Physiologically-based pharmacokinetic (PBPK) model for prediction of tobramycin pulmonary absorption and pharmacokinetics in children

V. Lukacova*, S. Ray Chaudhuri, W.S. Woltosz, M.B. Bolger
Simulations Plus, Inc. Lancaster, California, USA

Purpose: To fit an absorption-pharmacokinetic model for simulation of tobramycin in adult and pediatric populations

Methods: Tobramycin pulmonary absorption and pharmacokinetics were simulated using GastroPlus™ 7.0 (Simulations Plus, Inc., Lancaster, CA). Tobramycin pharmacokinetics was simulated with a physiologically-based pharmacokinetic (PBPK) model with all permeability-limited tissues. Human organ weights, volumes, and blood perfusion rates were generated by the program’s internal Population Estimates for Age-Related (PEAR) Physiology™. Tissue/plasma partition coefficients (Kp’s) were calculated using Poulin’s equation for drug partitioning into extracellular space [1] from in vitro and in silico physicochemical properties (ADMET Predictor™ 5.0, Simulations Plus, Lancaster, CA). Single specific permeability-surface area product (PStc per mL tissue) was fitted against in vivo plasma concentration-time (Cp-time) data after i.v. administration of tobramycin in children. The total PStcs for individual tissues were calculated as a product of the specific PStc and the total cell volume of each tissue. Renal clearance was fitted against Cp-time profile after i.v. administration of tobramycin in adults with normal renal function. The pulmonary component of the GastroPlus Additional Dosage Routes Module™ was used to model the pulmonary absorption. The deposition fractions for two formulations were used as reported in literature [2]. Pulmonary permeability was fitted against Cp-time profiles after pulmonary administration of a PulmoSphere (solid particulate) formulation of tobramycin in adults and validated by using the model to predict the Cp-time profile in adults after pulmonary administration of a TOBI (nebulizer) formulation. The same model (fitted against adult in vivo data) was used to predict tobramycin pharmacokinetics after i.v. and pulmonary administration in children.

Results:
- After accounting for differences in physiology and pulmonary deposition efficiency between children and adults (based on literature, the deposition is ~4 times lower in children [8]), the model produced excellent predictions of Cp-time profiles after i.v. and pulmonary administration of tobramycin in children.
- Simulations showed that a significant portion of inter-individual variability can be attributed to differences in deposition efficiency. It is expected that other factors (distribution, clearance) will also have an effect; however they were not investigated in this study.
- The model also gave a good estimate of tobramycin concentration in the epithelial lining fluid in the lower respiratory tract of children:
 - The simulated concentrations in bronchiolar and alveolar regions, respectively, 45 minutes after administration were:
 - >39 and 215 μg/mL for high deposition efficiency
 - >16 and 86 μg/mL for medium deposition efficiency
 - >6 and 34 μg/mL for low deposition efficiency
 - The mean reported [8] concentration from bronchoalveolar lavage was 90 μg/mL, with concentration ranging from 16 to 204 μg/mL across subjects.

Conclusions:
Ethical considerations prevent extensive clinical trials in pediatric populations. However, with the use of PBPK modeling, the *in vivo* data from adults may be used to explore the mechanisms of drug disposition and to predict pharmacokinetics in children after a variety of administration routes. Simulation tools also allow exploring the sensitivity of the exposure to individual processes involved in drug absorption, distribution and elimination and may help in design of clinical trials to maximize their efficiency.

References: