Human-on-a-Chip combined with PBPK modeling
for in vitro/in vivo PK/PD extrapolation
Part Il: PBPK model
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McAleer et al — Scientific Reports 2019, 9:9619

Predict the in vivo PD based
on in vitro PD and in vivo PK
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* Each compartment represents a tissue:

— Specific volume(s) *

— Blood perfusion rate *

— Enzyme/transporter expression levels *
— Volume fractions of lipids & proteins *

— Tissue: plasma partition coefficient (Kp)

* Estimated from drug properties:
— logDvs. pH
—  pKa(s)
— Plasma protein binding
— Blood: plasma concentration ratio
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C.R. ) C
v, % g cp - oy Clw
dt K, ) ™K,

V. : Tissue volume

C; :Drug concentration in tissue

O, : Tissue blood perfusion rate

R,, :Blood to plasma concentration ratio
K , : Tissue to plasma partition coefficient
CL

mt.u

: Unbound intrinsic clearance in tissue
V.o - Metabolismrate intissue - based on unbound intracell conc

/., - Fraction unbound in plasma

Tissue Space
V, Ct, Kp, CLint

SimulationsPlus

SCIENCE + SOFTWARE =SUCCESS



perm = I:)STC (Cect,u - Cict,u) * Vinfiux (Cect,u) ~ Vettiux (Cict,u)

Vict % = perm— Vmetab (Cict,u) —-CL,,..C

int,u ~ict,u
V; : Tissue Volume
C.. : Drug Concentration in extracellular space
C.. - Drug Concentration in intracellular space
Cb, : Drug Concentration in entering blood
Q, : Tissue Perfusion
R,, - Blood to Plasma Ratio
K, : Tissue to Plasma Partition Coefficient
CL,, : Intrinsic Clearance in Tissue
V..o - Metabolism Rate in Tissue - based on unbound concentration
Vs - Transport Rate - based on unbound concentration
PS,. : Permeability-Surface Area Product

Ve, Ce, Kp
»

¥
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* Each compartment represents a tissue:
— Specific volume(s)

Tissue 2 — Media Flow rate
— Enzyme/transporter expression levels

(same as in vivo — needs verification with standard substrate)
Tissue 1 — Volume fractions of lipids & proteins

(same as in vivo — needs verification by predicting distribution of
known compound)

Tissue 3 _ . " -
— Tissue: media partition coefficient (Kp,,cgi.)

* Dependent on drug properties:

— logDvs. pH
- pKa(s)
— Plasma protein binding

— Blood: plasma concentration ratio
SimulationsPlus

6 SCIENCE + SOFTWARE =SUCCESS



e Tissue distribution and metabolism mechanisms — expected to be similar

* Possible binding to materials in HoaC system need to be considered
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* PS.. - initial assumption of constant Specific PS;. (PS;. per mL of tissue volume) -
needs to be verified against test compounds

* Metabolism and/or carrier-mediated influx/efflux - initial assumption of in vitro
expression = in vivo expression - needs to be verified against standard compounds
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Fitted parameters:
e Distribution to Heart tissue

- Fitted Pstc for permeability-limited tissue
* Non-specific binding

Observed data:
McAleer — Sci Reports 2019, 9:9619

Distribution to Liver tissue

Fitted Kp

Elimination by CYP3A4

Km predicted by ADMET Predictor®, Vmax fitted
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Observed data:
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Okerholm — Biopharm Drug Dispos 1981, 2, 185-190
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Kps estimated based on in vitro Kp fitted for Liver
compartment
— Thein vitro Kp,u was scaled to in vivo Kp
— Found the method that most closely predicted the in vivo
liver Kp

Distribution into the Heart scaled from in vitro distribution

(PStc) fitted for Heart compartment
— Assumed Pstc per mL tissue is constant

Fraction unbound in enterocytes predicted in
MembranePlus™

Remaining properties predicted by ADMET Predictor®

Clearance had to be scaled — the results are shown with

in vivo Vmax increased 100x from the fitted in vitro Vmax
— Enzyme activity different than in vivo?
— Different rate limiting process in vitro?
— Impact of significant binding to plates?
— Caused by approximate media flow?
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extrapolation with a PBPK model.

* The use of a PBPK model allows linking the PD effect to the specific tissue
concentration.

* The preliminary simulations showed potential for adequate prediction of tissue
distribution.

* A mechanistic model for HoaC system could be linked with other in vitro assays (i.e.
HLM clearance measurements) to identify and predict impact of individual
processes.
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For further information visit:

https://hesperosinc.com/

https://www.simulations-plus.com/
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Hesperos Overview

Over 20 US patents have been licensed by Hesperos thereby documenting the innovation and
novelty of this platform. This also provides full freedom to operate in this space & a strong
defendable IP position.

