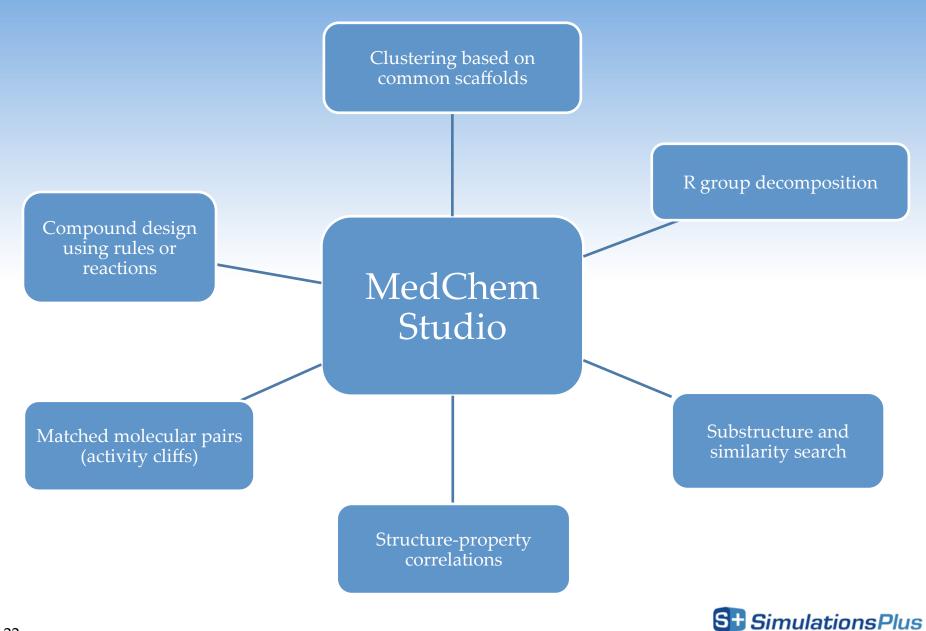
SCIENCE + SOFTWARE = SUCCESS



SCIENCE + SOFTWARE = SUCCESS



SCIENCE + SOFTWARE = SUCCESS

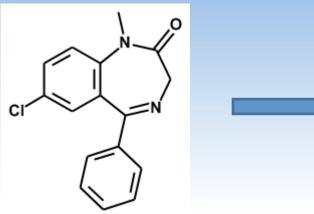


What is ADMET RiskTM?

- A flexible scoring system that evaluates major risks
 - Absorption, metabolism, toxicity and pharmacokinetics
- A customizable set of rules (25 default rules)
 - based on predicted property values for the World Drug Index (WDI)
 - thresholds set to pass most commercial drugs
- Lets chemists evaluate many different risk factors simultaneously with one number
 - letter codes identify which properties exceed thresholds
- Rapidly identify lead molecules that exhibit the best tradeoff between multiple development objectives

Molecular and Atomic Descriptors

2D Structure



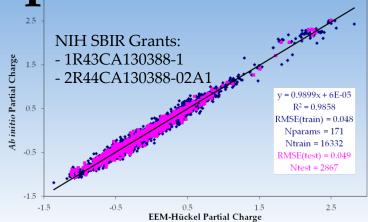
- Molecular descriptors Atomic descriptors

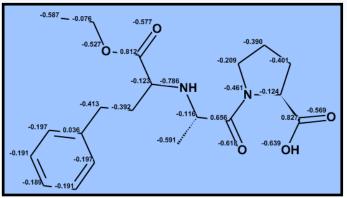
- *Molecular* descriptors are reasonable for modeling bulk properties (logP, solubility, etc.) - Interactions are relatively nonspecific
- Atomic descriptors are required for modeling specific interactions (pKa, metabolism, etc.)
 - Certain atoms are more important than others
 - The compound can change chemically

