

GastroPlus®

Part I: Basic model considerations & food effect predictions

Jim Mullin

Ke Szeto

S+ SimulationsPlus 📃 Learn More! simulations-plus.com/gastroplus

BCS predicts the likelihood and direction of a food effect 60 – 70% of the time.

Table I. Relati	ionship Between Food Ef	fect on the Extent of Abs	sorption (AUC) and BCS	Classification of Compou	nds
Food Effect/BCS	Class 1	Class 2	Class 3	Class 4	Total
Negative	9 (30%)	0 (0%)	14 (61%)	1 (9%)	24
No effect	20 (67%)	8 (29%)	7 (30%)	2 (18%)	37
Positive	1 (3%)	20 (71%)	2 (9%)	8 (73%)	31
Total	30	28	23	11	92

The number of compounds in each BCS class for a specific food effect category is listed and the percentage is provided in the parentheses.

- 67% of Class I drugs had **no** food effect
- 71% of Class II drugs had a **positive** effect
- 61% of Class III drugs had a **negative** effect
- 73% of Class IV drugs had a **positive** effect

Based on maximum absorbable dose (MAD), dose number, and log D. Gu CH, Pharm. Res. 24 (6):1118 (2007)

The AAPS Journal, Vol. 13, No. 1, March 2011 (© 2010) DOI: 10.1208/s12248-010-9250-9

Utility of Physiologically Based Absorption Modeling in Implementing Quality by Design in Drug Development

Xinyuan Zhang,¹ Robert A. Lionberger,^{1,2} Barbara M. Davit,¹ and Lawrence X. Yu¹

GastroPlus simulations of fed and fasted: PO 200, 300, & 400 mg Carbamazepine

		Suspe	nsion	IR t	ablet	XR t	ablet	XR capsule		
Parameters		Obs.	Pred.	Obs.	Pred.	Obs.	Pred.	Obs.	Pred.	
Dose (mg)		200		400		400		300		
$C_{\rm max}$ (ng/mL)	Fasted	3066.7	2914.6	3610.1	3713.7	3005.2	3105.2	2066.1	2120.8	
	Fed	2580.0	2506.9	5920.0	5501.2	3329.9	3786.6	2661.9	2798.5	
$AUC_t (\mu g \times h/mL)$	Fasted	166.6	163.3	279.8	301.6	270.4	263.7	194.3	190.2	
	Fed	165.2	152.9	401.3	348.6	286.1	288.6	221.1	222.2	
AUC _{inf} (µg×h/mL)	Fasted	179.8	177.3	298.6	330.0	285.8	272.2	226.4	203.8	
	Fed	180.7	166.2	444.9	379.3	304.7	297.5	246.7	237.0	
$T_{\rm max}$ (hr)	Fasted	1	1.45	24	16	24	28.9	26	20.98	
	Fed	4	3.66	12	4.8	24	16.4	15	17.8	
POT_{20} (hr)	Fasted	[0.6, 8.5]	[0.8, 10]	[3.7.41]	[2.9.40]	[10.42]	[13,44]	[8.2,54]	[8.9,48]	
	Fed	[1.1,16]	[1.4,16]	[3.5,28]	[2.3,19]	[8.1,42]	[10,34]	[7.3,44]	[8.8, 39]	
F_{a} (%)	Fasted	N.A.	99.9	N.A.	93.0	N.A.	71.6	N.A.	76.6	
	Fed	N.A.	99.9	N.A.	99.8	N.A.	78.2	N.A.	89.0	
Correlation	Fasted	0.956		0.975		0.974		0.977		
coefficient (R^2)	Fed	0.940		0.876		0.954		0.991		

Table III. Comparison of Predicted vs. Observed Mean Plasma PK Parameters

 POT_{20} peak occupancy time, time span over which the concentration is within 20% of C_{max} ; F_a fraction absorbed; N.A. not available

Example: Class II Drug – impact of particle size changes under fasted vs. fed conditions

Fig. 7. PK profiles sensitivity to the mean particle radius is different under fasted and fed state. a IR suspension, fasted state; b IR suspension, fed state. Legend in (b) is also applied to (a)

Cmd3

(basic pKa = 4.2, log P = 6.6, FaSSIF = 1.3 mg/mL)

1.5- to 2.4-fold increase in AUC under fed conditions due to increased solubility at higher bile salt concentrations

What changes are accounted for between fasted and fed state models in GastroPlus?

