
Predicted % unbound

Artificial neural network ensemble (ANNE) regression models were constructed using the ADMET

Modeler™ module in ADMET Predictor™. A test set of 102 compounds was created using a

Kohonen map and each model was trained on the remaining 689 compounds. A range of model

architectures with varying numbers of neurons and descriptors was created for each transformation.

The best model for each was selected based on training and test set statistics.

The performance of each model was evaluated for the low range (Fup < 0.1) as well as over the

entire range of binding values. The RMSLE (root mean square log error) [5] is an important

parameter in the low unbound range, as illustrated in the table below.
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compound
S+logP 3.851 3.645
EqualEta 0.162 0.158
T_Dipole 2.39 2.851
VMcGowan 534.82 587.08
T_Grav3 18.686 18.863
FCation 0.695 0.761
F_AromB 0.605 0.447
FAnion 0 0
N_IsolLP 1 1
MaxQ 0.217 0.217

The LOGFup and Logit based models have the best statistics. The LOGFup model performed

best on highly bound compounds (RMSLE 0.57 and 0.62, RMSE 0.077 and 0.104, for LOGFup and

Logit models, respectively), whereas the Logit model produced somewhat better statistics overall

(RMSLE 0.43 and 0.45, RMSE 0.202 and 0.176, for LOGFup and Logit models, respectively). All

regression models showed good predictivity on three external test sets [6-8] and two in-house test

sets (data not shown). Our primary interest was on predicting values for highly bound compounds

well, so the log transformed model was preferred to those obtained for the other transforms.
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Computational models for improved estimation of highly plasma-protein-bound compounds

Plasma protein binding is an important parameter for characterizing the pharmacokinetics of drug

candidates. Binding affinities vary tremendously among compounds, affecting the free fraction in

blood, which consequently affects such pharmacokinetic properties as volume of distribution,

clearance, bioavailability, and elimination. Only unbound drug can interact with target proteins, so

knowing the fraction unbound in plasma (Fup) is especially important for drugs with low Fup and

narrow therapeutic index.

Introduction

Fup values for 791 compounds were collected from literature [1,2] and carefully curated. The data

set spans a broad chemical space, including small drug-like compounds, pesticides used on food,

and high-production volume chemicals. It is somewhat unbalanced in terms of binding, 38% of

the compounds having Fup values less than 0.10. The large number of compounds with low Fup

makes building useful models challenging, which led us to explore four different response

transformations: logarithmic, Box-Cox [3], square root, and logit (for example [4]).
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The LOGFup model was tested on 23 kinase inhibitors from Vasbinder et al. [9], whose measured

% unbound values were not used in the model training. The predicted values are very close to the

experimental ones (RMSE ~2.2% and MAE ~ 1.7%). Descriptor Sensitivity Analysis [10] suggested

that one of the lead compounds in the study could be modified to a lower predicted plasma protein

binding.

This study was undertaken to find the best regression model for estimating Fup by examining four

data transformation techniques, with a particular focus on accurately predicting Fup for highly

bound compounds without compromising the quality of estimations for the rest of the data set.

In some cases, data sets like the one described here can be modeled more effectively by

transforming the response data used to build the model. We compared models using different data

transformation methods in terms of the whole data set as well as the highly bound portion of the

data set.

The computational models developed in this study do a good job of estimating Fup. Overall,

predictions for Fup are slightly better for the Logit model but the LOGFup model performed better

on the highly bound compounds. Hence, the log transformation was used for the S+PrUnbnd

model in ADMET PredictorTM version 7.0. This model can help in selecting lead candidates as well

as in estimating parameters for PBPK studies.

