Using *in-silico* Models to Integrate *in-vitro*Data to Support Virtual Trials for Cost Effective Drug Development

November 5th, 2018

Viera Lukacova

Outline

- What is PBPK model?
- Parameterizing PBPK model using in vitro data
 - Dissolution & Precipitation
 - Passive Absorption
 - Pharmacokinetics
- Virtual Trials: Applications of calibrated PBPK model
- Summary

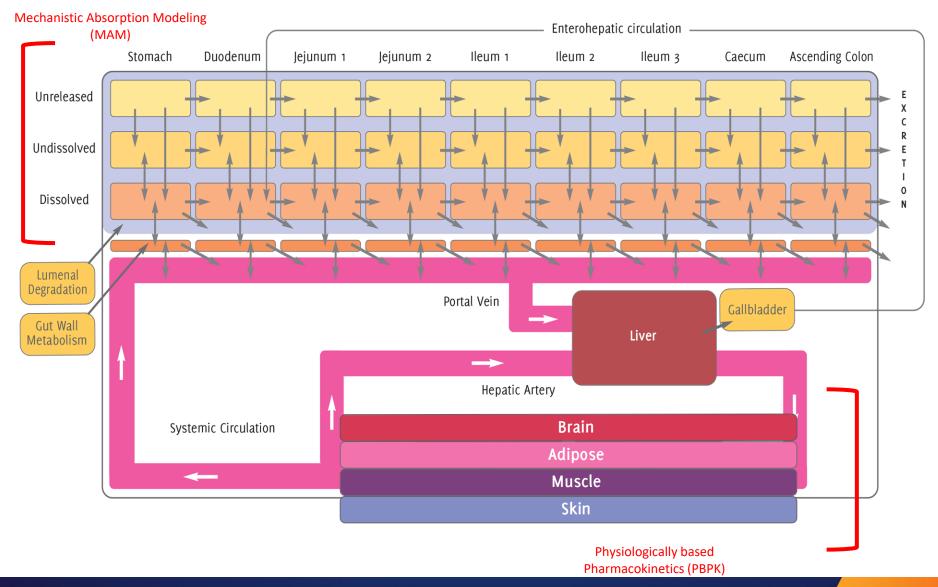
The Big Picture

Structure → **ADMET Pred.**

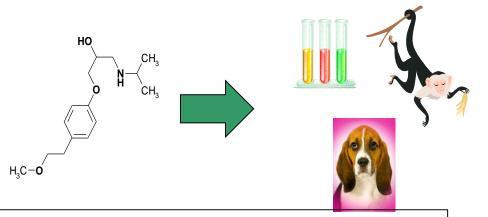
In vitro **Experiments**

API:

- logP/logD
- pKa(s)
- **Solubility**
- **Permeability**
- Fup
- B/P ratio
- CLint or Km & Vmax, renal CL
- **DDI** interaction constants (Ki & kinact, EC50 & Emax)


••••

System/Physiology:


- Body height, weight, BMI
- Tissue sizes & blood flows
- Tissue compositions (water, lipid, protein, acidic phospholipids, etc.)
- Intestinal fluid volume and composition (pH, bile salts, etc.)
- Intestinal transit times
- **Enzyme & transporter** expression levels

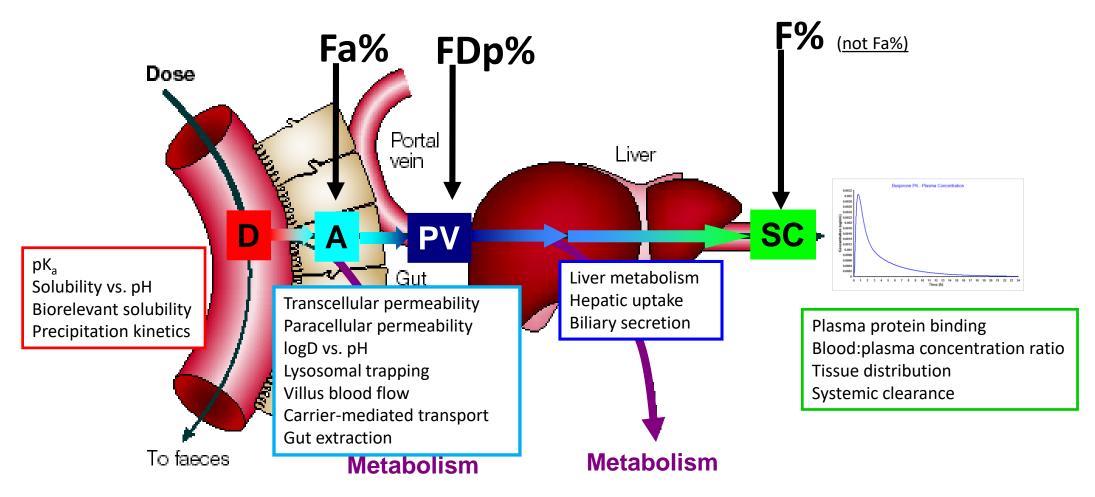
Advanced Compartmental Absorption and Transit Model (ACAT™)

Discovery Preclinical Clinical

Discovery PK

Combine *in silico* technologies to screen compound libraries in animals or humans
Incorporate preclinical/*in vitro* data to extend FIH simulations to full *in vivo* outcomes (IVIVE)
Identify toxic dose levels in preclinical species

Clinical PK/Pharmacology

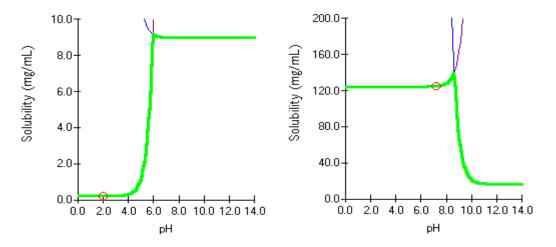

Simulate population behaviors (e.g., pediatrics, disease)
Build PBPK-PD models
Predict DDIs

Pharmaceutical Development

Assess various strategies during formulation development
Assist with Quality by Design (QbD) implementation
Develop mechanistic *in vitro-in vivo* correlations (IVIVCs)
Understand food effects

What is happening in vivo (oral administration)?