Winner of the 2015 London-based Lush mLUSH
Prize for creating an alternative to PRIZE

animal testing for industry. )6‘

Have won multiple SBIR grants including a S2M SUPPORTING
ANIMAL-FREE
Phase Il and recently a $4M phase |IB award to TESTING

Bridge the “valley of death”.

Established R&D contracts with multiple national and international Pharma companies.
Moved into a new 14,100 sq. ft. state of the art facility in August 2019.

Have recruited excellent staff for company, 32 at present.

No products will be offered at this time, only services based on compounds sent to our Orlando
facility.



Clinically Relevant Functional Readouts

Mechanical or electrical readouts of cellular functions such as:

— muscle contraction

— electrical activity from neurons and cardiac cells

— motoneuron > muscle: NMJ physiology and other combinations
— barrier integrity (TEER) and active transport for barrier tissues

Allows functional analysis of cellular health non-invasively for acute, but more
Importantly, for chronic monitoring of human-on-a-chip systems

Reduces substantially, if not eliminates, the need for measuring biomarkers
In these systems for certain organ mimics. Normally need to measure multiple
biomarkers by molecular technigues and put them together to extrapolate
functional activity, with these systems can measure directly.

Allows mechanistic determination of toxicity and for target identification.
Facilitates physiological determination of drug efficacy and safety



Human-on-a-Chip Systems for Disease Modeling HESPERDS
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A. Patterned MEA for electrical

Laser

B. Cantilever-based force measurement
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Stancescu et al, Biomaterials 60:20-30 (2015).
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Morphology and Immunocytochemistry of Patterned and

Non-Patterned Cardiomyocytes in serum-free medium
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Electrophysiology — cardiomyocytes on MCS MEA Conduction velocity
measurement
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Sample Data Evaluation of Cardiac System

Amplitude (u¥)

Amplitude (u¥)
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Basal and Induced CYP Activity Levels of 2D and 3D hepatocyte cultures up to 28 days
in serum-free medium
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Hepatocytes in Serum-free medium at 28 DIV possess reasonable CYP activity levels which are

inducible

C. Oleaga,etal., “A functional long-term serum-free human hepatic in vitro system for drug evaluation,”
Biotechnol Prog, Online first: DOI: http://dx.doi.org/10.1002/btpr.3069 (2020)



HEART-LIVER

Cardiac and liver co-culture in a pumpless microfluidic system
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Simulation-Assisted System Design

Combination of microfluidic computational fludic dynamics (CFD) modeling and electrical-like simulation

3D Model

Cardiac Cantilever Cardiac MEA

Simulation

Flow rates and shear
- stresses on cells

Skeletal Muscle Neuronal MEA
Cantilever

o



Heart-Liver Systems with Recirculating Serum-Free Medium
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Lipophilic Compound Concentration in Systems
5 min to 24 hours

Compound (330 uM) added _
to this reservoir for 100 uM W_lthdrawalofrom
final concentration this reservoir

Simulation of Drug addition to one side with initial
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Chronic 4 Organ System: HPLC-MS

0.2 uM Daily Addition of Terfenadine

X Model ) In Housings
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The measured concentrations of terfenadine and fexofenadine in housing
systems with chronic addition of drug leveled to a steady state
concentration, as predicted by modeling

Equilibrium between removal from feeding and addition + metabolism



PK-PD Relationship Approach

* Previous data from Terfenadine
(Scientific Reports paper) showed a
time between medium concentration
and the FPD elongation

* Similar to monkey data in vivo
* Multi-compartment model

incorporating PDMS adsorption,
medium, and the tissues was

implemented

* A PK model was implemented in that
study to obtain the relationship
between medium concentration and
bioaccumulation in the in vitro systems
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Correlation of In Vitro PKPD Model with In Vivo Animal PKPD
Models

A Guinea Pig B Dog C NHP
Individual ft AUC-based model Individual ft AUC-based model Individual ft AUC-based model
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Since in vivo animal data has been correlated with clinical data we should
be able to correlate our in vitro models with clinical data as well both
retrospectively and prospectively

McAleer et al., Nature Scientific Reports, 9:9619, (2019)



Cancer, Cardiac and Liver System for Efficacy and Tox
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Five chamber reconfigurable multi-organ system. Scale bar is 2 cm. B) Schematic representation of the MPS assembly and design used in the
system 2 study of tamoxifen. Chamber 1 houses hepatocytes on coverslips Chambers 2 and 4 are cardiac cantilevers and MEAs respectively.
Chambers 3 and 5 are for cancer cells SW962 and MCF7. Drugs were applied to Medium Access Port A and initially pass over the liver to mimic
aspects of first pass metabolism. Electrodes are embedded for the option of using broadfield stimulation to elicit contraction.