Atomic Descriptors

Partial atomic charges and reactivities

- EEM-Hückel charge model
 - parameterized from in-house *ab initio* database of partial atomic σ and π charges
 - EEM (Electronegativity Equalization Method) for σ charges
 - Hückel model for π charges
 - Reactivities
 - EEM σ atomic Fukui indices
 - Hückel π frontier orbital atomic densities
- E-State indices
- Local shape descriptors
 - Sheridan's SPAN
 - Atomic volumes
- Others
 - Polarizability, electronegativity, autocorrelation vectors
 - Special proprietary

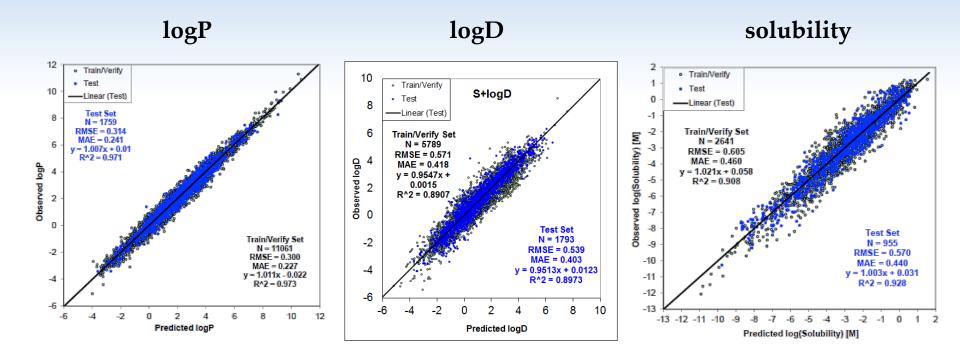




- 148 localized descriptors per atom
 - e.g., partial atomic charge
- Excellent for predicting localized properties
 - pK_a, sites of metabolism, specific binding, etc.

Model Performance

ADMET Predictor models are best-in-class - verified by independent researchers



The user manual shows the performance of every model and describes the data used to build the model

Third Party Validation

Independent comparison of aqueous solubility predictors (Dearden JC. Exper. Opin. Drug Discovery 2006 1:31)

Table 4. Predictive abilities of some commercially available software for aqueous solubility prediction, based on

Software	% Compounds predicted within		r ²	-1		D -4
	. O.C log unit	1.0 log anit	P*	q²	s	Ref.
SimulationsPlus	64.8	91.0	0.82	0.82	0.47	[203]
Admensa	72.1	88.9	0.70	0.74	0.65	[205]
Pharma Algorithms ADME Boxes	59.0	86.9	0.74	0.73	0.62	[206]
ChemSilico	59.8	86.0	0.67	0.65	0.73	[202]
ACDLabs	59.0	85.2	0.73	0.72	0.66	[204]
AlogS	51.6	81.1	0.67	0.66	0.73	[207]
PredictionBase	46.7	81.1	0.48	0.46	1.07	[208]
ESOL	54.9	78.7	0.60	0.59	0.84	[209]
MOLPRO	62.3	77.9	0.44	0.42	1.22	[210]
Absolv 2	44.3	74.6	0.53	0.51	0.95	[206]
QikProp	47.6	73.8	0.57	0.57	0.97	[201]
SPARC*	42.9	73.1	0.73	0.72	0.96	[211]
Cerius ² ADME	37.7	72.9	0.61	0.60	1.02	[212]
WSKOWWIN	41.0	67.2	0.51	0.49	1.17	[213]
ADMEWORKS Predictor	34.4	66.4	0.42	0.39	1.24	[214]
AlogP98	38.5	62.3	0.42	0.40	0.77	[85,21]
CHEMICALC [‡]	23.3	45.7	0.35	0.34	1.96	[215]

*Based on 119 compounds; SPARC could not calculate solubilities of 3 compounds

[‡] Based on 116 compounds, using log P method with calculated melting point, which was not available for 6 compounds; kindly ca	calculated by Prof. G. Schüürmann.
---	------------------------------------