^{*} Modified from van de Waterbeemd, H, and Gifford, E. ADMET In Silico Modelling: Towards Prediction Paradise? Nat. Rev. Drug Disc. 2003, 2:192-204



Solubility and Dissolution

Solubility

Changes in ionization result in changes in solubility in different regions of the intestine

Changes in bile salt concentrations in different regions of the intestine may result in changes in solubility (especially for more lipophilic compounds)

$$Sol_{bile,pH} = Sol_{aq,pH} (1 + \frac{MWt_{H_2O}}{\rho_{H_2O}} \times SR \times C_{bile})$$
Mithani, Pharm Pos 1996, 13:163-167

Mithani, Pharm Res 1996, 13:163-167

pH and bile salt concentrations

human:

fasted:

Compar	rtment D	ata	
Compartment	рН	Bile Salt (mM)	
Stomach	1.30	0.0	
Duodenum	6.00	2.800	
Jejunum 1	6.20	2.330	
Jejunum 2	6.40	2.030	
lleum 1	6.60	1.410	
Ileum 2	6.90	1.160	
lleum 3	7.40	0.140	
Caecum	6.40	0.0	
Asc Colon	6.80	0.0	

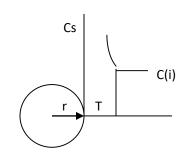
Compartment Data						
Compartment	рН	Bile Salt (mM)				
Stomach	3.90	0.0				
Duodenum	5.89	20.00				
Jejunum 1	6.13	17.29				
Jejunum 2	6.13	6.980				
lleum 1	5.93	2.820				
lleum 2	5.93	1.300				
lleum 3	5.93	1.240				
Caecum	6.58	0.0				
Asc Colon	6.23	0.0				

rat:

Compar	לם tment	ata
Compartment	рН	Bile Salt (mM)
Stomach	3.00	0.0
Duodenum	6.20	5.000
Jejunum 1	6.20	4.050
Jejunum 2	6.20	1.820
lleum 1	6.40	0.610
Ileum 2	6.60	0.440
lleum 3	6.68	0.310
Caecum	6.75	0.0
Asc Colon	6.45	0.0
Campa	tmant D	-1-

dog:

Compartment Data						
Compartment	рН	Bile Salt (mM)				
Stomach	4.90	0.0				
Duodenum	5.40	14.44				
Jejunum 1	5.40	12.02				
Jejunum 2	6.00	10.46				
lleum 1	6.60	7.280				
lleum 2	6.90	5.990				
lleum 3	7.40	0.730				
Caecum	6.40	0.0				
Asc Colon	6.80	0.0				


Compartment Data						
Compartment	рН	Bile Salt (mM)				
Stomach	3.20	0.0				
Duodenum	5.00	20.00				
Jejunum 1	5.10	17.29				
Jejunum 2	5.10	6.980				
lleum 1	5.94	2.820				
lleum 2	5.94	1.300				
lleum 3	5.94	1.240				
Caecum	5.90	0.0				
Asc Colon	5.51	0.0				

Compartment Data							
Compartment	рН	Bile Salt (mM)					
Stomach	5.00	0.0					
Duodenum	6.20	15.40					
Jejunum 1	6.20	12.50					
Jejunum 2	6.20	5.600					
lleum 1	6.40	1.900					
Ileum 2	6.60	1.340					
lleum 3	7.05	0.950					
Caecum	7.50	0.0					
Asc Colon	6.45	0.0					

Dissolution

Dissolution rate coefficient (not a constant because it changes at every time step) in intestinal lumen compartment number *i* for particle size bin *j*:

$$\frac{dM_D}{dt} = \frac{D_w}{\rho r_t T} \frac{(1+2s)}{s} (C_s - C_l) M_{u,t}$$

 $T = r_{0i}$

D = diffusion coefficient

 C_S = solubility at *local* pH

 $C_{(i)}$ = lumen concentration in compartment i

ρ = particle density (*density of API crystals*)

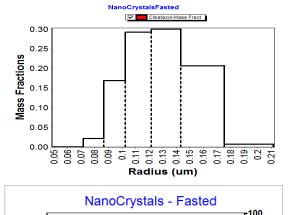
 r_i = spherical particle *radius* for particle size bin j

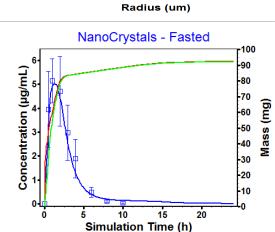
T = diffusion layer thickness (= particle radius up to a limit)

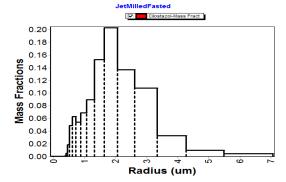
s = shape factor (Length/diameter*) - for spherical particles = 1

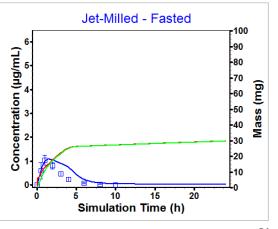
*in the original Johnson equation, s'=Length/radius and the term is 2(1+

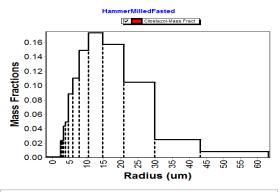
Predicting *in vivo* dissolution: Particle Size Distribution

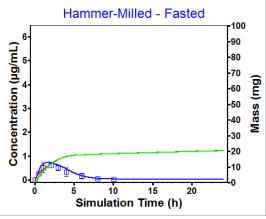

$$\frac{dM_D}{dt} = \frac{D_w}{\rho r_t T} \frac{(1+2s)}{s} (C_s - C_l) M_{u,t}$$


Lu, Pharm Res 1993, 10:1308-1314


In vivo dissolution rate and extent is calculated from particle size distribution for each formulation and in vivo drug solubility (in vivo drug solubility is changing to account for changes in pH and bile salt concentration as the drug is moving through the intestine).


The model is applicable when API properties (solubility, particle size) drive the dissolution rate.


Prediction of *in vivo* performance for 3 cilostazol formulations with different API particle size distributions administered in dog



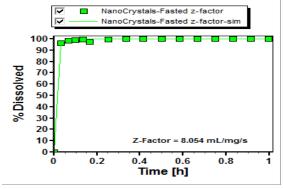
Observed data from Jinno, J Contr Rel 2006, 111: 56-64

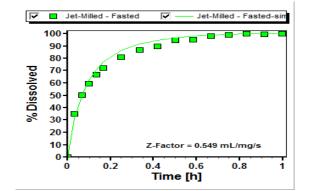
Simulation results from GastroPlus v9.0

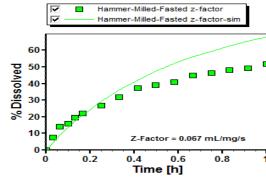
Predicting in vivo dissolution: z-factor

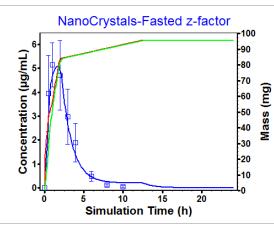
$$\frac{dM_D}{dt} = Z(C_s - C_l)M_{u,t}$$

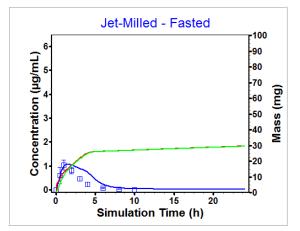
Takano, Pharm Res 2006, 23:1144-1156

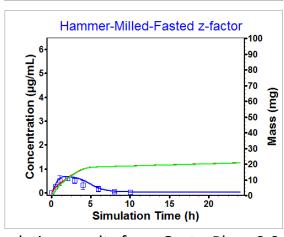

 $3D_{u}$


Z represents ρrT and is determined by fitting to *in vitro* dissolution data.


