Evaluating the Nephrotoxicity of Exemplar Compounds Using a Mechanistic Model of **Drug-Induced Acute Kidney Injury** Yeshitila Gebremichael, Jeffery L. Woodhead, Nader Hamzavi, Shailendra Tallapaka, Scott Q. Siler, and Brett A. Howell

BACKGROUND

- Drug-induced nephrotoxicity is a common source of acute kidney injury (AKI) and a condition that complicates clinical outcomes of vulnerable patients.
- Drugs cause nephrotoxicity by various cellular mechanisms, including mitochondrial dysfunction, oxidative stress, and others.
- Predicting the toxicity and injury mechanisms of drugs remains a challenge.
- We utilized a quantitative systems toxicology (QST) model to evaluate the nephrotoxicity and underlying mechanisms of two positive (cisplatin and gentamicin) and one negative (acetaminophen) control exemplar compounds.

- We employed RENAsym[™], a QST model of druginduced acute kidney injury that is currently under development.
- RENAsymTM represents aspects of renal proximal tubule epithelial cells (PTCs), including cell life cycle, bioenergetics, drug-induced cell death pathways, and biomarker (α GST) responses.
- In vitro data from the literature was utilized to parameterize the oxidative stress (RNS/ROS) production and clearance of compounds as well as the effect of drugs on mitochondrial dysfunction (e.g., electron transport chain (ETC) inhibition).

Table: Summary of toxicity parameters for drug-induc dysfunction and oxidative stress production. The parameters fitting in vitro data from the literature using RENAsym[™]. The incorporated in RENAsym[™] for predicting drug-induced AKI.

Biomarker Response Parameterization

- RENAsymTM is designed to integrate drug exposure, in vitro toxicity, and kidney physiology to predict drug-induced AKI.
- Urinary biomarkers offer early detection of AKI. α GST is a key biomarker that signals cellular death.
- The relation between cell death and αGST (*right*) is parameterized using literature data (5)

- DataSimulation
- - gentamicin.

DILIsym Services, Inc., a Simulations Plus company, Research Triangle Park, NC, USA

RESULTS

Left: Cisplatin-induced oxidative stress data in porcine PTCs (1) was fit in RENAsym[™] to parameterize cisplatin-induced RNS/ROS

> **Right:** Acetaminophen-induced oxidative stress data in cultured HK-2 cell line (2) was fit in RENAsym[™] to parameterize APAP-induced

Cisplatin-induced (left) mitochondrial toxicity data from porcine and rabbit PTCs (1,3) and acetaminophen-induced (right) mitochondrial toxicity data from HepG2 (measured by Cyprotex, Inc.) was fit using MITOsym, a model of *in vitro* mitochondrial bioenergetics (4).

0.9

• Rate constants for ETC inhibition from MITOsym were converted to RENAsymTM parameters using a conversion factor.

ced mitochondrial are determined by ese parameters are	Mechanism	Parameter	Unit	Cisplatin
	Mitochondrial Dysfunction	Coefficient for ETC inhibition 1	μM	12
		Coefficient for ETC inhibition 3	μM	0.0518
		Max inhibitory effect for ETC 3	dimensionless	0.321
	Oxidative Stress	RNS/ROS production rate Vmax 4	1/hour	12.3
		RNS/ROS production rate Km 4	mM	178.5
10 15 20 25 Necrotic tubules (%)		RNS/ROS production rate Hill 4	dimensionless	1

Simulation Predictions for Exemplar Compounds

Toxic response of simulated baseline human exposed to positive and negative control exemplar compounds.

Fractional loss of viable proximal tubule cells (*left*) and elevations of αGST (right) in human model with multiple dose of 1 g QID APAP, and single doses of 533 mg/m2 cisplatin and 3 mg/kg

- Mild to significant cell death and α GST elevations were observed from exposure to cisplatin and gentamicin, the two positive control compounds.
- The model reproduces the expected qualitative features of the positive and negative control compounds.
- Oxidative stress is found to be the dominant mechanism for both cisplatin and gentamicin.
- For a more accurate quantitative predictions, effort is underway in utilizing PTC in vitro toxicity data for model parametrization.

REFERENCES

[1] Kruidering M, et al. J Pharmacol Exp Ther. 1997 Feb;280(2):638–49.

- [2] Vrbova M, et al. Physiol Res. 2016 Nov 8;65(4):627-635.
- [3] Beeson CC, et al. Anal Biochem. 2010 Sep 1;404(1):75-81.
- [4] Yang Y, et al. Pharm Res. 2015 Jun;32(6):1975–92.

[5] Kharasch ED, et al. Anesthesiology. 1998 Jun;88(6):1624-33.

ACKNOWLEDGEMENTS

- Dr. Melissa Hallow and Dr. Zheng Dong
- This work was supported by the NIDDK of NIH grant R44DK118981.
- The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Download this poster online! simulations-plus.com/posters