Model-Informed Drug Development

2021 Virtual Conference

Designing Novel Compounds with Optimized Target Activity and ADMET Properties Using the AIDD[™] Module

Michael S. Lawless, David Miller, and Marvin Waldman

Copyright 2021

AIDD Module

- Goal design compounds that have:
- High potency at the primary target
- High synthetic feasibility
- Good ADMET and pharmacokinetic (PK) properties

AIDD Workflow

SI Simulations Plus Cognigen | DILIsym Services | Lixoft

2021 Virtual Conference

Generate Molecules Using Transform Rules

SMIRKS Transforms

- Bioisosteric replacements
- Reactions from literature or in-house expertise
- Chemically-intelligent "mutations"

Users can modify the default rules

SF SimulationsPlus Cognigen | DILlsym Services | Lixoft

Chemically Intelligent Transforms

- Example: Convert Non-fluorine to fluorine
 - Simple version: [!#9:1;D1_S]>>[#9:1]
 - Problem (Need to avoid)

Highly reactive acid halide

- Improved SMIRKS: [!#9;D1_S\$(*~[#6])!\$(*C=[O,N,S]):1]>>[#9:1]
- Currently ~150 transforms

Transforms CHANGE FUNCTIONAL GROUP 2-Pyridone_to_Phenyl 4-Hydroxypyridine_to_pyridone ✓ 4-Pyridone_to_Phenyl Acid_to_aliph_ring Acid_to_arom_ring Acid_to_tetrazole Add_double_bond_oxygen Amide arom insertion Amide reversal Amide_to_hydroxy Amide_to_hydroxy(2) Amide_to_olefin Arom_ring_to_ester(1) Arom_ring_to_ester(2) Arom_ring_to_propyl CF3_to_methyl Carbonyl_to_sulfonyl Catechol to imidazole Catechol_to_pyridone Charged_nitrogen_to_carbon Ester_to_amine Ester_to_arom_ring Ester_to_retroamide Ester_to_sulfonamide Ether_to_ethylene Ethylene_to_ether Het to sulfone ✓ Hydroxy_to_amide

	~	1	ADE	_FUNCTIONAL_GROUP
	-		•	Add_1-imidazole
			•	Add_1-tetrazole
			•	Add_1-thiazole
	-		•	Add_2-imidazole
	-		•	Add_2-tetrazole
	-		~	Add_2-thiazole
	-		~	Add_3-piperideine
	-		~	Add_3-tetrazole
	-		~	Add_3-thiazole
	-		~	Add_CF3
	-		4	Add_amide
	-		•	Add_amine
	-		•	Add_bromo
	-		•	Add_carboxylic_acid
	-		•	Add_chloro
	ŀ		4	Add_cyano
	ŀ		•	Add_cyclohexyl
	ŀ		•	Add_cyclopentanone
	ŀ		~	Add_fluro
	ŀ		•	Add_hydroxyl
	ŀ		•	Add_iodo
	ŀ		•	Add_meta_furan
	ľ		•	Add_meta_pyrrole
	ŀ		•	Add_meta_thiophene
	ŀ		•	Add_methyl
	-		•	Add_methyl_imide
	ŀ		2	Add_n_sulfonamide
	ŀ		2	Add_nitro
	-		4	Add_ortho_furan
-	_	-	_	

Cognigen | DILIsym Services | Lixoft

- Starting structure is atomoxetine
- Use transformations from "ADD_FUNCTIONAL_GROUP"
- Creates 403 compounds
- A few diverse compounds are shown on the right

Synthetic Feasibility Assessment

Based on method from Ertl and Shuffenhauer, J. Cheminfo, 2009, 1, 8.

Score = fragmentScore - complexityPenalty

Fragment frequencies

ECFP of PubChem compounds
Does the proposed compound contain fragments of compounds that have been synthesized?