In vivo dissolution rate and extent is calculated from z-factor fitted to in vitro dissolution profile for each formulation and in vivo drug solubility (in vivo drug solubility is changing to account for changes in pH and bile salt concentration as the drug is moving through the intestine)


The model is applicable when API properties or formulation (i.e. excipients) drive the dissolution rate.


Prediction of *in vivo* performance for 3 cilostazol formulations with different API particle size distributions administered in dog



Observed data from Jinno, J Contr Rel 2006, 111: 56-64

Simulation results from GastroPlus v9.0

Predicting *in vivo* dissolution: Equivalent Particle Size

Theoretical particle size distribution was fitted to *in vitro* dissolution data and subsequently used as an in put in *in vivo* simulation

The model is applicable when formulation (i.e. excipients) drive the dissolution rate.

The *in vitro* dissolution profiles showed multi-phasic behavior for these formulation and could not be successfully fitted with single z-factor. Fitting artificial particle size distribution allowed for more accurate translation of *in vitro* dissolution to *in vivo*

Pepin et al. Mol Pharmaceutics 2016, 13:3256-3269

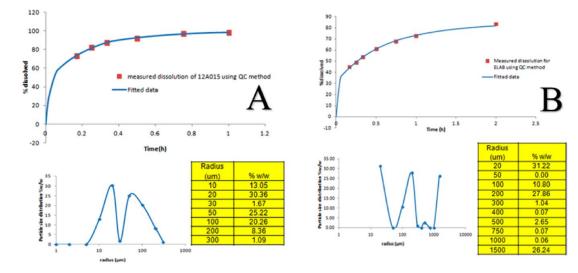


Figure 4. Fitting of dissolution profile for batch 12A015 (A) and ELAB (B) in the QC dissolution method with a theoretical particle size distribution. Note: the value presented at the 2 h time point for batch ELAB is from an infinity spin (15 min, 250 rpm).

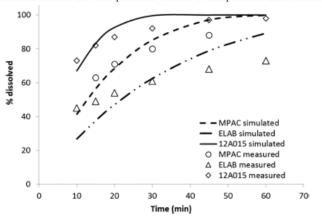


Figure 8. Z-factor fit for batches 12A015 ($Z = 1 \times 10^{-3} \text{ mL/mg/s}$), ELAB ($Z = 3.74 \times 10^{-4} \text{ mL/mg/s}$), and MPAC (Z = 5e-4 mL/mg/s).

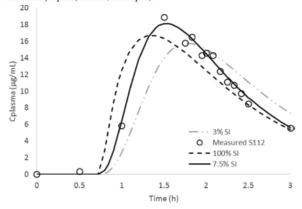
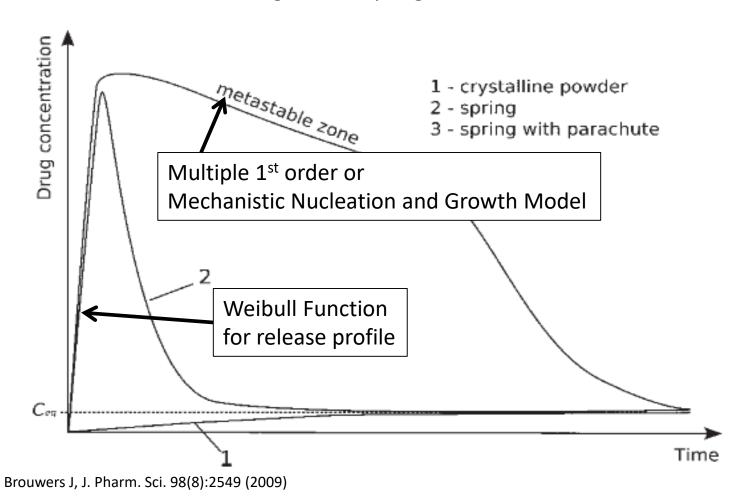


Figure 7. Simulated PK profile vs measured plasma concentrations for S112 following administration of 400 mg 12A015 tablet using Option

Precipitation


Enabled Formulation Strategies: BCS II

- Supersaturating Drug Delivery Systems
 - Salts
 - Cocrystals
 - Solutions
 - Lipidic formulations
 - Cyclodextrin complexes
 - Self (Micro) Emulsifying Drug Delivery Systems (S(M)EDDS)
 - Nanosuspensions (Stabilized)
 - Solid Dispersions (amorphous)

Supersaturating Drug Delivery Systems

Schematic diagram of "Spring and Parachute"

Mechanistic Nucleation Theory

 D_{mono} Diffusion coefficient of the monomer (XXE-4 cm²/min)

 N_A Avogadro's number (6.02E+23 molecs/mole)

c Conc. of free monomer (moles/cm^3)

S Solubility at the current pH

 k_b Boltzman's constant (1.38E-21 cJoules/Deg. K)

(Note: Joule = Newton-meter)

T 310° K

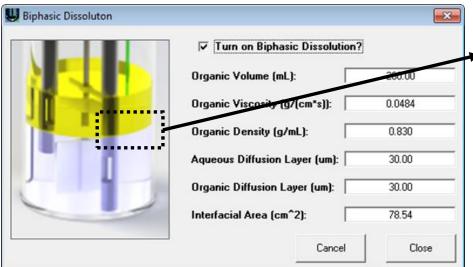
y Interfacial tension (Newtons/cm)

v_m Molecular volume

R* Critical radius (cm)

 λ Effective radius from Lindfors (cm)

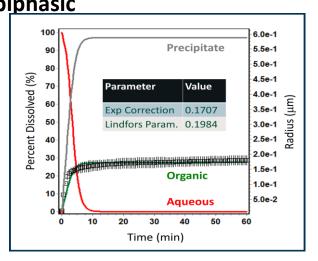
ExpCorr Exponential correction factor


Pre-exponential Term:

$$D_{mono}N_{Av}c^{2}\left(\frac{k_{B}T}{\gamma}\right)^{1/2}\ln\left(\frac{c}{S}\right)\frac{R^{*}}{R^{*}+\lambda}$$

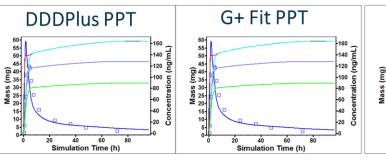
Exponential Term:

$$-ExpCorr\frac{16\pi}{3} \left(\frac{\gamma}{k_B T}\right)^3 \frac{v_m^2}{\ln\left(\frac{c}{S}\right)^2}$$

