Use of In Silico Mechanistic Models to Support Interspecies Extrapolation of Oral Bioavailability and Formulation Optimization: Model Example Using GastroPlus™

Viera Lukacova Director, Simulation Sciences <u>viera@simulations-plus.com</u>

Outline

- Introduction to GastroPlus PBPK model
- Physiological considerations for interspecies extrapolation of oral absorption and bioavailability
- Examples:
 - Salt selection
 - Animal study was used to verify the in silico model prediction
 - Formulation development
 - Mechanistic model was used to understand the formulation behavior *in vivo* based on animal study
 - in vitro in vivo dissolution extrapolation
 - Animal data was used to validate methodology for *in vitro in vivo* dissolution extrapolation
 - Interspecies differences
 - Mechanistic model was used to investigate interindividual and interspecies differences in formulation behavior
- Summary

Discovery PK

Combine *in silico* technologies to screen compound libraries in animals or humans

Incorporate preclinical/*in vitro* data to extend FIH simulations to full *in vivo* outcomes (IVIVE)

Mechanistic predictions of hepatotoxicity through QSP

Clinical PK/Pharmacology

Simulate population behaviors (e.g., pediatrics, disease) Build population PK/PD models

Predict DDIs

Pharmaceutical Development

Assess various strategies during formulation development Assist with Quality by Design (QbD) implementation Develop mechanistic *in vitro-in vivo* correlations (IVIVCs) Understand food effects

SimulationsPlus Cognigen DILIsym Services

SCIENCE+SOFTWARE=SUCCESS

Where are you in the research process?

Save resources and get to market faster with our solutions.

4

- GastroPlus includes mechanistic absorption models for variety of administration routes
- This presentation focuses on oral administration but similar principles could be applied in development of formulations for non-oral administration routes

Advanced Compartmental Absorption and Transit Model (ACAT™)

Processes Involved in Oral Absorption

These phenomena:

- are happening simultaneously
- are repeated in each of the compartments of the gastrointestinal tract

The Big Picture

8

System/Physiology Parameters: Built in the Program, Editable by User

File

GastroPlus <u>(TM</u>): GastDe	mo.mdb	(C:\User	rs\Public\S	imul\Ga	str\)							_		×
ile Edit Databa	ise Sim	ulation S	etup C	ontrolled f	Release	Tools N	Modules ((Optional)	Help						
Compou	nd	Ĩ	Gut	Physiolog	v-Hum	Ĩ	Pharma	cokinetics			Simulation	T T	G	iraph	
Compartmen	tal Par	ametei	s					-							
		Propranc	lol HCl			Be	eset All	🗌 Ex	crete all ur	n-absorbed c	lrug at the end	of gut transit tin	ne		
		ropiane				v	alues	🗌 Ze	ro-order ga	astric emptyir	ng				
			_ C	ompartme	nt Data					En	zyme and Tra	ansporter Re	gional Distril	butions	
Compartment	Peff	ASF	pH	Transit	Volume (mL)	Length	Radius (cm)	SEF	Bile Sal (mM)	lt					
Stomach	0	0.0	1.30	0.25	48.92	29.19	9.87	1.000	0.0	-					
Duodenum	0	2.727	6.00	0.26	44.57	14.58	1.56	4.235	2.800	-					
Jejunum 1	0	2.678	6.20	0.94	166.6	60.26	1.48	3.949	2.330						
Jejunum 2	0	2.675	6.40	0.74	131.0	60.26	1.32	3.489	2.030	-					
lleum 1	0	2.640	6.60	0.58	102.0	60.26	1.16	3.029	1.410	-					
lleum 2	0	2.621	6.90	0.42	75.35	60.26	1.00	2.569	1.160	-					
lleum 3	0	2.589	7.40	0.29	53.57	60.26	0.84	2.109	0.140	-					
Caecum	0	0.352	6.40	4.36	50.49	13.50	3.45	1.790	0.0	-					
Asc Colon	0	0.823	6.80	13.07	53.55	28.35	2.45	2.480	0.0	-					
			-					1							
	1														_
C1-C4 : 0.06	944		3028	0.12	147	0.46	\$632	_		-		նեն /ո	nin).		15
DI 01. [0.00			0020	10.12		10.10		_		Percer	at Fluid in SI-	40	Colon	10	
Physiolog	ly: Huma	in - Physic	ological - F	asted				<u> </u>		1 01001		140	Colon	. [10	
ASF Mode	el: Huma	in - Physic in - Physic	ological - F ological - F	asted ed				^							
	Beagl	e - Physic	logical - F	asted											
	Beagl	le - Physic eu-Cuno -	ilogical - F Physiolog	ied ical - Easter	4										
relevant solubilities	fror Monk	ey-Cyno -	Physiolog	ical Fed	-										
	Monk	.ey-Rhesu .ev-Rhesu	s - Physio s - Physio	logical - Fas logical - Fed	ted			~							
a Table logD: Stru	ct-6.1	Diss Mo	odel: John	ison P	artSize-Sol	ON Bi	leSalt-Sol: C	N Diff: O	N Con	stRad: ON	Precip: Time	Ppara: OFF	EHC: OFF	ACAT: Co	onc