Fed State – GI Physiology

6 (astroPlus(TM)	: AZDO8	365-VL.	mdb (C	:\Doc\Vi	era1\De	s\GPv.	\GP8.0	\GP8\	\)									
File	ile Edit Database Simulation Setup Controlled Release Tools Modules (Optional) Help																		
	Compound Gut Physiology-Hum Pharmacokinetics Simulation Graph Compartmental Parameters																		
ſ	compartment	al Para	meter	S							ΓE×	crete all un-a	absorbed dru	a at the en	d of gut trar	nsit time			
			Hu	mPUIm	ipk soln.				Heset /	All Values	🗆 Ze	ro-order gasl	tric emptying	-	-				
			1		1 स ्य 1	Comp	artment D	ata							Enzyme a	and Transpor	ter Regiona	al Distributions	
	Compartment	Peff	ASF	-	Time (h)	(mL)	Length (cm)	Kadius (cm)	SEF		Pore R (A)	Poros/L (cm^-1)	Comp. Type	3A4 Expr	JA4 Turn				
	Stomach	0	0.0	4.90	1.00	1000.0	30.00	10.00	1.000	0.0	2.200	2.580	Stomach	0.0	5.0E-4				
	Duodenum	0	2.630	5.40	0.26	48.25	15,00	1.60	4.235	14.44	10.41	48.64	Intestinal	2.09E-3	5.0E-4				
	Jejunum 1 Leiunum 2	0	2.616	0.40	0.95	1/5 0	62.00	1.50	3.949	12.02	9.640	38.90	Intestinal	3.26E-3	5.UE-4				
	Jejunulli Z Ileum 1	0	2.610	6.60	0.76	108.5	62.00	1.34	3.403	7 280	0.400 7.160	26.03	Intestinal	3.26E-3	5.0E-4				
	lleum 2	0	2.574	6.90	0.33	79.48	62.00	1.01	2.569	5.990	5.920	9.540	Intestinal	1.03E-3	5.0E-4				
	lleum 3	0	2.513	7.40	0.31	56.29	62.00	0.85	2.109	0.730	4.680	4.896	Intestinal	1.03E-3	5.0E-4				
	Caecum	0	1.416	6.40	4.50	52.92	13.75	3.50	1.790	0.0	3.920	2.915	Colon	3.1E-4	5.0E-4				
	Asc Colon	0	3.044	6.80	13.50	56.98	29.02	2.50	2.480	0.0	3.500	3.220	Colon	3.1E-4	5.0E-4				
										$\mathbf{\nabla}$									
	C1-C4 : 0.	06944		0.43	028	0.1	2147		0.4663	32						Qh (L	/min):		1.4
	Physic	ology: [luman - F	Physiologi	cal - Fed						-			Percent	Fluid in Sl	: 40		Colon: 10	
-																			
ſ	Main c	han	geo	: he	twee	n F	aste	sd a	nd	Fed	stat	Þ٠							
l '			600				usic	.u u	IIG	I Cu	Jui	C .							
4 0	– Hig	ghe	r st	om	ach ۱	/olu	me												~
1	- Changes in pH (stomach and upper SI)																		
F	- Longor gastric omntving																		
	- Longer gastric emptying																		
	- Hig	zhe	r hi	les	alt c	onc	entr	atic	ons										
	יייצ 	C	. ~ .				, ,												
	– Hig	ghe	r liv	/er	bloo	d flo) w (nee	ds '	to be	e ma	anua	lly c	han	ged	with	PBPK	(mode	els)
							•								<u> </u>				,

Solubility – Bile Salt

To account for physiological 'distribution' of bile salts, GastroPlus uses published equation based on concentration of bile salts in media and compound's affinity to bile salt micelles