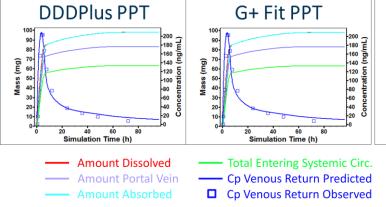

Biphasic Dissolution Model

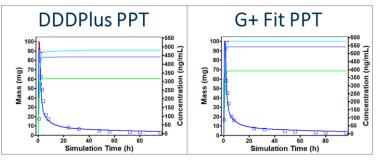


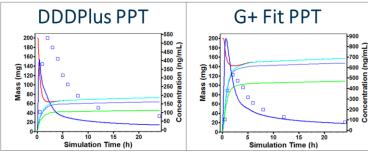
Itraconazole biphasic

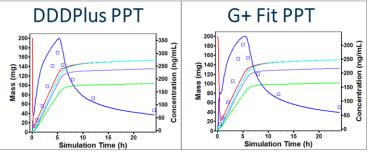

dissolution

Mullin J. AAPS 2018, Poster W11230-05-037

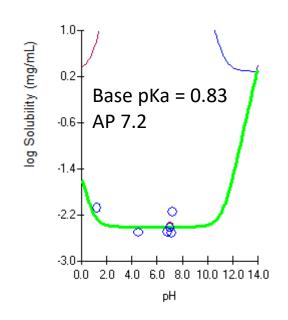


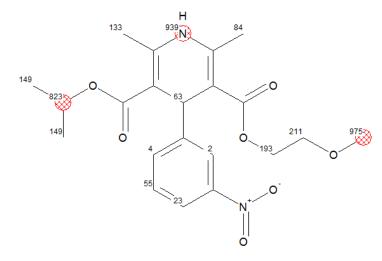

Capsule (200 mg Fasted)


Capsule (200 mg fed)


Solution (100 mg Fasted)

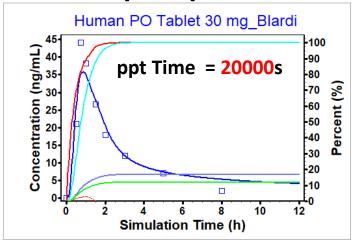
Solution (200 mg Fasted)

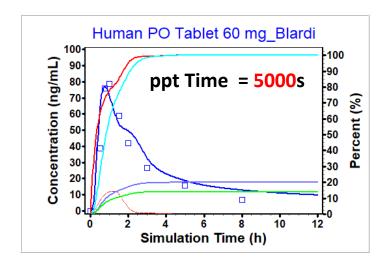

Solution (200 mg fed)

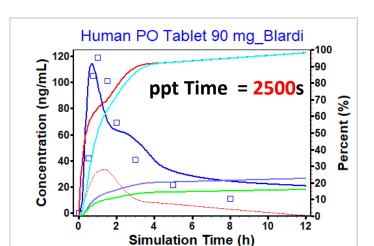


Nimodipine

- Physicochemical Properties
- S+log P = 4.11 Exper. log P = 4.18 (Biobyte Starlist)
- Aq. Sol (ug/mL) = 3.9 @ pH = 7.0 (Yunzhe, Int. J. Pharmaceut., 2008)
- FaSSIF (ug/mL) = 12 @ pH = 6.5 (Fu, Colloids Surf. B, 2013)
- S+Peff (cm/s x 10^4) = 1.77 (AP 7.2)
- Caco-2 Papp (cm/s x 10⁵) = 6.04
 (Agilent, Pub #5989-7668EN, 2007)
 - Converts to human jejunal Peff = 3.12 x 10⁻⁴ cm/s

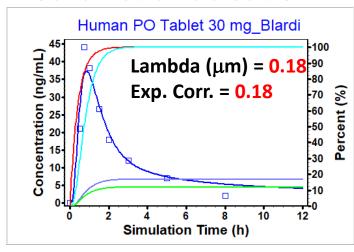

S+Predicted Sites of Metab. (CYP3A4) S+3A4_ K_m = 19 mM (AP 7.0) S+3A4_ V_{max} = 65.4 nmol/min/nmol Enz

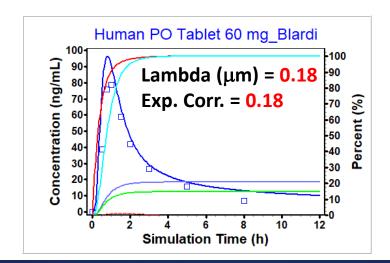

AP 7.2 = ADMET Predictor 7.2, Simulations Plus, Inc.

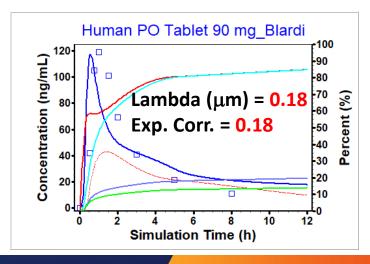


Nimodipine Solid Dispersion

1st order precipitation

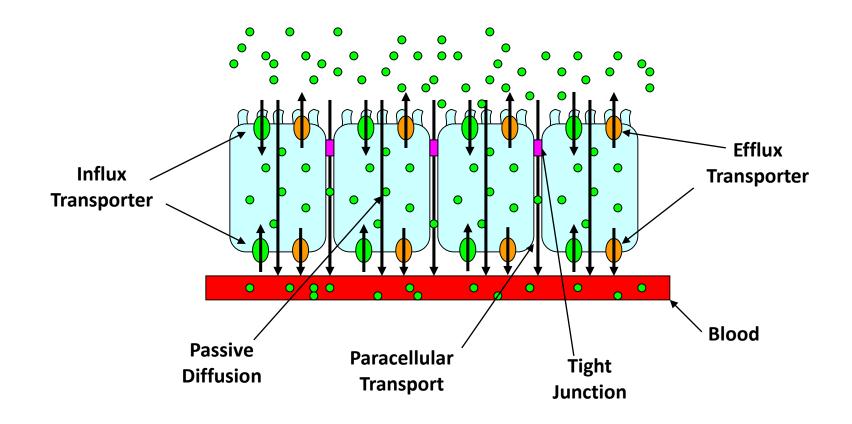



Amounts: red solid-dissolved, red dashed-precipitated, cyan-absorbed,


blue-enteric portal vein, green-entering systemic circulation;

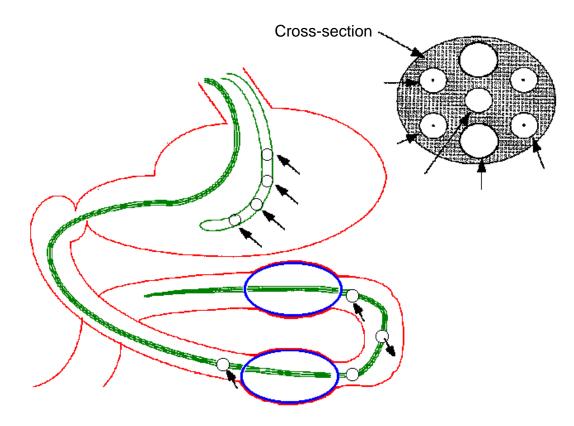
Dark blue line and points – plasma concentration