	с		Balanc	e Model 😲 🛛	Expand View	
- LAR input	3			Mahara Iral 1	Destantion for Lat	
pecies:	Human	-	Name Nonatio Arteru		Perrusion [mL/s]	
	, .		Hepatic Artery	1140 7010	100 2700	
opulation:	American	-	Artorial Supplu	2227 0551	106.3733	
	-		Venous Beturn	4455 7102	106.3733	
ender:	Male	-	Adipose	31084 9600	10.3513	
ealth Status:	LLandhau		Muscle	27616 9170	13 8085	
oaidi otada.	Healthy	_	Liver	1707 0197	26 1345	
		•1	ACAT Gut	0.0000	13.9660	
ige: years	→ 30	•	Spleen	170.0108	2.8336	
			Heart	367.5291	4.4717	
			Brain	1492.6488	12.6875	
			Kidney	384.0354	23.5540	
Ŷ			Skin	3036.9386	6.0739	
			ReproOrg	57.6472	0.2018	
leight [cm]:	176.43		RedMarrow	1184.6949	5.9235	
			YellowMarrow	3293.0415	1.6465	
√eight [kg]:	85.53		RestOfBody	3053.4210	1.5267	
	27.4773	Over₩t				
6 Body Fat:	26.34		J			
CO [mL/s]:	106.3799		Non-perfused bone	[g]: 5718.263 (% BW: 6.686)	
	1					

System/Physiology Parameters: Built in the Program, Editable by User

File

1	GastroPlus(TM): GastDe	mo.mdb	(C:\Use	rs\Public\Si	mul\Gas	str\)						-		×
File	Edit Databa	ise Sim	ulation S	Getup C	Controlled R	elease	Tools IV	lodules (C	(ptional)	Help					
	<u>C</u> ompou	nd		Gut	Physiology	-Hum	Ĩ	Pharma	c <u>o</u> kinetics	Ĩ	Simulation	1	<u>G</u> ra	ph	
	Compartmen	tal Par	ameter	's				4							
			Proprano	iol HCI			Re:	set All		crete all un	-absorbed drug at the end of gut trans	sit time			
					ampartmar	t Data			1 20	io-oidei ya	Suc emplying	Pagional	Distribu	tions	_
	CI	D _"	ACE		Transit	Volume	Length	Radius	err	Bile Sall	Enzyme and Fransporter	neyionai	DISCIDU	uons	
	compartment	Fen	ASF	рп	Time (h)	(mL)	(cm)	(cm)	3EF	(mM)	1				
	Stomach	U	0.0	1.30	0.25	48.92	29.19	9.87	1.000	0.0	_				
	Duodenum	0	2.727	6.00	0.26	44.57	14.58	1.56	4.235	2.800					
	Jejunum 1	0	2.678	6.20	0.94	166.6	60.26	1.48	3.949	2.330					
	Jejunum 2	0	2.675	6.40	0.74	131.0	60.26	1.32	3.489	2.030					
	lleum 1	0	2.640	6.60	0.58	102.0	60.26	1.16	3.029	1.410					
	lleum 2	0	2.621	6.90	0.42	75.35	60.26	1.00	2.569	1.160					
	lleum 3	0	2.589	7.40	0.29	53.57	60.26	0.84	2.109	0.140					
	Caecum	0	0.352	6.40	4.36	50.49	13.50	3.45	1.790	0.0					
	Asc Colon	0	0.823	6.80	13.07	53.55	28.35	2.45	2.480	0.0	_				
	•	1								•					
'	C1-C4: 0.06	944	0.4	3028	0.12	147	0.460	632		_	 06 ((I /min)·			15
	DI 01. [0.00			0020	10.12				_		Percent Fluid in SI: 40		Colon:	10	
	Physiolog	UP: Huma	an - Physic	ological - H	asted				<u> </u>				,	10	
	ASF Mode	el: <mark>Huma</mark> Huma	an - Physic an - Physic	ological - F ological - F	asted ed				^						
		Beag	le - Physio	logical - F	asted										
		Beag Monk	le - Physio :eu-Cuno -	logical - F Physiolog	ied Jical - Easted										
Biore	levant solubilities	fror Monk	ey-Cyno -	Physiolog	jical - Fed										~
		Monk	ey-Rhesu: ey-Rhesu:	s - Physio s - Physio	logical - Fast Iogical - Fed	ed									
		[HOIL		<u>o 110000</u>											
											Intectinal	nh	vsic	امر	πiο
											inconnai	рп	ysic	108	SIC.
рКа	Table logD: Stru	ct-6.1	Diss Mo	odel: John	ison Pa	artSize-Sol:	ON Bile	Salt-Sol: O	N Diff: O	N Cons	Bad for huma	$n \gamma$	hd y	vari	oty
			,									II di	iu v	all	ety
											oforin			<u>.</u>	
											or anin	nars	spe	cie	S