Built-in Fed Physiologies for Different Meal Types

S+ SimulationsPlus

SCIENCE + SOFTWARE = SUCCESS

[Ga	stroPl	us(TM):	GastDe	mo0.mdb	(C:\Users\	jmullin\D	ocum\C	odeR\Ga	str\)					<		Link ga	stric	emptyi	ng tin	ne to	meal
<u>F</u> ile <u>I</u>	<u>E</u> dit	<u>D</u> atabas	e <u>S</u> im	ulation Se	tup Con	trolled <u>R</u> e	lease To	o <u>l</u> s Mo	dules (Opt <u>i</u> ona) <u>H</u> elp		~				calorie	S				
	<u>C</u>	ompound			Gut Phys	siology-Hu	ա [Ph	armac <u>o</u> kinetics		Simulation		<u>G</u> raph		Ł		-				
	mpar	tmente	al Para P	ameters ropranolol	HCI			Reset A Values		ete all un-absorbed -order gastric empty	drug at the end of g	ut transit time				 Accour bile sal 	nt for It con	effect of centrat	of fat ion	conte	nt on
				Co Transi	mnartmen	it Data	Dadius	T 1	Dila Cali	Enzyme a	nd Fransportar H	egional Dist	ibutions			-					
F	Peff	ASF	рH	Time (F	(mL)	E Length (cm)	Kadius (cm)	SEF	(mM)						2 Eo	d State Model				×	
0		0.0	4.90	2.45	978.5	29.19	9.87	1.000	0.0						g re					^	
0		2.721	5.40	0.20	44.57	14.55	1.56	4.235	22.28					E	2 ha	tate Model	د ul				
0		2.668	5.40	0.94	166.6	60.26	1.48	3.949	18.09						cu J		eraulq			•	
		2.665	6.00	0.74	131.0	60.26	1.32	3.405	14.99						Maa	Colorian Loop or		°∕ ⊑⇒tin k	laal 🗖		
		2.640	0.00	0.00	75.35	60.26	1.10	2.569	7.093						мса	[233.68	8	~ 1 at 111 P	1 ca i 3	0.00	
		2.589	7.40	0.29	53.57	60.26	0.84	2.303	1.049							nt gastria transit l	time of 1	00 hz			
		0.352	6.40	4.36	50.49	13.50	3.45	1.790	0.0						une	ni yasulo uansii (.00 m.			
0		0.823	6.80	13.07	53.55	28.35	2.45	2.480	0.0					C	urrei	nt duodenum bile	salt con	centration is	14.44 ml	м.	
																		Cancel		ок	1
						_ _														_	1
(C1-C4:	0.0694	4 0.4	13028 0	.12147	0.46632	Fed	Meal Optio	ns	D	u Fluid in Clu Iro	QI. (L.Ii).	Color: 10	1							
	Phy	siology:	Humar	- Physiolo	gical - Fed					Percen	it Fluid in SI: [40		Lolon: [10		Fe Fe	ed State Model			- C	ı ×	
	ASF	Model:	Opt log	jD Model S	A/V 6.1				-												-
														F	ed S	State Model 🛛 🔃	efault			-	
Discolory	nut cal	-	an ADM	ET Dradiat	C 1									4		De	efault oor Dofiner	I Est and Calor	00	^	
Dioreiev	ancsor	ubilides fr	OMADM		01 VO. 1									1	Mea	al Calories 23 FC	DA Breakfa	ast Meal	63		
																Lo	ow Fat - Lo ow Fat - Mo	w Calorie Meal Inderate Calorie	Maal		
															Curre	ent gastric tran:	ow Fat - Hig	gh Calorie Mea			
														< C	Curre	ent duodenum t M	oderate Fa oderate Fa	it - Low Calorie it - Moderate Ca	Meal alorie Meal	~	
pKa Ta	ble log	jD: Struc	t-6.1	Diss Moo	lel: Johnson	n Part	Size-Sol: O	N BileS	alt-Sol: ON Diff:	DN ConstRad: 0	ON Precip: Time	Ppara: OFF	EHC: OFF ACAT:	Ce 🖉				<u>C</u> ancel		<u>о</u> к	Ī

9

Adjusting Fed State Based on Calories and Meal Volume

Gastric Emptying vs. Meal Volume

- Meal value is not well correlated with emptying time
- Gastric Emptying is linearly related to calories and can be slightly modified by meal type (fat, protein, carbohydrates)
 - Smaller impact and not currently considered due to lack of data

Adjusting Fed State for Biliary concentration

Figure 3. Plot of the % gall bladder volume change with time for healthy volunteers after they consumed each of the four milk-based beverages of increasing fat content in Study 2. Values are mean \pm s.e.m., n = 21.