Mechanistic nucleation

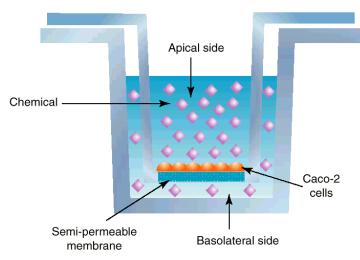


Slide 21 #PharmSci360

Absorption

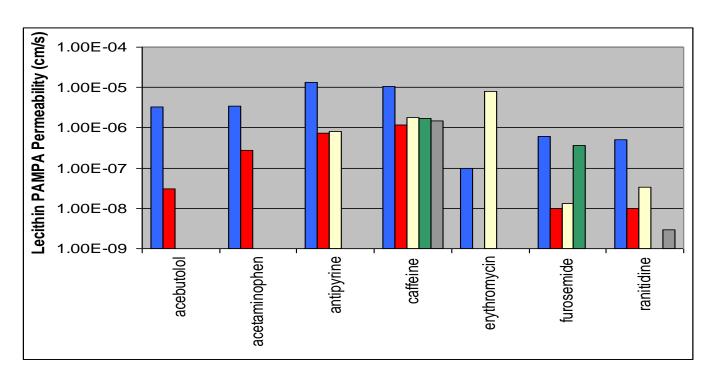

Absorption Processes

Effective Permeability (Peff): Measurements in Human

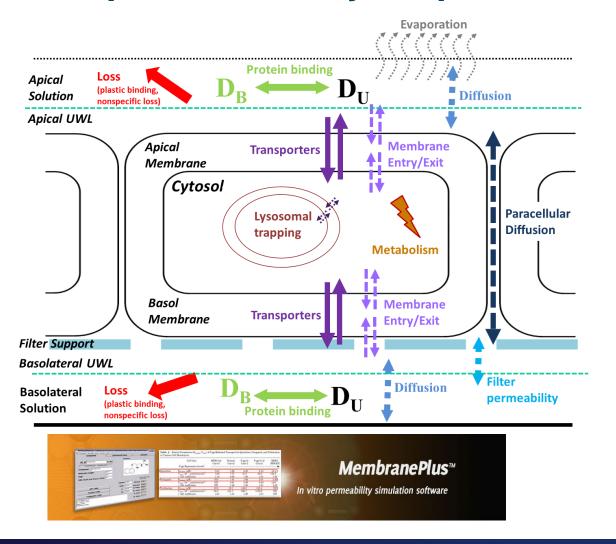

- Measure
 disappearance of drug
 from donor side
- Factors affecting permeability:
 - individual subject variations
 - adsorption to the tubes

Peff = Q(Cin - Cout) /(2 π r L Cin) r=1.75 cm, L=10 cm Peff = 0.0091*Q(Cin - Cout) /Cin

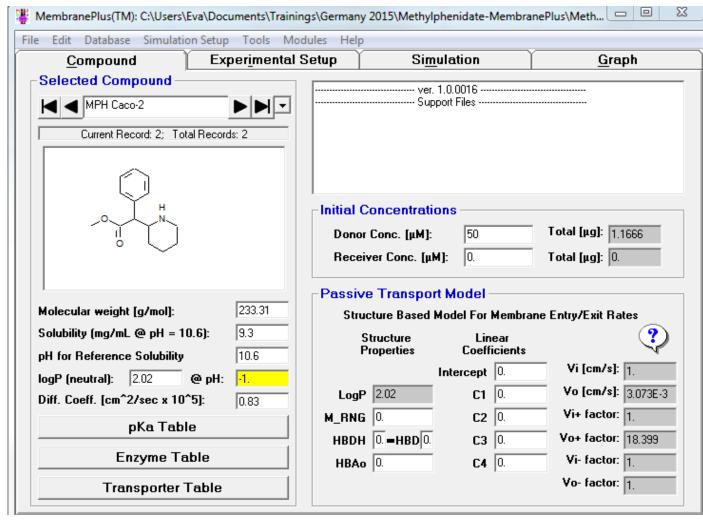
in vitro Permeability (Papp) Experiments

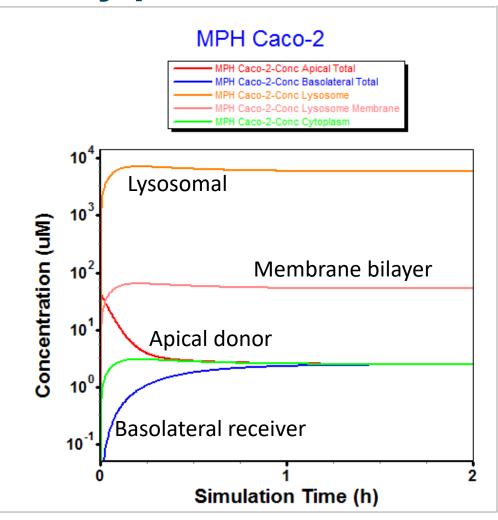

- Measure appearance of drug on receiver side
- Many factors affect in vitro permeability (P_{app}):
 - pH on each side of the membrane
 - solvents (e.g., DMSO)
 - amount of protein on receiver side
 - concentration in donor side
 - shaking rate
 - nonspecific binding to plasticware

Li, A.P., DDT, 6(7):339-348


PAMPA Papp values for selected drugs collected from literature All data are for Lecithin solution in dodecane and pH=7.4

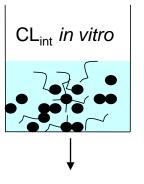
Blue – Zhu Ch. EurJMedChem 2002, 37:399; Red – Ruell J.A. pION; Yellow – Kerns E.H. JPharmSci 2004, 93:1440; Green – Avdeef A. EurJPharmSci 2001, 14:271; Grey – Du C. pION



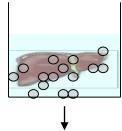

Mechanistic Simulations of *in vitro* Permeability (Papp) Experiments May Help with *in vitro/in vivo* Translation

- Unlock important information related to absorption
- Number of different processes affecting apparent in vitro permeability can be included in the simulation:
 - Passive transcellular diffusion
 - Passive paracellular diffusion
 - Carrier mediated influx and/or efflux
 - Metabolism in the cells
 - Binding to albumin
 - Accumulation in cell membranes or intracellular compartments
 - Experimental conditions (e.g., shaking rate, pH)

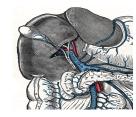
MembranePlus™ Simulation for Methylphenidate


S+pKa = 8.56 (Base) (AP 7.2)

Nonlinear Processes



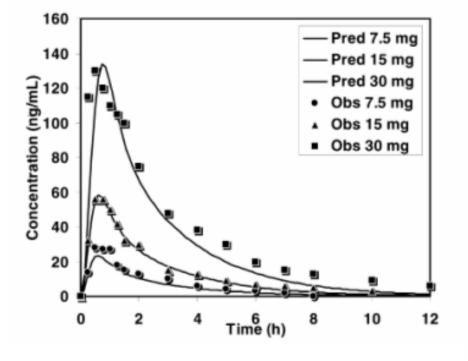
Metabolic Clearance


Step 1. *In vitro* incubation of drug with microsomes/hepatocytes/liver slices to obtain enzyme kinetic constants V_{max} and K_m and the *in vitro* intrinsic clearance

CL_{int} (whole organ) in vitro

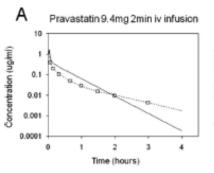
CL_b (whole organ) in vivo

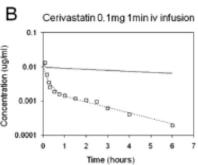
Step 2. Scale *in vitro* enzyme kinetic constants to *in vivo* conditions based on species-specific physiological scale factors.