PEAR Physiolo	gy				—	
e Legacy Opti	ons					
ew PEAR	Physiology —					
	7 5/		Balance	e Model (👔	Expand View	
		DE		\v		
PEAR input	Ĵ		An Outputs -			
Species:	Humana	ㅋ! ! 느	Name	Volume [mL]	Perfusion [mL/s	1
	Inuman	╧│││┣	Hepatic Artery	0.0000	9.3349	
Population:	American	ㅋ! ! 느	Lung	1140.7018	106.3799	
	I monodii		Arterial Supply	2227.8551	106.3799	
Gender:	Male	ㅋ –	Venous Return	4455.7103	106.3799	
	· · ·	<u> </u>	Adipose	31084.9600	10.3513	
Health Status:	Healthy	- I I I I I I I I I I I I I I I I I I I	Muscle	27616.9170	13.8085	
				1707.0197	26.1345	
Age: years	→ 30 →		ALAT GUT	170.0100	13.3660	_
17			Spieen	170.0108	2.8335	_
			Desim	367.5231	4.4/1/	_
			Kidnou	204 0254	12.0070	-
?				2026 0206	£ 0729	-
Ч ″			BeproOrg	57.6472	0.0733	-
Height (cm)	176.43		BedMarrow	1184 6949	5 9235	-
reight [em].	110.40		YellowMattow	3293 0415	1 6465	
Weight [kg]:	85.53		Rest0fBodu	3053 4210	1.5267	
5.5			Thestonbody	3033.4210	1.0201	
BMI [kg/m^2]:	27.4773 OverV	Vt				
% Body Fat:	26.34					
CO (- 1 1-1	100.0700	No	n-nerfused hone	[a]: 5718-263	2° RW - 6 686 1	
LU [ML/S]:	106.3799		n pendeed bene	[9]. 0110.200		
					1	
					<u>0</u> K	<u>C</u> ancel

