Prediction of midazolam pediatric plasma profiles for multiple routes of administration using physiologically based pharmacokinetic model

Maxime Le Merdy Senior Scientist, Simulations Plus

GMP Webinar Session 3 PK challenges in pediatric drug development October 9th, 2020

Talking Points

- Owing to ethical and logistical constraints, clinical investigation of drugs in the pediatric population is challenging
- Physiologically based pharmacokinetic (PBPK) modeling because of its ability to facilitate age-dependent extrapolation of data can be a valuable tool in pediatric drug development
- PBPK combined with mechanistic absorption models validated against adult datasets can describe API ADME in pediatrics for multiple routes of administration

Outline:

- Modeling & Simulation for pediatrics? Why?
- PBPK models, a quick ABCs
- Midazolam case study

Pediatric special population

The Federal Food, Drug, and Cosmetic Act (FD&C Act) defines pediatric patients as persons aged 21 or younger at the time of their diagnosis or treatment (09/2019). Pediatric subpopulations are further categorized as follows

https://www.fda.gov/medical-devices/products-and-medical-procedures/pediatric-medical-devices#:~:text=The%20Federal%20Food%2C%20Drug%2C%20and,to%20less%20than%202%20years

Pediatric Study Plans: Content of and Process for Submitting Initial Pediatric Study Plans and Amended Initial Pediatric Study Plans Guidance for Industry

A sponsor who is planning to submit a marketing application (or supplement to an application) for a new active ingredient, new indication, new dosage form, new dosing regimen, or new route of administration is required to submit an iPSP (08/2020) → Section 3 Overview of planned extrapolation to specific pediatric population:

"The sponsor also should discuss use of modeling and simulation to optimize studies to support

extrapolation"

https://www.fda.gov/media/86340/download

Setting the Scene: why modeling?

- Disease definition
- Targets?
- Disease progression
- Pharmacology response
- Other risks

- Target interaction
- Action mechanism
- ADME
- On target binding
- Off target binding

- Efficacious dose
- Right exposure
- Right time
- Interaction
- Route of administration

Modeling!!! Provides a simpler and integrated view!

Modeling Approaches

Bottom-Up Approach

Physiological frame

- Body/organ weight
- Blood flows \geq
- Tissue composition
- Enzymatic abundance
- \succ GIT

Physiologically based Pharmacokinetics

- ✓ Interspecies scaling: FIH
- ✓ Special populations: **Pediatrics**, kidney and liver impaired
- **Drug-drug interactions**
- ✓ Food effect

Drug parameters

Blood to plasma ratio

Enzymatic clearance

Transport clearance

Protein binding

Permeability

 \geq

 \succ

Pediatric physiology Main Pediatric Considerations for PBPK

- Tissue sizes
- Organ flows
- GFR
- Tissue composition
- Hematocrit
- Plasma protein

Pediatric physiology

For infants specify born **at term** or **premature** infant (up to 16 weeks premature) (*this option appears only when age is set to less than 1 year old*)

Some physiological parameters are dependent on both, gestational age and postnatal age (i.e. % body fat, hematocrit, GFR)

VEW PEAR	R Physiology —		<u>B</u> al	ance Model 🛛 😨	t
PEAR Inputs PEAR Outputs					
			Name	Volume [mL]	Perfusion [mL/s]
Species:	Human 🔻		Hepatic Artery	0.0000	1.3644
			Lung	64.0855	15.3410
Population:	American 🔹		Arterial Supply	90.3439	15.3410
•			Venous Return	180.6878	15.3410
Gender:	Male 🔹		Adipose	1598.8074	0.8682
			Muscle	647.9885	0.5275
Age: weeks	- 4 -		Liver	123.6732	3.0838
			ACAT Gut	0.0000	1.3985
Born: 💿 at term (40-week gestation)			Spleen	11.8211	0.3209
→ O premature 2 weeks			Heart	21.7161	0.4303
→ 🖓 😳 pre			Brain	451.0618	6.2445
11-:	F1.70		Kidney	29.2168	2.9186
Height [cm]:	51.78		Skin	153.6539	0.5005
Weight [kg]:	4.06		ReproOrg	1.9578	0.0112
n eigint [kg].	4.00		RedMarrow	43.6925	0.3558
BMI [kg/m ²	2]: 15.1427		YellowMarrow	1.0697	0.0009
	- Contract		RestOfBody	491.2590	0.3999
% Body Fat:	14.5				
CO [mL/s]:	15.341	No	n-perfused bone	[a]: 227.952 (% B₩: 5.615)