Schematic representation of whole blood

Conclusion 

Fup LOGFup SQRTFup Logit

RMSLE Whole set 0.78 0.43 0.46 0.45

highly bound 1.19 0.57 0.67 0.62

RMSE Whole set 0.176 0.202 0.179 0.176

highly bound 0.137 0.077 0.105 0.104

MAE Whole set 0.131 0.137 0.128 0.120

highly bound 0.097 0.046 0.067 0.060

R2 Whole set 0.71 0.66 0.71 0.72

highly bound 0.13 0.18 0.17 0.17

Performance for each type of transformed regression models
Best performance statistics are circled for each statistic

The Box-Cox transformation (Lambda model) and SQRTFup model were very similar because the

𝜆 value obtained (0.47) is very close to 0.5 (which is equivalent to square root transformation).

Therefore, we do not report detailed results for the Box-Cox transformation.

*In their original publication, Box and Cox proposed finding the optimal λ by a maximum-likelihood approach. We optimized λ by minimizing the Kolmogorov-

Smirnov statistic (maximum distance between Cumulative Distribution Functions, CDFs) between the observed and normal CDFs of  the λ-transformed data set .

Models # Neurons # Descriptors Key Descriptors

PrUnBnd 5 8 S+logP, Fcation, EqualEta, Fanion,

VMcGowan, F_AromB, T_Dipole, T_Grav3

LogPrUnBnd 5 10 S+logP, Fcation, Fanion, F_AromB, EqualEta,

N_IsolLP, VMcGowan, T_Grav3, MaxQ,

T_Dipole

SQRTFup 4 9 S+logP, Fcation, Fanion, F_AromB, EqualEta,

T_Dipole, N_IsolLP, VMcGowan, T_Grav3

Logit 6 10 S+logP, N_Iodine, N_AromR, Fanion,

N_Sulfur, HBDoch, QAvgPos, EEM_XFh,

EqualEta, M_RNG

Complexity of each model with best descriptors

All models identified lipophilicity as an

important factor in plasma protein

binding because S+logP (Simulations

Plus’ proprietary model for octanol-water

partition coefficient) is a key descriptor

in all models. Other important

descriptors were fractions cationic and

anionic; molal volume; dipole moment;

and the fraction of aromatic bonds.

𝑥 = log(𝐹𝑢𝑝)
LOGFup model

𝑥 =
(100∗𝐹𝑢𝑝)𝜆−1

𝜆

𝜆 is an optimized constant equal to 0.47*

Lambda model

x = 𝐹𝑢𝑝

SQRTFup model
𝑥 = 0.5 ln

𝐹𝑢𝑝

1 − 𝐹𝑢𝑝

Logit model

All predictions were transformed back to the original scale in order to compare the models in terms

of RMSLE (root mean square log error), RMSE (root mean square error), MAE (mean absolute

error, and R2 (coefficient of determination) on the same scale. We considered statistics for the data

set as a whole and for the highly bound compounds in particular in selecting the best model.

Free drug
Available for pharmacologic effects

Protein bound drug

Red blood cells
Most common type of blood cells

and principal means of delivering

oxygen to body tissues

White blood cells
Cells of the immune system

Plasma protein
55% of blood is plasma, 7% of

plasma is plasma proteins

Albumin
Most important protein in plasma

in terms of binding, has multiple

binding sites for neutral and

negatively charged drugs

α1-acid glycoprotein 

(AGP)
Negatively charged and has

only one binding site with the

ability to bind basic and neutral

lipophilic drugs

Distributions of original and transformed data

Six lead compounds reported by Vasbinder et al.
Experimental and predicted percent unbound values are shown

Experimental % unbound

Predicted % unbound

Aromaticity has inverse effect 

on predicted % unbound

Removing aromaticity changed other 

properties  in a way that improve Fup

Green: better

Red: worse

Molecule Fup Pred. Fup Exp. Error Log Error
Example 1 0.052 0.102 0.05 0.29
Example 2 0.903 0.953 0.05 0.02

𝑅𝑀𝑆𝐿𝐸 =
σ𝑖 log(𝑝𝑟𝑒𝑑𝑖) − log(𝑒𝑥𝑝𝑖)
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𝑁𝑜𝑏𝑠

Removing aromaticity improved 

predicted % unbound