System/Physiology Parameters: Built in the Program, Editable by User

📕 G	astroPlus(TM)	: GastDe	mo.mdb	(C:\User	s\Public\Si	mul\Gas	tr\)							×
File	Edit Databa	se Sim	ulation S	etup C	ontrolled R	lelease 🛛	Tools M	odules (C	ptional)	Help				
	<u>C</u> ompour	nd	Ĩ	Gut	Physiology	y-Hum	Ĩ	Pharma	<u>o</u> kinetics	Ĩ	Simulation	<u>G</u> rapl	h	
CC	ompartment	tal Par	ameter	s					= -					
	Propranolol HCI Propranolol HCI Reset All Values Zero-order gastric emptying													
		_	_	Co	ompartmer	nt Data		_	_		Enzyme and Transporter	Regional Distributi	ons	
1	Compartment	Peff	ASF	pН	Transit Time (h)	Volume (mL)	Length (cm)	Radius (cm)	SEF	Bile Salt (mM)				
S	tomach	0	0.0	1.30	0.25	48.92	29.19	9.87	1.000	0.0				
D	uodenum	0	2.727	6.00	0.26	44.57	14.58	1.56	4.235	2.800				
J	ejunum 1	0	2.678	6.20	0.94	166.6	60.26	1.48	3.949	2.330				
J	ejunum 2	0	2.675	6.40	0.74	131.0	60.26	1.32	3.489	2.030				
П	eum 1	0	2.640	6.60	0.58	102.0	60.26	1.16	3.029	1.410				
П	eum 2	0	2.621	6.90	0.42	75.35	60.26	1.00	2.569	1.160				
Ш	eum 3	0	2.589	7.40	0.29	53.57	60.26	0.84	2.109	0.140				
C	aecum	0	0.352	6.40	4.36	50.49	13.50	3.45	1.790	0.0				
A	sc Colon	0	0.823	6.80	13.07	53.55	28.35	2.45	2.480	0.0				
•		1								•				
	C1-C4: 0.06	- 944	0.4	3028	0.12	147	0.466	32					1.	5

PBPK physiologies for human variety of animal species

Human physiologies for different populations, gender, age (newborns through adults) and health status.

Intestinal physiology scales for given population and age

🙀 PEAR Physiol	ogy							×
File Legacy Opt	ions							
New PEAR	Physiolo							
	1 11/ 01010	'9/		Balance	e Model 🛛 🕥	Expand View		
DEAD Input	•		р		V			
	5			EAR Outputs -	-,	· · · · · · · · · · · · · · · · · · ·		_
Species:	Human	-		Name	Volume [mL]	Perfusion [mL/:	<u>s]</u>	
-	Ji raman			Hepatic Artery	0.0000	9.3349	_	
Population:	American	-		Lung	1140.7018	106.3799	_	
/				Arterial Supply	2227.8551	106.3799	_	
Gend	Male	-		Venous Return	4455.7103	106.3799	_	
IL CLARK				Adipose	31084.9600	10.3013	_	
aith Status:	Healthy	_		Liver	1707.0197	13.0000	-	
					0.0000	12 9660	-	
Age: years		-		Soleen	170.0109	2 9326	_	
		_		Heart	367 5291	4 4717	-	
				Brain	1492 6488	12 6875	_	
				Kidneu	384 0354	23 5540	_	
🕐				Skin	3036,9386	6.0739	_	
1				ReproOra	57.6472	0.2018	_	
Height [cm]:	176.43			RedMarrow	1184.6949	5.9235	_	
	-			YellowMarrow	3293.0415	1.6465		
Weight [kg]:	85.53			RestOfBody	3053.4210	1.5267		
BMI [kg/m^2]:	27.4773	Over₩t						
% Body Fat:	26.34							
՝ ԲՈ [m] /ջ]։	106 2799	-	No	on-perfused bone	[g]: 5718.263	(% BW: 6.686)		
co [iiic/s].	100.0700			-				
						<u>o</u> k	<u>C</u> anc	el

Species differences: Solubility/Dissolution

fasted:

Changes in ionization result in chanes in solubility in different regions of the intestine

pH and bile salt concentrations

human

Compai	rtment D	ata							
Compartment	pН	Bile Salt (mM)		Co					
Stomach	1.30	0.0		Sto					
Duodenum	6.00	2.800		Du					
Jejunum 1	6.20	2.330		Jej					
 Jejunum 2	6.40	2.030		Jej					
lleum 1	6.60	1.410		lleu					
lleum 2	6.90	1.160		lleı					
lleum 3	7.40	0.140		lleı					
Caecum	6.40	0.0		Ca					
Asc Colon	6.80	0.0		Ase					

Tat.								
Compartment Data								
mpartment	pН	Bile Salt (mM)						
mach	3.90	0.0						
odenum	5.89	20.00						
unum 1	6.13	17.29						
unum 2	6.13	6.980						
ım 1	5.93	2.820						
ım 2	5.93	1.300						
ım 3	5.93	1.240						
ecum	6.58	0.0						
: Colon	6.23	0.0						