¹¹ L Marciani et al. Eur J of Clin Nutr (2013) 67, 1182-1187

- With increasing fat, gall bladder excretion volume increases
- Gall bladder secretion is mediated by hormone cholecystokinin CCK

Figure 4. Area under the curve (AUC) for plasma cholecystokinin (CCK) for healthy volunteers after they consumed each of the four milk-based beverages of increasing fat content in Study 2. Values are mean \pm s.e.m., n = 17. ^aSignificant difference versus 1.5g fat drink (P < 0.05); ^bSignificant difference versus 1.5g fat drink (P < 0.01).

Results of Dynamic Bile-Salt Model

- Assumptions, 3 meals and fed-state occurs for 3 hours duration
- Then the bile production rate was fit to make fold change in bile in feces the same as literature data

			Bile Concentration in Each Compartment (mM)								
	% Fat	Fold Change Bile in Feces	Duodenum	Jejunum1	Jejunum2	lleum1	lleum2	lleum3			
Low Fat	10	1.000	8.36	6.83	5.72	3.90	2.74	0.41			
Normal	30	1.476	14.55	11.83	9.84	6.67	4.67	0.69			
Bile High Fat	55	2.072	22.28	18.09	14.99	10.14	7.09	1.05			

Case Study: Axitinib

			Property	Value
o N			LogP	3.91
S S			рКа	1.71, 4.5 (Base) 11.68, 10.84 (Acid)
	_		Reference solubility Exp Sol.	1.48E-3 @ pH 7.02 1.841 mg/mL @ pH 1.1 0.0002 mg/mL @ pH 7.8
			Solubility Factor	3332.93 (AP) 7600(Exp)
	w, mg/m	0.0	FaSSIF Sol. FeSSIF Sol.	0.001 0.114
	lubili	-1.0-	Human Peff (from Pampa)	2.89
Table 21. Solubility of Axitinib in Aqueous Media as a Funct	ion of pH at 20°C for at k	-2.0-	Blood:plasma concentration ratio (R _{bp})	0.8
Aqueous Solution	Solubility (micro		Plasma protein binding	1
Water pH 7.5	0.2	-3.0-	(Fup)	
0.1N HCl pH 1.1	1841		Particle Size	4 um (SD = 3)
0.02M Sodium Phosphate/0.02M Sodium Acetate pH 2.2	75	-4.0 + + + + + + + + + + + + + + + + + + +		Metabolism
0.02M Sodium Phosphate/0.02M Sodium Acetate pH 2.9	12	0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0	CL (3A4)	21 /hr
0.02M Sodium Phosphate/0.02M Sodium Acetate pH 4.0	1.2	pН		21 L/III 69 I
0.02M Sodium Phosphate/0.02M Sodium Acetate pH 4.4	0.5		vu	00 L
0.02M Sodium Phosphate/0.02M Sodium Acetate pH 5.2	0.3			
0.02M Sodium Phosphate/0.02M Sodium Acetate pH 6.0	0.2		[1] FDA application 20232	24 Clin Pharm and Biopharm Review
0.02M Sodium Phosphate/0.02M Sodium Acetate pH 7.0	0.2		[2] Dodd Journal of Pharn	pacentical Sciences 2019 108 87-101
0.02M Sodium Phosphate/0.02M Sodium Acetate pH 7.8	0.2		[3] Reynor, Drug Metaboli	sm and Disposition (2013): dmd-113.

Axitinib is a case study for gastric emptying because of high permeability and high solubility in gastric. Precipitation doesn't occur even though Axitinib is a low solubility weak base.