Pediatric Intestinal physiology

- Limited information available for some parameters, i.e. gastric emptying or small intestine transit time (dependent on measurement method)
- For some parameters, the information is only qualitative (i.e. underdeveloped villi structure in infants < 3 years old or differences in bile salt composition and site of reabsorption)
- Intestinal Physiology Scaling in GastroPlus:
 - Stomach pH in neonates
 - Stomach volume
 - Intestinal length and radius (and subsequently volume)
 - Transit times
 - Enzyme and Transporter Expression Levels

Pediatric physiology: Enzyme Ontogeny

Tissue Parameters for: Liver 2 da	ays old			
<u>Basic</u> <u>A</u> dvanced	EnzymesIrans	nsporters		
Enzyme Expression (mg-enz/g-tissue) 2C19 6.99E-03 2D6 1.49E-03 2E1 1.70E-02 3A4 2.61E-03 3A5 1.03E-03 3A7 3.35E-01	Expression CV Turnover rate Expression Tissue Parameters for: Liver 6 Basic Advance Enzyme Expression (mg-enz/g-tissue	Expression CV Turnover rate Expression		
Set De <u>f</u> aults Add Enzyme	2C19 1.50E-02 2D6 1.50E-02 2E1 5.40E-02 3A4 1.51E-01 3A5 6.00E-02	Tissue Parameters for: Liver 1 y Basic Advanced	Enzymes Iransporters	
	347 1.27E-01 Set Defaults Add Enzym	Enzyme Expression (mg-enz/g-tissue) Expression (%) 2C19 2.00E-02 106 2D6 1.60E-02 61 2E1 6.40E-02 61 3A4 1.92E-01 119 3A5 7.60E-02 119 3A7 7.00E-02 67	a Intesti (11) $(11$	
11			–2years	s years years years Age

Pediatrics PBPK

→ In 2016, Pediatrics application represented 16% of all applications using PBPK models. However only 2 cases were to support dosing recommendations in US prescribing information.
→ Since then, PBPK knowledge has evolved

Scale anatomy/physiology

Reevaluate

and/or optimize

input

parameters

nulationsPlus

0

No

Yellepeddi et al. Clin Pharmacokinet (2019)

Midazolam case study

- BCS Class 1
- Well absorbed in the gastrointestinal tract
- Oral bioavailability = 35 % due to first pass metabolism
- Half life = 2 hours
- Metabolization by CYP3A4
- All in vitro parameters for volume of distribution and clearance estimation are available

Baseline adult model

- In vitro parameters to estimate Vss (logD, pKa, fup, rbp)
- In vitro CYP3A4 Vmax and KM used to calibrate in vivo clearance
- Kidney clearance set to fup x GFR (minimal pathway)
- Studies population: Adult, 24 years old, 73 kg in average

Overall, the model can describe the observed adult plasma concentration time course following the IV or PO administration of midazolam across a wide range of doses

Pediatric PBPK: population simulation

- In vitro parameters to estimate Vss (logD, pKa, fup, rbp)
- In vitro CYP3A4 Vmax and KM used to calibrate in vivo clearance
- Kidney clearance set to fup x GFR (minimal pathway)
- PBPK physiology set for pediatric population: Age range 1 12 yo
- Dose = 0.1 mg/kg PO

Intranasal administration PBPK

Intranasal administration: adult

- PBPK and mechanistic absorption (ACAT) models were used for simulation
- Intranasal-pulmonary model used to describe the administration of 5 mg

- Pulmonary systemic absorption rate were fitted using the observed data in adult
- Final model could describe the observed plasma PK data

Intranasal administration: pediatrics

- PBPK and mechanistic absorption (ACAT) models were used for simulation
- Intranasal-pulmonary model used to describe the administration of 0.1 mg/kg dose in pediatric subjects (2 years old, 12 kg)
- Pulmonary systemic absorption rates fitted using adult data were used

150 Pediatric - Intranasal	Pediatric	PO (1.2 mg)	IN (1.2 mg)
	% absorbed from the nose	-	65.6
utration	% absorbed from the gut	100	33.9
	% reaching the portal vein	21.2	4.8
Simulation Time (h)	% bioavailable (F)	10.6	68.1

• Final model could describe the observed plasma PK data

Conclusions

- Pediatric study plans are mandatory by health authorities for drug approval
- These authorities recognize the role modeling and simulation can play to address efficacy and safety concerns for pediatric populations
- Because PBPK is based on physiology, these models can be scaled to describe a pediatric population
- PBPK combined with mechanistic absorption models validated against adult datasets can describe API ADME in pediatrics for multiple routes of administration

Thank you!

For More Information:

Visit our website at: www.simulations-plus.com

Email: <u>maxime@simulations-plus.com</u>