Tamoxifen, with and without metabolism, and the effect on
cancer viability
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Sentinel Monitoring of Cardiac Function
Cardiac, Cancer, Liver Systems
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System

Liver Function in Housings Cancer, Cardiac, Liver
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4-Hydroxytamoxifen inside the systems did not affect albumin or
urea production after a 24 hour treatment

McAleer et al., Sci. Transl. Med. 11, (2019)
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Neuromuscular Junction (NMJ) Platform

Moton

uron

Muscle

PDMS molded chambers
bonded to glass
coverslips

Two chambers separated
by micro-tunnels

Motoneurons send
axons through tunnels
and form NMJs

Electrical stimulation
and drugs partitioned by
barrier



ectrodes Neuromuscular Junction - Annulospiral
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Monophasic Dose-Response for BOTOX at 0.33 Hz
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Santhanam et al, Biomaterials, 166:64-78 (2018)



A Human-Based Functional NMJ System for
Personalized ALS Modeling and Drug Testing

ALS patient iPSC motoneurons
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Parameters Analyzed

Number of functional NMJs/chamber (before and after extensive stimulation)
NMJ stability (post-NMJ/pre-NMJ)

NMJ function under different stimulation frequencies (0.33 Hz, 0.5 Hz, 1 Hz, 2 Hz)
-- NMJ fidelity (number of muscle contractions induced by MN

stimulation/total number of stimulations)
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Compromised NMJ fidelity in ALS-NMJs
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Increased NMJ fatigue index in ALS-NMJs
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Rescue of NMJ fidelity by DP
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Rescue of NMJ fatigue by DP
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X. Guo,etal., “A human-based functional NMJ system for personalized ALS modeling and drug testing,
Adv. Therapuetics In Press, Online First: DOI: 10.1002/adtp.202000133, 2020)
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In Vitro CNS Model

Efficacy and Toxicity utilizing the

fundamental unit of learning and
memory: long term potentiation




Fundamental unit of long-term potentiation




Patterned Neural Networks on MEAs - Long Term Potentiation (LTP)

Whole-MEA View

* High magnification phase images indicating long-
term pattern conformity and network formation

2a 3 3a

o) 1 4 da 5 5a * 5 network pairs per MEA
= * 45 days in vitro
RUE S L e Spontaneous action potentials recorded on electrodes

Time (ms)

Depolarizing Potentials Recorded from MEAs from paired neural circuits

Ave. Electrode
Signal Recordings




Effects of A8, ,, on Cortical Neuron Spontaneous Firing Frequency

Effects of LTP Induction and AP On Spontaneous Firing Frequency

H Baseline M Post-LTP M Post-Dose

Frequency (Hz)

ABScrambled Condition AB1-42

e LTP can efficiently be induced in cortical neurons grown on MEAs
* Dosing MEAs for one hour with AB, ,, after LTP induction abolishes the LTP effects compared to

AB. rambleq treated MEAs

N=4, nested replicates



Effects of Tau Aggregate on Cortical Neuron Spontaneous Firing Frequency

Effects of LTP Induction and Tau On Spontaneous Firing Frequency

2.5 1 W Baseline M Post-LTP M Post-Dose

N
|

1.5 A

Frequency (Hz)

[EEN
]

0.5 A

Tau Control Condition Tau Aggregate

* Dosing MEAs for one hour with tau aggregates after LTP induction

abolishes the LTP effects compared to tau buffer control MEAs
N=4, nested replicates

J. Caneus, etal., “A Human Induced Pluripotent Stem Cell-Derived Cortical Neuron Human-on-a chip System to Study Ap42 and Tau-induced
Pathophysiological Effects on Long-Term Potentiation,” Alzheimer's & Dementia: Translational Research & Clinical Interventions,

Online First: May 28: (2020) DOI: 10.1002/trc2.12029.



Functional Measurements in 4-Organ Systems
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Liver Module
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Albumin production
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Cardiac Contractile Force
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The cardiac module maintained its contractile properties during the 28 days. (A) Example of spontaneous contractile
activity output and (B) stable contractile activity indicates stable force generation for cardiomyocytes throughout

the 28 day period.
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Muscle Contractile Force
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The muscle module maintained its morphological characteristics for the entire 28 days under flow. (A) Example of muscle
contractile recordings, (B) stable contractile force and (C) time to peak indicates stable function of the myotubes
throughout the 28 day period.