Ref

AP

AP

AP [1]

[1]

[2] [2]

[2] [1]

[1]

[3]

[1] [1]

AP, [1]

Case Study: Axitinib Fasted State and Baseline Fed Model

Pithavala, Cancer Chemother Pharmacol (2012) 70:103–112

Gastric emptying is too fast using default values

S - SimulationsPlus

Case Study: Axitinib Fed State Zero Order Emptying

Normal Meal (500 cal) Gastric Emptying = 1.84 hr Fed High-Fat (900 cal) Bile Salt Increased Gastric Emptying = 3.11 hr

¹⁵ Pithavala, Cancer Chemother Pharmacol (2012) 70:103–112

Case Study: High Fat Meal Prediction

New Fed State Meal Option Validation Summary

	Meal Type	Best Fed Model Setting		
	High Fat / High Calorie	Zero Order GP 9.7		
Dolutegravir	Mod. Fat / Mod. Calorie	Zero Order GP 9.7		
	Low Fat / Low Calorie	Zero Order GP 9.7		
Lanatinih	Low Fat / Low Calorie	Default Gastroplus 9.6		
Lapatinio	High Fat / High Calorie	Default Gastroplus 9.6		
Ixazomib	High Fat / High Calorie	Exponential GP 9.7		
Avitinih	Normal Meal	Exponential GP 9.7		
AXILIIID	High Fat / High Calorie	Zero Order GP 9.7		
Internal Study 1	Low Fat / Low Calorie	Zero Order GP 9.7		
	High Fat / High Calorie	Zero Order GP 9.7		
Internal Study 2	FDA High Fat Breakfast	Zero Order GP 9.7		
Internal Study 3	High Fat / FDA Breakfast	Zero Order GP 9.7		
Internal Study 4	High Fat / FDA Breakfast	Zero Order GP 9.7		

 Validation studies indicate zero-order emptying is most predictive of plasma concentration in fed-state

Questions & Answers

S + Simulations Plus 📃 Learn More! simulations-plus.com/gastroplus

GastroPlus[®] Demo – Compound X Positive Food Effect

Research Article

Application of Physiologically Based Absorption Modeling to Formulation Development of a Low Solubility, Low Permeability Weak Base: Mechanistic Investigation of Food Effect

Hefei Zhang,^{1,2} Binfeng Xia,¹ Jennifer Sheng,¹ Tycho Heimbach,¹ Tsu-Han Lin,¹ Handan He,¹ Yanfeng Wang,¹ Steven Novick,¹ and Ann Comfort¹

Received 2 October 2013; accepted 23 December 2013

- Compound X (BCS Class II/IV)
- Lipophilic (log P > 4) and moderate base (pKa 3.2 and 6.2)
- Low (0.001 mg/mL), pH dependent aqueous solubility
- Moderate intestinal permeability (1.48 x 10⁻⁴ cm/s)
- Class II (or IV)
- 70% dose recovered in feces as parent
- Estimated bioavailability of compound is ~30%

Physicochemical and pharmacokinetic parameters for Compound X

 Table II. Physicochemical Parameters, Default Physiological Values,

 and Pharmacokinetic Parameter Used in the Simulation at Various

 Doses

Parameters	Value(s)
Compound parameters	
$M_{\rm w}$: g/mol	>475
cLogP:	>4
pK_a (base):	3.2, 6.2
Dosage:	IR capsule
Solubility (mg/mL):	1.8 (pH 1), 0.3 (pH 2), 0.001 (pH 6.8)
Biorelevant solubility (mg/mL) :	0.023 (fasted); 0.190 (fed)
Mean precipitation time (s) :	450 s (fasted); 2,000 s (fed)
Effective permeability (cm/s):	1.48×10^{-4}
Particle radius of API (µm):	19
Physiological parameters	
Stomach pH	1.2 (Fasted); 1.2-4.9 (Fed)
Duodenum/jejunum pH	6.0-6.4 (Fasted); 5.4-6.0 (Fed)
Ileum pH	6.6-7.4 (Fasted); 6.6-7.4 (Fed)
Cecum-colon pH	6.4-6.8
Stomach transit time (h)	2.0 (Fasted); 5.4 (Fed)
Small intestine transit time (h)	3.3
Cecum transit time (h)	4.2
Ascending colon transit time (h)	12.6
Pharmacokinetics	
First pass extraction (%):	9.0
Blood/plasma ratio:	0.68
Plasma unbound (%):	1.6
Clearance (L/h/kg)	0.070
V_c (L/kg)	0.4
k_{12} (1/h)	0.64
k_{21} (1/h)	0.17
V_t (L/kg)	1.5