	- 0	
Compar	rtment D	ata
Compartment	pН	Bile Salt (mM)
Stomach	3.00	0.0
Duodenum	6.20	5.000
Jejunum 1	6.20	4.050
Jejunum 2	6.20	1.820
lleum 1	6.40	0.610
lleum 2	6.60	0.440
lleum 3	6.68	0.310
Caecum	6.75	0.0
Asc Colon	6.45	0.0

dog:

Changes in bile salt concentrations in different regions of the intestine may result in changes in solubility (especially for more lipophilic compounds)

$$Sol_{bile,pH} = Sol_{aq,pH} \left(1 + \frac{MWt_{H_2O}}{\rho_{H_2O}} \times SR \times C_{bile}\right)$$

Mithani, Pharm Res 1996, 13:163-167

fed:

Compartment Data							
Compartment	pН	Bile Salt (mM)					
Stomach	4.90	0.0					
Duodenum	5.40	14.44	- [1				
Jejunum 1	5.40	12.02	•				
Jejunum 2	6.00	10.46	•				
lleum 1	6.60	7.280	- jī				
lleum 2	6.90	5.990	- jī				
lleum 3	7.40	0.730	- jī				
Caecum	6.40	0.0	Ī				
Asc Colon	6.80	0.0	1				

Compartment Data									
Compartment	pН	Bile Salt (mM)							
Stomach	3.20	0.0							
Duodenum	5.00	20.00							
Jejunum 1	5.10	17.29							
Jejunum 2	5.10	6.980							
lleum 1	5.94	2.820							
lleum 2	5.94	1.300							
lleum 3	5.94	1.240							
Caecum	5.90	0.0							
Asc Colon	5.51	0.0							

Compar	tment D	ata
Compartment	pН	Bile Salt (mM)
Stomach	5.00	0.0
Duodenum	6.20	15.40
Jejunum 1	6.20	12.50
Jejunum 2	6.20	5.600
lleum 1	6.40	1.900
lleum 2	6.60	1.340
lleum 3	7.05	0.950
Caecum	7.50	0.0
Asc Colon	6.45	0.0

Species differences: Absorption

The model accounts for:

- Difference in pH
- Difference in absorptive surface area
- Difference in pore sizes (tight junctions) and porosities
- Difference in distribution of transporter and enzyme expression levels (where known)

Example of interspecies differences

in paracellular absorption

Observed data from He-JPharmSci 1998, 87: 626-633

Species differences: Absorption

The model accounts for:

- Difference in pH
- Difference in absorptive surface area
- Difference in pore sizes (tight junctions) and porosities
- Difference in distribution of transporter and enzyme expression levels (where known)

Example of interspecies differences in transporter distributions (mRNA)

Figure 1. RT-PCR analysis of human PepT1, PTR3, PHT1, and HPT-1 mRNAs in the human esophagus (A), stomach (B), duodenum (C), jejunum (D), ileum (E), ileocecum (F), cecum (G), ascending colon (H), transverse colon (I), descending colon (J), rectum (K), and in Caco-2 cells (L). RT-PCR was performed with specific primers for each mRNA and amplified products of PepT1, PTR3, PHT1, and HPT-1 were 588, 470, 443, and 1004 bp, respectively. Reaction products were electrophoretically separated in 1.4% agarose gels, stained with ethilum bromide (top panels), and identity confirmed by Southern Blot analysis (lower panels). Commercially available human β-actin primers were used to generate a mRNA actine a mRNA expression positive control, amplifying a product of 303 bp.

Herrera-Ruiz AAPS PharmSciTech 2001, 3(1) article 9

Figure 2. RT-PCR analysis of rat PepT1, PTR3, PHT1, and RPT1 mRNAs in the rat stomach (A), duodenum (B), jejunum (C), lieum (D), lieoccal junction (E), occum (F), and colon (G), RT-PCR was performed using specific primers for rat PepT1, PHT1, and RPT-1 mRNAs amplifying products of 523, 437, and 860 hp, respectively. Analysis of PTR3 mRNA expression in the rat tissues was performed using primers designed from the human PTR3 mRNA sequence (Table 1). Reaction products were electrophoretically separated in 1.4% agarose gels, stained with ethidium bromide (top panels), and identity confirmed by Southern Blot analysis (lower panels). Ratspecific **D**, actin primers were designed to generate a mRNA expression-positive control, amplifying a product of 375 bp.

