Population Pharmacokinetics and Exposure–Response Analyses for Abatacept in Juvenile Idiopathic Arthritis

Xiaohui Li,¹ Julie A Passarell,² Kuan-ju Lin,² Amit Roy,¹ Bindu Murthy,¹ Ihab G Girgis¹

¹Bristol-Myers Squibb, Princeton, NJ, USA; ²Cognigen Corporation, a SimulationsPlus Company, Buffalo, NY, USA

Introduction

- Polyarticular-course juvenile idiopathic arthritis (pJIA) is the most common chronic rheumatic disorder in children and one of the leading causes of childhood-acquired disability.
- Treatment with biologic (b)DMARDs is now well established, leading to improved clinical outcomes for patients with JIA.²
 - Abatacept has a mechanism of action that is fundamentally different from that of other bDMARDs, with a proven efficacy and safety profile in pJIA.²
- Abatacept, a selective T-cell co-stimulation modulator, is approved for the treatment of adults with moderately to severely active rheumatoid arthritis (RA) and can be administered as either weight-tiered IV (~10 mg/kg/month) or fixed-dose SC (125 mg/week) dosing.³
 - > The exposure-response (E-R) relationship established in JIA and adult RA has demonstrated that a steady-state trough concentration ($\mathsf{C}_{\mathsf{minss}}$) threshold of 10 µg/mL provides a near-maximal efficacy response
- In addition, abatacept was approved in the US in 2008 (IV formulation; 10 mg/kg monthly) for use in pediatric patients aged ≥6 years with moderately to severely active pJIA.4
- In 2017, based on the analyses presented herein, the weight-tiered SC dosing (10-<25 kg, 50 mg; 25-<50 kg, 87.5 mg; ≥50 kg, 125 mg/week) received approval in the US for use in children aged ≥ 2 years with moderately to severely active pJIA.³

Objectives

Population pharmacokinetics (PPK) and efficacy E–R analyses of abatacept were conducted to determine whether the proposed weight-tiered SC regimen⁵ provided near-maximal efficacy by achieving the target exposure and was therapeutically comparable to the IV 10 mg/kg/month regimen in patients with pJIA

Methods

- Combined data from studies with IV or SC abatacept were analyzed to assess clinically relevant exposure outcome measures applicable to both formulations.
- The PPK model was developed with data from 13 Phase II/III studies in RA (11 studies; n=2213) and pJIA (patients aged 2-17 years; 2 studies; n=389). A similar PPK analysis was conducted with data for the cohort of 2–5-year-old patients with pIIA excluded (data not shown).
- The E-R model for the American College of Rheumatology pediatric scores (pllA-ACR30/50/70/100 responses as an ordered categorical efficacy endpoint) at Month 4 was developed with data from two Phase III studies in patients with pJIA (aged 6–17 years; n=357) for whom summary measures of abatacept exposure determined by the PPK analysis that excluded the 2-5 year pJIA data were available.
- > Predefined relevant covariates investigated in the PPK and E–R analyses were:

PPK analysis

- Continuous covariates at baseline: age, body weight, albumin, calculated glomerular filtration rate, serum creatinine, total bilirubin, tender joint count (TJC) and swollen joint count (SJC)
- Categorical covariates: sex (male vs female), race (white vs non-white), disease (JIA vs RA), baseline disease duration ($\leq 2, 2-5, >5-10$ and >10 years), methotrexate (MTX) use (yes vs no) at baseline, corticosteroid use (yes vs no) and NSAID use (yes vs no) at baseline.

E-R analysis

- Continuous covariates at baseline: age, body weight, TJC, SJC, C-reactive protein and Physician Global Assessment of disease activity
- Categorical covariates: sex (male vs female), race (white vs non-white), administration (SC vs IV), prior anti-tumor necrosis factor- α use (yes vs no), JIA category (persistent oligoarthritis, systemic arthritis, and all other subtypes vs polyarticular rheumatoid factor [RF]+ and polyarticular RF-), immunogenicity (positive vs negative), baseline MTX use (yes vs no), corticosteroid use (yes vs no) at baseline, NSAID use (yes vs no) at baseline and disease duration ($\leq 2, 2-5, >5-10$ and >10 years).
- In the E-R analysis, PPK model-predicted exposures were: steady-state peak, trough and time-averaged concentrations.

E-R analysis

- A total of 357 (91.8%) patients aged 6–17 years were included in the E–R analysis.
- Cminss was the best measure for predicting the JIA-ACR response using a proportional odds model
- The final JIA-ACR model was a proportional odds model with a log linear function of C_m ins for both IV and SC administration. Final parameter estimates are presented in Table 2.
- No covariates were significant predictors of the probability of a JIA-ACR response at Month 4
- > The VPC showed that the majority of the observed proportions of responders in each quartile of C_{minss} fell within the prediction interval for each JIA-ACR response category (Figure 3)
- The cumulative probability (log odds) of response increased in proportion to log-transformed C_{minss} and JIA-ACR30 approached a plateau for $C_{minss} \geqslant \! 10 \, \mu g/mL$ (Figure 4)
- Compared with 10 mg/kg IV once-monthly dosing, abatacept weight-tiered SC weekly dosing provided a comparable and approaching maximal response for IIA-ACR30 at Month 4.