Lysosomal Trapping of Lipophilic Cations

Ref: Kazmi F., Drug Metab. Disp. 41(3):897 (2013)

Drug	Log P	Basic pKa	T _{max} (h)
Protriptyline	4.69	10.0	27
Maprotiline	4.7	10.1	16
Mefloquine	3.81	8.52	15
Nortriptyline	4.46	9.65	7.8
Fluoxetine	4.39	9.82	7
Chloroquine	5.11	9.86	6

Activity: Compound X

- 1. **Open** the **"Compound X"** database in your **Examples\Compound X** folder
- 2. Navigate to the **Hum 200 mg IR Cap Fasted** record and review the model parameters. *What is unique about this compound?*
- 3. Let's run a PSA around the fraction unbound in enterocytes. **Click** on the "PSA" button on the **simulation tab** and select "FuEnt" on the **pharmacokinetics tab**
- 4. Need to change Fu,ent to ~3% by going to the Database→4 View/Edit Tables→
 1 View/Edit Drugs Table menu
- 5. Let's modify the **mean precipitation time** in the model to match better with the observed PK data
- Navigate to the Hum 200 mg IR Cap Fed record and enter this new Mean Precipitation Time

Analyzing multiple dimensions: Design of Experiments (DoE) Approach

- Is there an optimal combination of formulation parameters that allow us to reach our target endpoint (e.g., Fa%, Cmax, AUC)?
- Can we "design out" the food effect?

					[Parameter Sensit	ivity Analysis Setup					
Compound:	Hum 200 mg IR Cap	- Fasted			Select	Parameter	Lower Bound	Baseline Value	Upper Bound	Number of Test	Spacing of Param Values
					Parameters	Dose of Hum 200 mg IR Cap - Fa:	st 50	200	1000	5	Logarithmic
Pha	armaco <u>k</u> inetics					Mean Drug Fanicie Radius of Hur	n 0.5		100		Logantrimic
[ACA <u>T</u>	ACAT-Compound	Compound	<u>F</u> ormulation	Run <u>3</u> D PSA						
2	Dosing Hum 00 mg I~ap -	Manufacture Hum 200 mg l									
-	Fasted	~ap - Fasted									
l F	Initial Dose	Particle Shape									
[Dose Volume	Part Radius SD									
[Infusion Rate	Particle Radius									
		Particle Density				J					
		🗖 Oral ResidenceT									
		🔲 Oral Lag Time									
		🔲 Gastric RetT									

Zhang et al. AAPS PharmSciTech 2014 January 17

3D Parameter Sensitivity Analysis

- Parameter sensitivity analysis was run across dose and particle size together
- API particle size reduction may be useful to mitigate the food effect

Zhang et al. AAPS PharmSciTech 2014 January 17

Negative food effects

BIOPHARMACEUTICS & DRUG DISPOSITION *Biopharm. Drug Dispos.* 33: 403–416 (2012) Published online 11 August 2012 in Wiley Online Library (wileyonlinelibrary.com) **DOI**: 10.1002/bdd.1798

Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations: the importance of viscosity

Asma Radwan^a, Gordon L. Amidon^b, and Peter Langguth^{a,*} ^aInstitute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany ^bCollege of Pharmacy, The University of Michigan, Ann Arbor, MI 48109-1065, USA

- Trospium HCl (BCS Class III)
- Hydrophilic (log P = -1.22)
- High (~700 mg/mL)
- Low intestinal permeability (0.07 x 10⁻⁴ cm/s)
- Class III
- Not metabolized
- Estimated bioavailability of compound is ~10%