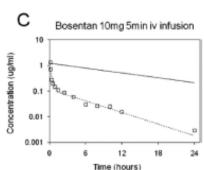

Step 3. Based on a tissue blood flow model (e.g. Venous equilibrium model), determine in vivo hepatic clearance. Rate of drug elimination = $CL_h \times Concentration$

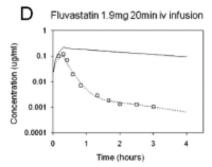
Houston and Carlile, Drug Metab. Rev. 29(4):891 (1997)

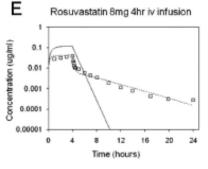
Midazolam Clearance IVIVE

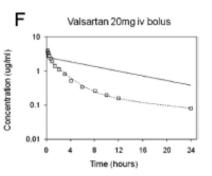

Experimental			GastroPlus	Compartm	ental Simul	ated	
Dose	Cmax	AUC	Cmax	AUC	Fa%	FDP%	Fb%
7.5	0.028	69	0.021	65	99	45	24
15	0.056	154	0.052	158	99	55	29
30	0.13	453	0.120	369	99	64	34

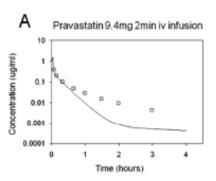

GastroPlus simulations of nonlinear dose dependence for midazolam using *in vitro* K_m and V_{max} and iv PK. (Agoram et al., 2001)

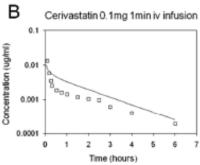


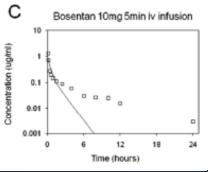


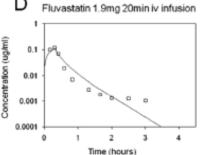

Transporter IVIVE – System Specific Scaling Factors

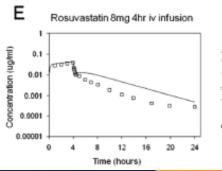


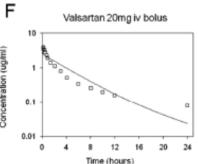

In vitro scaled and fitted sandwich culture human hepatocyte estimates

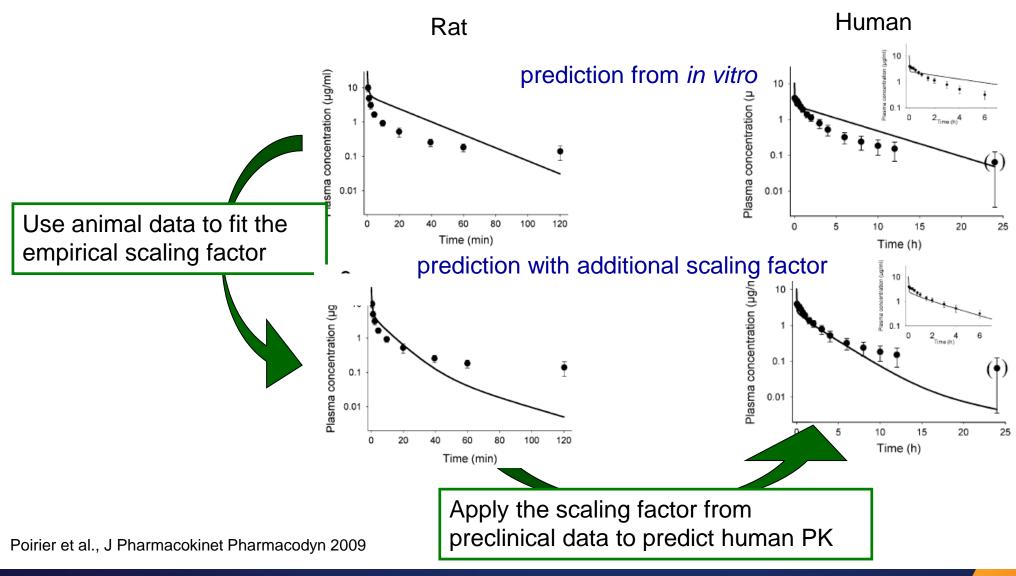

Compound	SCL _{int, u, act}			SCL _{int, u, paess}			SCL _{int, u, bile}		
Compound	In Vitro-Scaled	In Vivo-Fitted	Scaling Factor	In Vitro-Scaled	In Vivo-Fitted	Scaling Factor	In Vitro-Scaled	In Vivo-Fitted	Scaling Factor
					Vh				
Pravastatin	19	406	21	1.1	4.2	3.9	12	1.5	0.12
Cerivastatin	102	12,827	126	265	153	0.58	182^{a}	55 ^a	
Bosentan	96	8489	89	51	59	1.2	165^{a}	21 ^a	
Fluvastatin	475	76,513	161	208	147	0.71	485^{a}	86 ^a	
Rosuvastatin	98	1190	12	18	1.7	0.10	16	1.2	0.079
Valsartan	22	2463	110	6.4	23	3.7	1017	25	0.024
Renaelinide	310	13 941	44	038	1477	1.6	0	0	
Geometric mean		-	58			1.0			0.061

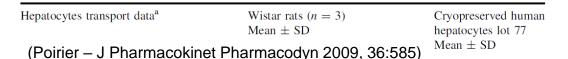

Solid lines – predicted from in vitro data; Dotted lines – fitted to in vivo data


Jones et al., DMD 2012

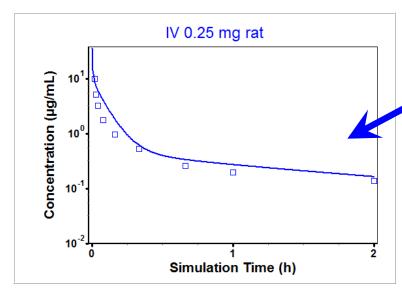

a Repesents the sum of SCL_{int, u, bile} and SCL_{int, u, met} because for these three compounds both CL mechanisms are occurring and they cannot be uniquely identified in the fitting process.

