Aim

R6366

Purpose of the study was to develop a PBPK model for amoxicillin incorporating saturable transport processes affecting the drug's absorption and distribution.

Methods

Amoxicillin absorption and pharmacokinetics were simulated using GastroPlus[™] 8.0 (Simulations Plus, Inc., Lancaster, CA). The program's Advanced Compartmental Absorption and Transit (ACAT[™]) model described the passive and carrier-mediated absorption of the drug, while pharmacokinetics were simulated with its PBPKPlus[™] module. Human organ weights, volumes, and blood perfusion rates were generated by the program's internal Population Estimates for Age-Related (PEAR) Physiology[™] module. Individual tissues were represented as permeabilitylimited (diffusion-limited) models. Drug partitioning between plasma and extracellular tissue space accounted for drug binding to plasma proteins and extracellular tissue proteins [1]. Drug uptake into cells was modeled by passive diffusion, as well as carrier-mediated (saturable) transport in tissues expressing PepT1/PepT2 and MRP4 transporters (small intestine, kidney, liver, brain). Relative transporter expression levels in kidney, liver and brain were based on published relative mRNA expression levels in these tissues [2]. An additional uptake transporter was added to kidney tissue to account for active renal secretion of amoxicillin. Passive renal secretion was estimated from fraction unbound in plasma and glomerular filtration rate. Distribution kinetic parameters as well as liver and renal (active secretion) contributions to amoxicillin's clearance were fitted against plasma concentration-time (Cp-time) profiles and amounts secreted in urine after *i.v.* and *p.o.* administration of amoxicillin [3-5].

Conclusions

Amoxicillin is eliminated primarily by renal secretion with a minor contribution from liver clearance (metabolism and biliary secretion). Its absorption, distribution, and clearance are affected by interactions with transporters. A fitted physiological model which includes relevant distribution mechanisms can be used to predict the drug's pharmacokinetics in different populations as well as potential transporter-based drug-drug interactions. Moreover, the development procedure of this model may serve as a recipe for building PBPK models for other compounds whose tissue distribution includes components of slow passive diffusion as well as carrier-mediated transport and cannot be described by the simpler perfusion-limited (flow-limited) tissue model.

Physiologically Based Pharmacokinetic (PBPK) Modeling of Amoxicillin Absorption and **Pharmacokinetics**

Results

A single model provides excellent agreement with a variety of reported clinical profiles (Cp-time profiles and cumulative amounts secreted in urine after *i.v.* administration of doses ranging from 250mg to 5g [3-4]; Cp-time profiles after p.o. administration of doses ranging from 375mg to 3g [5]) and accounts for the observed nonlinear dose-exposure relationship after p.o. administration of amoxicillin.

Table 1: Relative expression levels (mg-transporter/gtissue) of PepT and MRP transporters in brain, kidney and liver used in simulation (based on published relative mRNA expression levels [2]). Values were normalized to PepT1/ PepT2 expression in Kidney

	PepT1/PepT2	MRP4
Brain	0.835	0.324
Kidney	1	3.056
Liver	0.38	0.021

Table 2: Distribution kinetic parameters and clearance

	Km [mg/ L]	Vmax mg-tr	c [mg/s ansp]
PepT1/PepT2 (kidney, liver, brain)	370#	0.001	2
PepT1 (duodenum)	370#	0.09*	
MRP4 (kidney, liver, brain)	687	0.02	
Kidney influx	30	0.0008	
Specific PStc [mL/s/mL-cell volume]			5.83E-6
Liver CL [L/h]			0.602
#roportod in vitro PopT	2 km [6] w		for

reported in vitro Pep I2 Km [6] was used for interaction with PepT1 and PepT2, remaining parameters in Table 2 were fitted to in vivo data

* Vmax for PepT1 in duodenum is shown in mg/s; for remaining intestinal compartments, Vmax from duodenum was scaled using built-in relative PepT1 distributions along small intestine

Lukacova, V., M.B. Bolger, W.S. Woltosz Simulations Plus, Inc. Lancaster, California, USA,

References

- . Poulin P.; J Pharm Sci 2002, 91: 129-156
- 2. Nishimura M.; Drug Metab Pharmacokinet 2005, 20: 452-477
- 3. Dalhoff A.; Eur J Clin Pharmacol 1982, 22: 273-279

the lowest dose (375 mg).

4. Hill S.A.; J Infect 1980, 2: 320-332 5. Sjövall J.; Clin Pharmacol Ther 1985, 38: 241-250 6. Li, M.; Drug Metab Dispos 2006, 34: 547-555