> S+ SimulationsPlus SCIENCE + SOFTWARE = SUCCESS

14

Examples

Salt Selection I

- Mechanistic absorption model was used for sensitivity analysis • to determine solubility requirements for the select salt form
- Animal PK study (rat) was conducted to verify the predictions •

Predicted curve

Measured

Solubility of

Sodium Salt

from Ksp

---- Solubility of

Piperazine Salt

 \diamond

15

Salt Selection II

Fig. 2. Plot of observed *vs.* predicted concentration–time profile of phenytoin free acid dosed at 100 mg/kg in rats (n=3). Simulations were performed using an oral rat PBPK model (See supplemental Fig. 3 for more information on simulation)

Fig. 3. A parameter sensitive analysis showing the relationship between solubility and the percent of a 100 mg/kg phenytoin dose that is absorbed

in vivo study in rat confirmed the results of sensitivity analysis

Table II. In Vivo Pharmacokinetics of Phenytoin Following Administration of a 100 mg/kg Oral Dose to Rats in the Form of the Free Acid or
Salts ($n=3$ per Dose Group)

Group	Form dosed	Precipitation inhibitor	AUC ($\mu M \times h$)	C_{\max} (μ M)	%F
1	Free acid	No	155±61	18±1	34±8
2	Na salt	No	444±96*	$36 \pm 6^*$	97±22*
4	Piperazine salt	No	493±159*	36±12*	107 ± 40
3	Na salt	Yes	405±168*	35±15*	88±36*
5	Piperazine salt	Yes	405±74*	$30 \pm 4*$	88±19*

AUC area under the concentration-time profile, C_{max} maximum observed concentration

*p<0.05; significantly different than group 1 using ANOVA followed by the least significant difference (LSD) post-hoc test

Select Formulation to Mitigate Food Effect I

AAPS PharmSciTech, Vol. 14, No. 3, September 2013 (© 2013) DOI: 10.1208/s12249-013-0018-2

Research Article Theme: Leveraging BCS Classification and in-silico Modeling for Product Development Guest Editors: Divyakant Desai, John Crison, and Peter Timmins

Utility of Physiologically Based Modeling and Preclinical In Vitro/In Vivo Data to Mitigate Positive Food Effect in a BCS Class 2 Compound

Binfeng Xia,¹ Tycho Heimbach,^{1,4} Tsu-han Lin,¹ Shoufeng Li,² Hefei Zhang,³ Jennifer Sheng,³ and Handan He¹

NVS123

- weak base with pH-dependent and limited solubility
- when administered as dry filled capsules displayed positive food effect
- in vitro, in vivo preclinical (F1-F4) and/or clinical (F1-F3) studies and PBPK modeling was used to evaluate formulation strategies to mitigate the food effect.

Select Formulation to Mitigate Food Effect II

- In vivo data from animal (dog) study was used to analyze formulation behavior and determine the most likely cause of observed food effect
- Differences in precipitation rates explained differences between fasted and fed state for the four formulations; these
 differences were supported also by *in vitro* experiments where precipitation was fasted in FaSSIF than in FeSSIF media for
 F1-F3.

	F1		F2		F3		F4	
Parameters	OBS	SIM	OBS	SIM	OBS	SIM	OBS	SIM
Dose (mg)								
Fasted	50	50	50	50	50	50	50	50
Fed								
$C_{\rm max}$ (ng/mL)								
Fasted	510	610	670	735	595	737	560	801
Fed	880	920	929	935	934	932	695	720
AUC _{0-inf} (µg×h/	mL)							
Fasted	3.22	3.20	4.57	4.71	3.31	3.81	3.15	2.80
Fed	6.60	6.10	7.02	6.12	7.75	6.16	2.89	3.13
$t_{\rm max}$ (h)								
Fasted	1	1.4	2	1.7	1.5	1.4	1	1.6
Fed	2	2.1	2	2	2	2.2	1.5	2.3
Precipitation tim	$e(s)^{a}$							
Fasted	N/A	1,000	N/A	1,800	N/A	1,500	N/A	4,000
Fed	N/A	3,500	N/A	3,000	N/A	3,000	N/A	4,000
Correlation coef	ficient (R ²) ^b							
Fasted	N/A	0.98	N/A	0.94	N/A	0.9	N/A	0.91
Fed	N/A	0.9	N/A	0.99	N/A	0.98	N/A	0.92
RMSE ^c								
Fasted	N/A	32.1	N/A	77.7	N/A	99.5	N/A	95.0
Fed	N/A	104	N/A	37.3	N/A	47.3	N/A	77.0