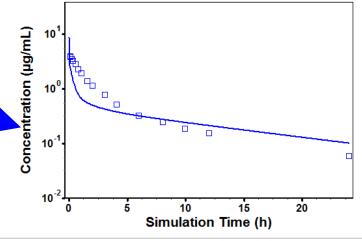






Transporter IVIVE – Compound Specific Scaling Factors

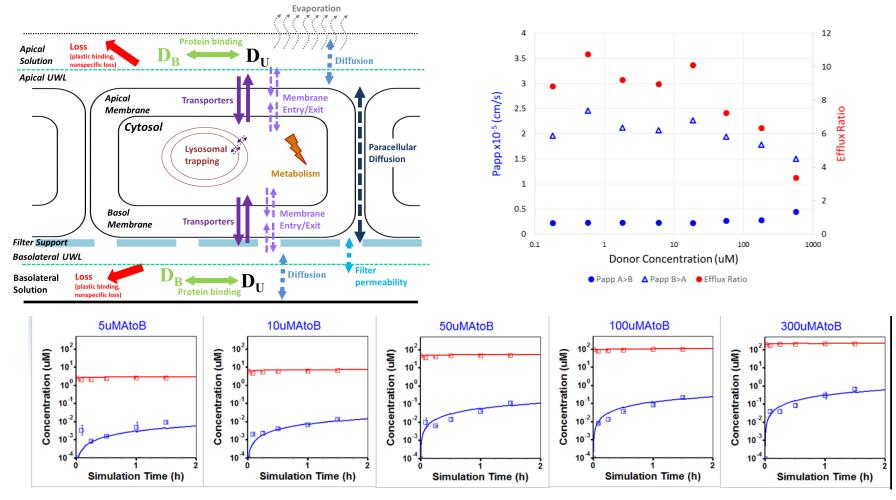

Transporter IVIVE – Scaling of Passive Diffusion Across Tissues


Instead of empirical scaling factors Include PStc scaling across tissues

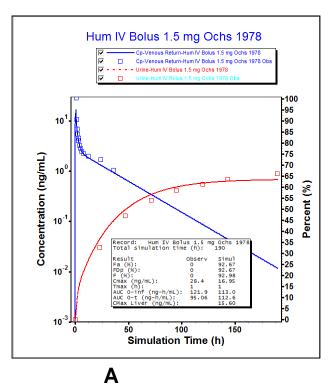
Uptake from plasma (in vitro data) $K_{mI.u}$ (μM) 28.4 ± 3.7 (mg/l eq. µg/ml) 12.4 ± 1.6 V_{maxI} (pmol/mg/min) 1318 ± 176 J_{maxI} (mg/s) 0.0126 ± 0.0017 $P_{\rm dif}$ (µl/mg/min) 1.21 0.42 PS_{TC} (ml/s) 0.0266 ± 0.0092 0.394 ± 0.171 $f_{\rm b} \ (\%)$ Excretion from liver to bil $K_{\rm mE,u}$ (µg/g eq. mg 12.4 0.0126 J_{maxE} (mg/s

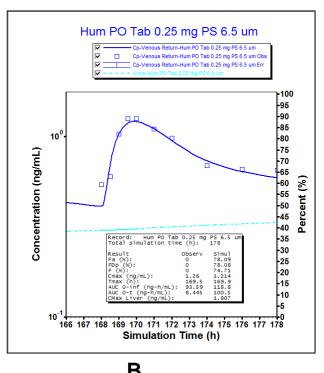
 44.4 ± 14.6 19.3 ± 6.4 304 ± 85 0.241 ± 0.067 0.724 ± 0.271 1.2 ± 0.49 0.417 ± 0.226 IV 20mg adult Flesch

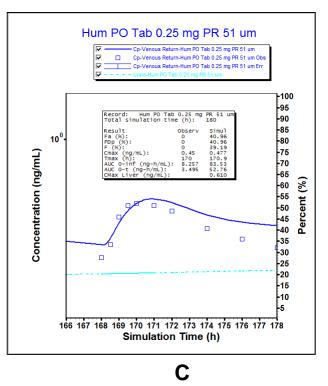
Apply the same approach for human prediction



Lukacova – 17th North American ISSX meeting 2011, Atlanta, GA


IVIVE for efflux of digoxin – determining intracellular unbound Km


The intracellular unbound P-gp K_m for digoxin was found to be 95.3 mM by fitting B->A Papp with MembranePlus across experiments run at eight different concentrations and validated in a separate experiment using kinetic data at five concentrations



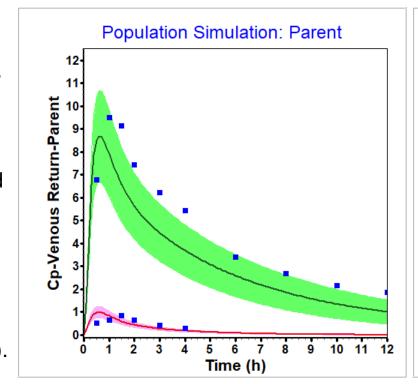
IVIVE for efflux of digoxin – predicting in vivo absorption

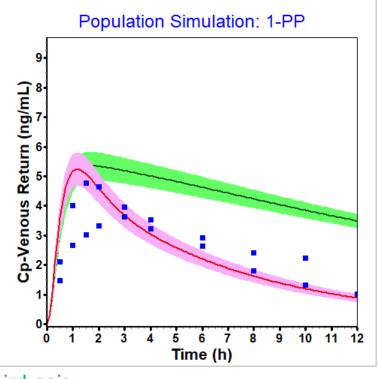
A: Observed (symbols) vs. predicted plasma conc. (blue) and urinary excretion (red) of digoxin (Ochs, 1978).

B: Observed (symbols) vs. predicted plasma conc. (blue) of digoxin for a PO formulation with 6.5 mm radius particle size (Jounela, 1975).

C: Observed (symbols) vs. predicted plasma conc. (blue) of digoxin for a PO formulation with 51 mm radius particle size (Jounela, 1975).