Table 1. Parameter Estimates of the Final PPK Model Fitted to Expanded Dataset of RA and JIA Studies Including Data From the 2-5 Years Cohort

Parameter	Final parameter estimate		Inter-individual variability residual variability	
	Typical value	%RSE	Estimate	%RSE
Absorption rate constant, L/h	0.00898	14.6	0.732	40.2
VC, L	3.36	1.49		
Power of weight on VC	0.605	7.57	0.0504	15.0
Power of age on VC	0.116	23.5		
CL, L/h	0.0200	2.07	0.0642	5.45
Power of weight on CL	0.772	2.68		
Power of GFR on CL	0.282	6.57		
Power of albumin on CL	-0.780	9.46		
Power of SJC on CL	0.0797	12.2		
Exponent of NSAID on CL	0.0825	16.5		
Exponent of female sex on CL	-0.0639	27.1		
VP, L	4.05	4.46	0.184	14.6
Power of weight on VP	0.679	6.27		
Intercompartmental CL, L/h*	0.0269	8.40	NE	NA
Bioavailability of SC formulation	1.63	7.42	0.818	19.9
Proportional residual error	NA	NA	0.0553	3.28
Additive residual error	NA	NA	0.00165	53.8

lity = 1 / [1 + exp (-1.63–0.818)] = 92.04%

oavailaon..., e; GFR=glomerus ics: RSE=relative standard e

Table 2. Parameter Estimates of the Final Model for Probability of JIA-ACR Response

Figure 4. Cumulative Probability of JIA-ACR Response at Month 4 Versus Cmins

Figure 3. Visual Predictive Check of the Final JIA-ACR Model

- Both the PPK and E-R models were evaluated using visual predictive checks (VPC).
- Stochastic simulations were performed using the final PPK and E-R models to simulate expected distributions of abatacept exposure measures and the probability of JIA-ACR response at 4 months.

Results

PPK analysis

- A total of 12,226 (73.5%) samples were included in the PPK analysis, 129 of which were from patients aged 2–5 years
- Abatacept PK were characterized by a linear two-compartment model with either zero-order IV infusion or first-order SC absorption, and first-order elimination (Table 1).
- > Baseline body weight was the only significant covariate considered to have a clinically relevant impact on abatacept exposure. Age and sex (corrected for body weight) and concomitant medications (including MTX, corticosteroids and NSAIDs) did not influence abatacept clearance (Figure 1).
- The prediction-corrected VPC showed that ~90% of the observed abatacept concentrations were within the 90% prediction interval range (Figure 2).
- SC weight-tiered abatacept doses achieved C_{minss} that exceeded the target exposure for near-maximal efficacy (C_{minss} ${\geq}10~\mu g/mL$).

Parameter	Estimate (RSE%)			
Intercept for JIA-ACR30 (logit)	1.13 (11.2)			
Intercept for JIA-ACR50 (logit)	-0.598 (14.3)			
Intercept for JIA-ACR70 (logit)	-0.794 (11.6)			
Intercept for JIA-ACR100 (logit)	-2.03 (8.78)			
Slope for log(C _{minss}) (1/[ug/mL])	0.678 (16.4)			
Minimum value of the objective function=1039.4				

=steady state trough concentration: IIA=iuvenile idiopathic arthritis: RSE=relative standard erro

References

- Beukelman T, et al. Pediatr Rheumatol Online / 2017;15:30, doi:10.1186/s12969-017-0160-6
- Stoll ML, Cron, RQ. Pediatr Rheumatol Online / 2014;12:13, doi: 10.1186/1546-0096-12-13.
- Bristol-Myers Squibb, Orencia (abatacept) US prescribing information, Available at: http://packageinserts.bms.com pi/pi_orencia.pdf. Last updated 2017. Accessed August 1, 2017.
- Ruperto N, et al. Lancet 2008;372:383-91.
- 5. Li X. et al. ACoP 2016. Bellevue. WA.

Acknowledgments

This study was sponsored by Bristol-Myers Squibb. Professional medical writing and editorial assistance was provided by Claire Line, PhD, at Caudex and was funded by Bristol-Myers Squibb.

Disclosures

XL, AR, BM, and IGG: employees of, and hold stock options and/or bond holdings in, Bristol-Myers Squibb. JAP and KL: employees of, and hold stock options and/or bond holdings in, Cognigen Corporation, a SimulationsPlus Company, Buffalo, NY.

	P (JIA-ACR70)	P (JIA-ACR100)
	Weight-tiered SC	10 mg/kg IV
cted probabil	ity of JIA-ACR response	e
the grouped	data and associated o	observed probabilities for each
standard err	ors of the observed pro	oportions
ne individual	Cminss for JIA-ACR respo	nders
idiopathic arth	itis; P=probability	
	ted probabil the grouped standard erro ne individual idiopathic arthr	Weight-tiered SC ted probability of JIA-ACR response the grouped data and associated or standard errors of the observed pro- e individual C _{minus} for JIA-ACR respo- idiopathic arthritis, P=probability

Conclusions

- The final PPK model adequately described abatacept concentration-time profiles for patients with RA and those with pJIA (including patients aged 2-17 years).
- A proportional odds model with a log linear function of C_{minss} adequately described the E-R relationship for JIA-ACR in patients with pJIA administered IV or SC abatacept.
- > The PPK and E-R analyses demonstrated that the proposed weight-tiered SC abatacept dosing regimen provides near-maximal efficacy (JIA-ACR30) by achieving the target exposure of $C_{minss} \! \geq \! 10 \; \mu g/mL$ and is therapeutically comparable to the IV abatacept regimen in pJIA.