Fig. 2. Observed and simulated mean plasma concentrations after a single administration of 50 mg of NVS123 given as F1 (a), F2 (b), F3 (c), or F4 (d) formulation in dogs under fasted and fed state. Symbol annotation: *open triangles* observed fasted concentration with standard deviation; *open circles* observed fed concentration with standard deviation; *dotted curve* simulated mean fasted concentration; and *solid curve* simulated fed concentration

^{*a*} Precipitation time (T_p) was fitted against *in vivo* dog PK profiles in the model

^b Correlation coefficient between the observed concentration and simulated values

^c Root mean square prediction error (RMSE) of plasma concentration. RMSE= $\sqrt{\sum (SIM - OBS)^2/N}$ where N is the number of observed data points

SCIENCE + SOFTWARE = SUCCESS

Select Formulation to Mitigate Food Effect III

- In vivo data for the F1-F3 formulations in human was used to confirm that the fitted precipitation rates in dog translated to human and to evaluate relationship between in vitro and in vivo dissolution
- The methodology was applied to predict behavior F4 in fasted and fed condition in human

Fig. 3. Comparison of in vitro dissolution, adjusted Weibull input dissolution, and predicted in vivo dissolution as well as deconvoluted and predicted systemic availability for F1 (a, b), F2 (c, d), and F3 (e, f) formulation under fasted (a, c, d) and fed (b, d, f) state

Time (h)

state. Symbol annotation: open triangles observed fasted concentration with standard deviation: open circles observed fed concentration with standard deviation; dotted curve simulated mean fasted concentration, and solid curve simulated fed concentration. Insert panel: observed and simulated mean plasma concentrations of each formulation from 0 to 12 h

Fig. 6. a Comparison of in vitro dissolution and adjusted Weibull input dissolution for F4. b Simulated plasma concentration with 90% confidence interval (CI) after a single dose of F4 formulation (200 mg) under fasted and fed state

Select the Most Relevant in vitro Assay I

Lacidipine

- Rat and Dog data after IV and PO suspension administration were used to validate prediction of systemic distribution, elimination and intestinal absorption
- Dog PO data was used to select the most predictive in vitro dissolution experiment and validate methodology for in vitro – in vivo dissolution extrapolation

RSC Advances

View Article Online View Journal | View Issue

Cite this: RSC Adv., 2015, 5, 19844

Interspecies prediction of oral pharmacokinetics of different lacidipine formulations from dogs to human: physiologically based pharmacokinetic modelling combined with biorelevant dissolution

Chunnuan Wu,^a Longfa Kou,^a Panqin Ma,^b Lifang Gao,^a Bo Li,^a Ran Li,^a Cong Luo,^a Jianzhong Shentu,^c Zhonggui He^a and Jin Sun^{*ad}

Select the Most Relevant in vitro Assay II

Fig. 1 Dissolution profiles of three lacidipine formulations in biorelevant dissolution media (data are mean \pm S.D., n = 3).

Formulation A Formulation B Formulation C 0.021FaSSIF 0.010 0.059 FaSSIF-V2 0.045 0.0120.199 20 в Dog plasma concentration (ng/mL) FaSSIF - FaSSIF-V2 Observed 10 25

Dog data after PO administration of different formulations was used to select the most predictive *in vitro* dissolution experiment and test the methodology for prediction of in vivo dissolution

;Plus

SUCCESS

Select the Most Relevant in vitro Assay III

The data from most predictive *in vitro* dissolution experiment was used to predict human PK

Fig. 8 The simulated and observed human *in vivo* PK profiles for the three lacidipine formulations using the Z-factor form FaSSIF-V2 dissolution media.