Table 2. Performance of algorithms Star (234) Nostar (50) Zwitterions (18) Other (266) Method MAE Ran MAE Rank MAE AE MAE A S+logP 0.33 Ι 0.7 Ι 0.4 -0.01 0.4 0.39 0.7 0.64 -0.51 0.44 ALOGPS 0.50(0.41 Π 0.95(0.84) I,III 0.87(0.69) -0.8(-0.62) 0.56(0.47) VLOGP⁴ SLIPPER 0.58 0.91 I,III -1.14 0.6 Π 1.2 QikProp 0.58 Π 1.01 III 0.83 -0.48 0.64 CSlogP 0.61 II 0.95 I,III 0.54 -0.06 0.68 0.64 1.01 III -0.97 0.69 II 1.26 TLOGP Absolv 0.65 Π 0.94 I,III 1.98 -1.97 0.61 0.7 Π 1.03 Ш 1.91 -1.9 0.68 QuantlogF QLOGP 0.72 Π 1.19 III 0.9 -0.24 0.79 0.8 III 1.07 III 1.53 0.95 0.8 VEGA Independent comparison of logP predictors (Tetko & Poda, 2007) AAM 1 37 IV 1.87 IV 2.96 1 36

SAMPL6 pKa Challenge (https://en.wikipedia.org/wiki/SAMPL_Challenge)

ID	name	RMSE	
xvxzd	Full quantum chemical calculation of free ener	0.680 [0.546, 0.811]	
gyuhx	S+pKa	$0.730 \ [0.552, \ 0.916]$	
xmyhm	ACD/pKa Classic	$0.774 \ [0.492, 1.034]$	
yqkga	ReSCoSS conformations // COSMOtherm pKa	0.903 [0.685, 1.117]	
nb007	Epik-sequential	0.968 [0.764, 1.175]	
8xt50	ReSCoSS conformations // DSD-BLYP-D3 reranking	$1.071 \ [0.780, 1.356]$	
p0jba	macroscopic pKa prediction from microscopic pK	1.315 [0.687, 1.718]	
37xm8	ACD/pKa GALAS	1.358 [0.844, 1.811]	
hytjn	OE Gaussian Process	1.434 [0.976, 1.832]	
q3pfp	OE Gaussian Process Resampled	1.484 [1.049, 1.865]	
mkhqa	EC-RISM/MP2/cc-pVTZ-P2-phi-all-2par	1.596 [1.150, 2.037]	
2ii2g	EC-RISM/MP2/cc-pVTZ-P2-q-noThiols-2par	1.683 [1.205, 2.131]	
nb001	EC-RISM/MP2/6-311+G(d,p)-P2-phi-all-2par	1.702 [1.063, 2.391]	
35bdm	macroscopic pKa prediction from microscopic pK	1.719 [0.665, 2.338]	
nb002	EC-RISM/MP2/6-311+G(d,p)-P2-phi-noThiols-2par	1.720 [1.080, 2.405]	
ryzue	Adiabatic scheme with single point correction	1.745 $[1.370, 2.101]$	

Predicted by	Trained with	MAE	RMSE	R ²
ACD/Percepta v. 12	15932 lit pKa	0.77	1.05	0.84
ADMET Predictor v. 6.1	14147 lit pK _a	0.73	0.95	0.86
ADMET Predictor v. 7.0	14149 lit pK _a + 19467 Bayer pK _a	0.51	0.67	0.93

The Simulations Plus-Bayer HealthCare pKa Collaboration

(Fraczkiewicz et al., J. Chem. Inf. Model. 2014)

HTPK Simulation Module

- <u>High-Throughput Pharmacokinetics</u>
- Based on GastroPlusTM ACATTM absorption model followed by single-compartment PK model
- Predicts fractions absorbed and bioavailable, and other PK parameters, for a given dose
- Predicts the dose required to achieve a target plasma concentration at steady state
- Human and rat species are supported
- Can use predicted or experimental physiological parameters as inputs

HTPK Simulation Module