Spike detection Long term Spike rate
display (30s)
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Iterative Data: Drug Concentration

=—Drug ==Upper Limit Lower Limit

Match
S Equations
E Steady state concentration of drug
§ After medium change
Eno.e - c _ CoaaX
S04 - drugssl =1 _ (1 - f)(1 - X)
0.2 f=0.2,X=0.4,C =2 - Right before medium change
0 ' ' ' ' ' c __ CaaaX(1 —f)
0 5 10 15 20 25 drug,ss,F 1 — (1 _ f)(l — X)
Days

Upper and Lower limit follow “Carburization” like curve — exponential
with time constant of
t. = (1-f)(1-X)



Conduction Velocity

Chronic Low-Dose Doxorubicin
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| === Control

0.5 uM Doxorubicin repeated
dose started at day 5 and
continues to day 14

Function starts to decrease between 2 and 4
days of treatment (Day 5 — 7)

| Viability starts to decrease around 4 to 6 days of
4 treatment (Day 9 — 11)
Changes in function precede changes in viability
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Develop an opioid overdose (OD) model using a multi-organ
human-on-a-chip system

Evaluate the acute and chronic effects of OD and Om

Pre-BotC [T treatments such as naloxone
Neurons @ TEE . . . .
B % electrodes Evaluate treatment efficacy and toxicity for cardiac,
§ liver, skeletal muscle, and kidney
=~ AN tubule | Evaluate opioid OD and OD treatments in the
p Y| @ inie presence of recirculating monocytes
| cardiac ‘v.‘ Evaluate opioid OD and OD treatments in the
cantilevers ' . . oy . .
presence of disease comorbidities including
cardiomyopathy and acute infection /

SuUcF UFis D



Expression of stage markers correspondent to Pre-BotC differentiation

B HOX B1 HOX Al
Dapi Dapi

--.

Differentiation of pre-BotC neurons from
hiPSC characterized by
immunocytochemistry. A) HiPSCs stained
positive to pluripotent markers Nanog and
SOX2. Scale bar: 100 um. B) Cells at early
stage of differentiation expressed the set
of rohmbomeric genes correspondent to
the derivative region for preBotC complex
during development: positive to HoxAl,
HoxB1l and HoxD1 but negative to HoxC1.
Scale bar: 100 um. C) Differentiated
neurons plated at low density were
stained positive for the typical preBotC
markers NK1R and MOR. Scale bar: 50 um.

- Successfully differentiated
Pre-BotC neurons from human
iPSC




Patch clamp recordings from iPSC-Pre-Botc neurons:
ATP, Substance P (Sub P) and Somastatin (SST)
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Patch clamp analysis of iPSC-pre-BotC neurons. A) Under gapfree condition, dosing of ATP (100 uM) induced depolarization and burst of

action potential. B) Treatment with Substance P (Sub P) increases iPSC-Pre-BotC neuronal activity. C) Treatment with Somatostatin (SST)
inhibits iPSC-Pre-BotC neuronal activity




iPSC-PreBotc neurons demonstrated reduction of neuroactivity in
response to DAMGO

A DAMGO (+ 5 uM)
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iPSC-pre-BotC neuronal response to DAMGO. A) Patch clamp analysis showed decrease iPSC-Pre-BotC neuronal activity after
DAMGO treatment B) DAMGO dose-response curve for iPSC-Pre-BotC neurons

DAMGQ’s effect:
* Decrease Pre-BotC neuronal activity




Our Multi-Organ MPS Device Supports Recirculating Immune System Cells
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T. Sasserath etal., “Differential Monocyte Actuation in a Three-Organ Functional Innate Immune System-on-a-Chip,” Advanced Science, (2020)



Cornell University

Barrier Tissue Organ Systems |-

Skin in 4-Organ System  Proximal Tubule System Human Blood-Brain Barrier System

- Human proximal tubule cells
grown on membranes under

Rocker platform

continuous flow maintain 201 TighlsunCHaILIGE 5000
,”Q‘ wo— 4000
fr b ‘s 9 conformal monolayer <
§ . . £ 3000
reservair e - Cells stain for kidney cell E s
(g . 1%  marker Gamma-glutamyl P
| keletal MOt .
musdle SAneuron/ o transpeptidase (GGT) 0
) R % .8 - A 0 2 4 6 8 10
’ s - S 2 B Times (days)
Gastrointestinal Tract Barrier System Compound Permeability Comparison
Tight junction staining in 2D and 3D
Primary Human Colon -3 “Caffeine
Epithelial Cells, by knock-in of a 4
telomerase reverse E 5
. (@)
transcriptase (TERT), co- 2 5 o
. . o0
cultured with myoflbrob!a.sts - ng’ . 4y DOYORUBIHn
and 5 nM GSK-3beta inhibitor ¢ 5
o ] 20K
% 200 -8 *70K
= e
o 9 @8 7 s '5 4 3
o4& - LogPpggg in vivo

day0 day12 dayl17 day23 day28



What COULD efficacy mean in terms of regulatory
evaluations?

Allow pre-clinical results to steer and/or limit clinical trial
construction

Reduce the number of people necessary for clinical trials,
especially for Phase lll, by creating human variants to represent
uncommon genome profiles

Allow In vitro clinical trials for rare diseases
Better evaluations for children
Better evaluation for aged individuals

The ultimate precision medicine - individualized disease chips
for each human
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