Explore Interspecies Differences in Oral Absorption I

The AAPS Journal, Vol. 18, No. 4, July 2016 (© 2016) DOI: 10.1208/s12248-016-9913-2

Research Article Theme: Revisiting IVIVC (In Vitro-In Vivo Correlation) Guest Editors: Amin Rostami Hodjegan and Marilyn N. Martinez

Use of Modeling and Simulation Tools for Understanding the Impact of Formulation on the Absorption of a Low Solubility Compound: Ciprofloxacin

Marilyn Martinez,^{1,2} Bipin Mistry,¹ Viera Lukacova,¹ Jim Polli,¹ Stephen Hoag,¹ Thomas Dowling,¹ Ravikanth Kona,¹ and Raafat Fahmy¹

The AAPS Journal, Vol. 19, No. 3, May 2017 (© 2017) DOI: 10.1208/s12248-017-0055-y () CrossMark

Research Article

Theme: Revisiting IVIVC (In Vitro-In Vivo Correlation) Guest Editors: Amin Rostami Hodjegan and Marilyn N. Martinez

Exploring Canine-Human Differences in Product Performance. Part II: Use of Modeling and Simulation to Explore the Impact of Formulation on Ciprofloxacin *In Vivo* Absorption and Dissolution in Dogs

M. N. Martinez,^{1,7} B. Mistry,¹ V. Lukacova,² K. A. Lentz,³ J. E. Polli,⁴ S. W. Hoag,⁴ T. Dowling,⁵ R. Kona,⁶ and R. M. Fahmy¹

Ciprofloxacin:

- Mechanistic absorption/pharmacokinetic models for ciprofloxacin were used to deconvolute dissolution and absorption behavior after oral administration (solution and two table formulations) in human and dog
- Deconvoluted dissolution and absorption profiles provided insights into causes of intersubject variability and interspecies differences in ciprofloxacin behavior *in vivo*

Explore Interspecies Differences in Oral Absorption II

in vivo dissolution and absorption in human

2	
Ζ	J

Table II. The ADMET predictor-generated ciprofloxacin physicochemical characteristics

Molecular weight (g/mol)	331.35
pKa	
Acid	5.75
Base	8.9
Aqueous solubility	
pH 7.32	0.0266
Simulated gastric fluid	5.54
Fasted simulated small intestinal fluid	0.76
pH = 6.5	
Bile salt concentration = 3 mM	
Fed simulated small intestinal fluid	0.73
pH = 5.0	
Bile salt concentration = 15 mM	
Solubilization ratio	2.30E + 05
Log P	0.81
Log D	
pH = 1.2	-1.9
pH = 4.6	-1.67
pH = 6.8	-0.85
pH = 7.4	-0.83
Diffusion coefficient ($cm^2/s \times 10^5$)	0.76
Peff (cm/s $\times 10^4$)	0.56

Explore Interspecies Differences in Oral Absorption III

Fig. 2. Comparison of observed ciprofloxacin absolute bioavailability in the three formulations: dogs (n = 5) versus human (n = 16)

Fig. 5. Mean fraction (stdev) of administered dose absorbed as a function of formulation across the intestinal segments of dogs (a) and humans (b)

Summary

- PBPK models provide unique platform to combine information from *in vitro, in silico* and animal assays for accurate prediction of complex drug behavior *in vivo*
- These models are now routinely used to predict first-in-human exposure, and applications in the area of formulation design and development have also been increasing in last few years
- The models are useful not only for prediction of drug exposure before an *in vivo* study, but are invaluable tool in investigation of complex drug/formulation behaviors observed *in vivo*
- There are still gaps in characterization of physiologies (especially in animals), closing these gaps will further increase accuracy and utility of these models

GastroPlus Development Team

Simulation Technologies Team

Viera Lukacova (Director, Simulation Sciences) Jim Mullin (**TL**) Haiying Zhou (**TL**) Ke Xu Szeto Jessica Spires Azar Shahraz

With support from:

Michael Bolger, Ph.D. (Chief Scientist)

and other teams at Simulations Plus:

Computational Technologies Consulting Studies ADMET Cheminformatics Discovery Cheminformatics

Thank you for your kind attention!