All simulations are using the fitted intracellular unbound P-gp Km value of 95.3 mM

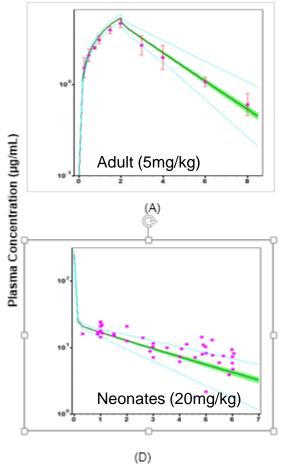

Virtual Trials



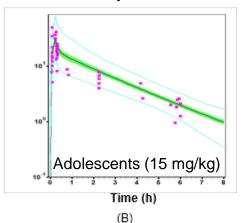
Use Calibrated PBPK Model to:Predict Drug Behavior in Different Populations: Disease State

Pharmacokinetics of buspirone and its metabolite was predicted in patients by accounting for known physiological changes between healthy subjects and patients with liver cirrhosis:

- While the exposure for buspirone increased significantly (left) in decompensated liver cirrhosis, only minor changes were predicted for the 1-pyrimidinylpiperazine metabolite (right).
- Both sets of simulations are in reasonable agreement with observed data (blue points).
- Simulations in both groups of subjects are for 10mg tablet


green – simulation result in patients with cirrhosis; pink – simulation result in healthy subjects

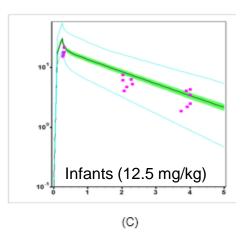
Baseline model described in Macwan J., Poster presentation ACoP 2014

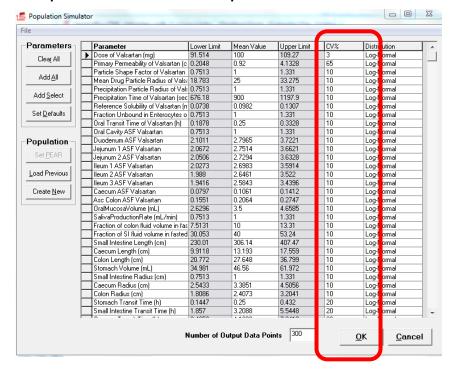


Use Calibrated PBPK Model to: Predict Drug Behavior in Different Po

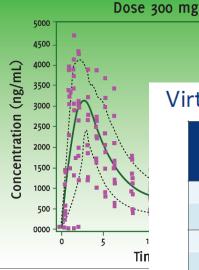
Predict Drug Behavior in Different Populations: Pediatric

Samant et al. – Poster Presentation (Poster # 111) - ASCPT 2015 also Quantitative Systems Pharmacology pre-conference Poster # QP-16




Table 1: Metabolite Ratio for Acetaminophen Pediatric Model Development and Validation

D 1:	APAP-G/	APAP-S	APAP-N/APAP-S		
Ratio Observation ²		Prediction	Observation ²	Prediction	
Adolescent	1.24	1.33	0.24	0.37	
Infant	0.97	1.08	0.17	0.24	
Neonate	0.60	0.71	0.12	0.08	

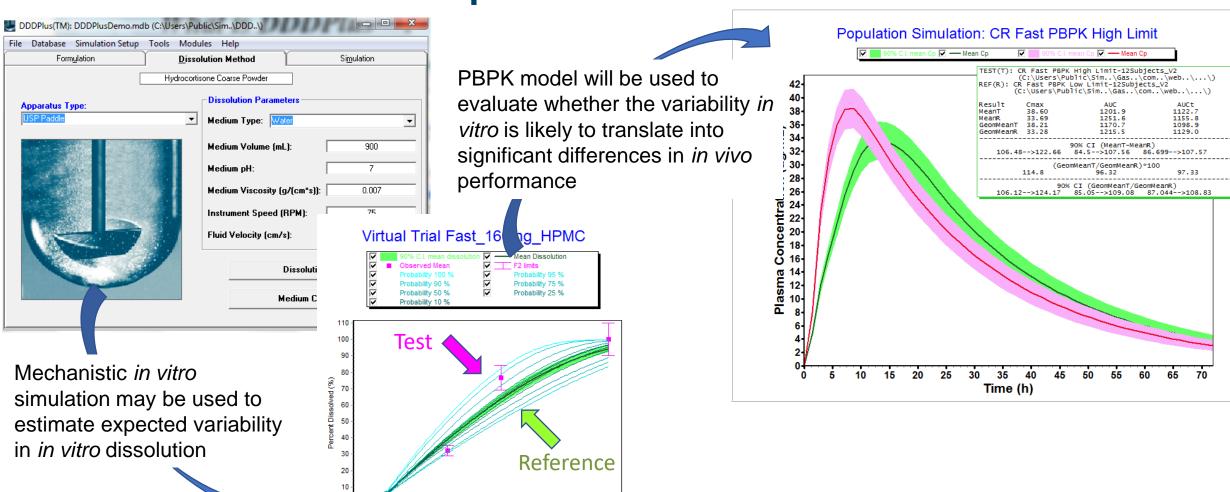

Use Calibrated PBPK Model to: Compare Formulations by Accounting for Variability

Incorporate measured variability for physicochemical, formulation, physiology and PK parameters into Population Simulator

Tistaert, C. AAPS Annual Meeting 2015, Orlando, FL

Capture observed variability from existing clinical PK studies

- Mean Cp
- ··· 90% Percentile
- Observed Individual Data


Virtual Bioequivalence Study Simulations

APILOT PE/NPF		Dose	AUG	C _∞ (ng.h/mL) (N=250)	C,		
		(mg)	GM GMR (90% C		GM	GMR (90% CI)	
Lot 5	PE	50	4180	113.3	551	139.3	段
Lot 1	NPE	50	3688	(110.7, 116.1)			7
Lot 5	PE	100	8242	103.0	551	106.4	
Lot 3	NPE	100	8001	(100.9, 105.1)	395	(104.3, 108.6)	
Lot 5	PE	300	24998	102.2	3118	100.0	
Lot 2	NPE	300	24460	(99.8, 104.6)	3117	(97.7, 102.4)	
Lot 5	PE	100	8242	98.2	1068	95.1	
Lot 4	NPE	100	8395	(96.2, 100.2)	1123	(93.2, 97.0)	_
Lot 5	PE	300	24998	101.9	3118	98.3	
Lot 4	NPE	300	24525	(99.8, 104.1)	3171	(96.3, 100.4)	

API: active pharmaceutical ingredient; AUC_{oc}: area under the plasma concentration-time curve from time 0 to infinite time; CI: confidence interval; C_{max}: maximum observed plasma concentration; GM: geometric mean; GMR: geometric mean ration; NPE: non-particle-engineered; PE: particle-engineered

Use Calibrated PBPK Model to: Establish Dissolution Specifications for a Formulation

500

Summary

- PBPK models allow incorporating different types of *in vitro* measurements into single platform to account for all processes affecting drug's absorption, distribution and elimination.
- Confidence in predictions of *in vivo* behavior based on *in vitro* data still varies between processes due to gaps in physiology characterizations, adequate *in vitro* assays, or lack of validation examples.
- Mechanistic simulations of *in vitro* assays can be used to 'deconvolute' important parameter values and aid in *in vitro in vivo* extrapolation of different processes.
- PBPK models linked with information on population differences and physiological variability allow for prediction of variability in population of subjects, prediction of drug behavior between different groups of subjects, comparison of different formulations.

Questions

Contact: viera@simulations-plus.com

Or visit: www.simulations-plus.com

