Quantitative Systems Toxicology (QST) Modeling of Drug-Induced Acute Proximal Tubule Epithelial Cell Injury and Associated Renal Hemodynamic Responses

Nader Hamzavi, Yeshitia Gebremichael, Jeffrey L. Woodhead, Sergey Ermakov, and Brett A. Howell

DILysm Services Division, Simulations Plus company, Research Triangle Park, NC, Valo Health, Boston, MA, Daichii Sankyo, Inc, Hayward, CA

INTRODUCTION

• Renal proximal tubule epithelial cells (RPTEC) are vulnerable to drug-induced toxicities which often result in acute kidney injury (AKI).
• Drug toxic effects range from mild sub-lethal RPTEC injuries to cellular death via multiple cellular damage mechanisms. At the systems level, decline in glomerular filtration rate (GFR) is a common manifestation of AKI.
• The complexity of pathophysiological responses (cellular, neurohormonal, hemodynamic) that lead to impaired filtration pose a challenge for reliable prediction of AKI.
• QST modeling is a promising method for translating cellular-level renal damage to clinical manifestations of AKI.

METHODS

• We developed RENAsym TM, a QST model of drug-induced AKI that includes key cellular injury mechanisms and renal hemodynamic responses.
• At the cellular level, RENAsym represents RPTEC life cycle, bioenergetics, and immune responses to renal toxicity. In vitro assays were used to parameterize key cellular injury mechanisms.
• At the systems level, RENAsym model represents renal function and feedback mechanisms including tubuloglomerular feedback (TGF) and renin-angiotensin-aldosterone systems (RAAS).
• RENAsym was employed to characterize the renal hemodynamic responses of drug induced RPTEC injury in humans and rats treated with nephrotoxic drugs including cisplatin.

RESULTS

• The model quantitatively relates cellular injury and biomarker changes with renal hemodynamic responses.
• Nephrotoxic drugs such as cisplatin are used to assess drug-induced proximal tubule cell injury.
• At the cellular level, urinary biomarkers such as KIM-1 and αGST were used to represent cell injury (ROS/Mito dysfunction/Crystal nephropathy) and death following cisplatin exposure. RENAsym was able to capture the elevations in KIM-1 and αGST in rats treated with cisplatin.
• At the systemic level, functional biomarkers such as GFR and serial creatinine were used to represent the hemodynamic response of nephrotoxic drugs.

• Simulated rat cisplatin model compares well to the observed data for functional and urinary biomarkers at two different doses
 – Simulated viability at 2.5 mg/kg cisplatin in rats predicts a mild injury and recovery of PTC loss and GFR loss compared to 5 mg/kg cisplatin where PTC loss is not fully recovered representing a stronger injury
 – Functional biomarkers (e.g. serum creatinine) as well as urinary biomarkers (e.g. urinary αGST and KIM-1) are recapitulated for cisplatin-mediated injury in RENAsym

CONCLUSION

We developed a quantitative systems toxicology model of drug-induced acute kidney injury

• RENAsym represents kidney function at cellular and organ levels in healthy and pathologic states caused by toxic drug effects.
• RENAsym can predict clinical outcomes during AKI using functional and urinary biomarkers.
• Different nephrotoxic drugs are represented in RENAsym, e.g. cisplatin, to describe drug induced cellular injury and subsequent hemodynamic changes.

REFERENCES

• This work was supported by the NIDDK of NIH grant R44DK118981.

ACKNOWLEDGEMENTS

We developed a quantitative systems toxicology model of drug-induced acute kidney injury

• RENAsym represents kidney function at cellular and organ levels in healthy and pathologic states caused by toxic drug effects.
• RENAsym can predict clinical outcomes during AKI using functional and urinary biomarkers.
• Different nephrotoxic drugs are represented in RENAsym, e.g. cisplatin, to describe drug induced cellular injury and subsequent hemodynamic changes.

REFERENCES

• We developed RENAsymTM, a QST model of drug-induced AKI that includes key cellular injury mechanisms and renal hemodynamic responses.
• At the cellular level, RENAsym represents RPTEC life cycle, bioenergetics, and immune responses to renal toxicity. In vitro assays were used to parameterize key cellular injury mechanisms.
• At the systems level, RENAsym model represents renal function and feedback mechanisms including tubuloglomerular feedback (TGF) and renin-angiotensin-aldosterone systems (RAAS).
• RENAsym was employed to characterize the renal hemodynamic responses of drug induced RPTEC injury in humans and rats treated with nephrotoxic drugs including cisplatin.