Trospium Solution Viscosity

Table 2. Physicochemical characteristics of trospium chloride solutions in different media. Except for solubility, determinations were performed once. For solubility, the means of n = 2-3 and the individual values or the standard deviations are reported

Media	Viscosity $\eta(cP)$ at 1.29 s ⁻¹	Density (g/ml)	Solubility (g/ml)	Osmotic pressure (mmol/kg)
SIF	1	0.997	0.786 ± 0.021	95
0.1 N HCl	1	0.991	0.696 (0.703, 0.689)	188
0.5% HPMC (pH = 6.8)	20	0.993	0.667 ± 0.029	115
1% HPMC (pH = 6.8)	100	0.998	0.537 (0.540, 0.533)	125
2% HPMC (pH = 6.8)	1300	1.004	0.415 (0.420, 0.410)	200
Acetate buffer	1	0.990	0.765 (0.759, 0.770)	74
0.5% HPMC (pH = 4.6)	ND	0.991	0.658 (0.624, 0.693)	82
1% HPMC (pH = 4.6)	ND	0.994	0.559 (0.568, 0.550)	84
2% HPMC (pH = 4.6)	900	0.997	ND	86
0.25% guar (pH = 6.8)	15	0.998	0.787 (0.770, 0.803)	105
0.5% guar (pH = 6.8)	140	0.998	0.636 (0.643, 0.628)	106
0.75% guar (pH=6.8)	1350	0.998	0.515 (0.520, 0.510)	109

ND, not determined.

Copyright © 2012 John Wiley & Sons, Ltd.

Biopharm. Drug Dispos. 33: 403–416 (2012) DOI: 10.1002/bdd

Trospium Solution Viscosity

.05). *рн 6.8; **рн 4.6

S+ Simulations Plus science+software=success

Trospium in vitro dissolution

Figure 5. (a) Dissolution profiles for Spasmolyt[®] in viscous HPMC and guar solutions at pH 6.8, 50 rpm in USP-2 apparatus. In all cases values for f_2 were < 50. Mean ± SD, n = 3. (b) Dissolution profiles for Spasmex[®] in viscous HPMC and guar solutions at pH 6.8, 50 rpm in USP-2 apparatus. In all cases values for f_2 were < 50. Mean ± SD, n = 3. (c) Dissolution profiles for Trospi[®] in viscous HPMC and guar solution at pH 6.8, 50 rpm in USP-2 apparatus. In all cases values for f_2 were < 50. Mean ± SD, n = 3. (c) Dissolution profiles for Trospi[®] in viscous HPMC and guar solution at pH 6.8, 50 rpm in USP-2 apparatus. In all cases values for f_2 were < 50. Mean ± SD, n = 3.

Activity: Trospium

- 1. **Open** the **"Trospium"** database in your **Examples\Trospium folder**
- 2. Navigate to the **Human 60 mg Tablet Fasted** record and review the model parameters. **Run PSA** around select parameters to identify the key properties impacting absorption
- Transfer the adjusted Peff to the Human 60 mg Tab 0.5 pct HPMC Fasted record. With the *in vitro* dissolution data, use the Z-Factor model to simulate the PK
- Transfer the adjusted Peff to the Human 60 mg Tab 2 pct HPMC Fed record and switch the gut physiology to the Fed model. With the *in vitro* dissolution data, use the Z-Factor model to simulate PK
- 5. Investigate possible reasons for the slight overprediction of the PK under fed conditions

Negative Food Effect

Figure 8. Simulated and predicted plasma concentration–time profiles for trospium in fasted and fed states in humans

Ion pairing with bile salts modulates intestinal permeability and contributes to food-drug interaction of BCS class III compound trospium chloride

*Corresponding author: Tel: +49 6131 39 24319 Fax: +49 6131 39 25021 E-mail address: <u>langguth@uni-mainz.de</u>

Heinen CA et al. Mol Pharm. 2013 Nov 4;10(11):3989-96

Novartis Negative Food Effect: Caco-2 Experiment in FeSSIF Buffer

Questions & Answers

S + Simulations Plus 📃 Learn More! simulations-plus.com/gastroplus