Model-Informed Drug Development

Heavy Atoms Macrocycles Stereocenters Spiro centers Bridges

Synthetic Accessibility/Difficulty

	SA Ertl ¹	SynthDiff ²
Training	~1 million	~47 million
Outer Layer	Any	aromatic vs. aliphatic
Complexity	Same	Same
Range	1-10	0-10

¹Ertl and Shuffenhauer, *J. Cheminfo*, **2009**, **1**, 8. ²Implemented in ADMET Predictor

Distribution of SynthDiff Scores

Model-Informed Drug Development

2021 Virtual Conference

SI SimulationsPlus Cognigen | DILlsym Services | Lixoft

10

Pareto Optimal Selection

AIDD Module uses Pareto algorithm to select best molecules
Pareto selection tool is also available in ADMET Predictor

ILE ED	T VIEW DATA CHEMISTRY	TOOLS DE	Pareto optimal selection					
	Undo	Ctrl+Z	Available properties		Properties to optimize			
	Redo	Ctrl+Y	▼x ▼y		Attribute	Direction		
	Copy Structure Ctrl+C		▼ y		x	Minimize		
	Copy As SMILES	1			у	Minimize		
1	Insert Clipboard Structure Insert Clipboard SMILES							
	Query By Structure/Property Ctrl+Q				Demons All	Damage Calentard		
	Find Text	Ctrl+F			Nemove All	Remove Selected		
	Find Column	Ctrl+Alt+F						
	Search And Replace				1 Minimum selection size			
2	Select All	Ctrl+A						
	Deselect All	Ctrl+D						
	Invert Selection	Ctrl+I				OK		
	Salart Using File					OK		
з	Select Pareto Optimal Subset			sk All		Cancel		
	MOVE KOWS	-						
-	Delete	Del						

- Red points 1st Pareto front
- Green points 2nd Pareto front

pareto - ADMET Predictor

Apply penalty to

predictions that

Applicability Domain

SI SimulationsPlus Cognigen | DILlsym Services | Lixoft

After Applying "Penalties"

	Structure	OBJ_HIVI-ST	ADMET_Risk	SynthDiff	HIVI-ST	HIVI-ST+	ADMET_Risk+	SynthDiff+
1	0===== 00 ==== 0 = N-N- 0 = N-N- 0 = 0 = 0 0 = 0 = 0 0 = 0 = 0 0 = 0 = 0	12.799	3.000	4.256	<u>12.799</u>	2.799	14.000	8.253
2	HO HO HO HO HO	6.525	3.956	2.313	<u>6.525</u>	-3.475	11.956	6.312
3	HO CHO CHI	12.248	3.500	4.181	<u>12.248</u>	2.248	13.500	7.897
4		12.163	6.000	4.132	<u>12.163</u>	2.163	15.000	7.848
5		11.952	4.000	4.082	<u>11.952</u>	1.952	15.000	6.848
6	H0 H0 H0 H0 H0 H0	11.051	1.694	3.674	<u>11.051</u>	1.051	13.404	7.674

Model-Informed Drug Development

2021 Virtual Conference

The out of scope penalty results in deprioritization of molecules that are outside the applicability domain of the model.

13

Flip Side of the Coin: Capping Values

	Structure	OBJ_HIVI-ST	ADMET_Risk	SynthDiff
1		3.645	1.000	0.000
2		3.676	1.000	0.000
3		3.846	1.000	0.000
4	——ОН	3.506	0.431	0.131
5		3.173	1.000	0.243
6		3.250	1.000	0.384

Model

2021

Properties to optimize							
Name <synthetic_difficulty+> ADMET_Risk <fraction (%fb)="" bioavailable=""></fraction></synthetic_difficulty+>	Direction Minimize Minimize Maximize	Capping Value 2.5 90					
Modify Selected Remove Trivially Simple Mole Very easy to make Very good in one ob	Remove All						
Assigning a capping value tends to filter out such molecules. The capping value is assigned as the result when the actual result is "better", because this value is "good enough".							

S

Applying Capping Values: Example

	Structure	OBJ_HIVI-ST	ADMET_Risk	SynthDiffCap		Structure	OBJ_HIVI-ST	ADMET_Risk	SynthDiff+	SynthDiffCap
1		3.645	1.000	2.500	1	HO	4.524	0.000	1.880	2.500
2	\frown	3.676	1.000	2.500	2	OH I	4.228	0.000	1.907	2.500
3		3.846	1.000	2.500	3	HO	4.701	0.000	2.356	2.500
4	——ОН	3.506	0.431	2.500		Molecules	s on right	"domina	ite" mol	ecules
5		3.173	1.000	2.500		on left aft	er applyi	ng cappir	ng to Syr	hthDiff
6		3.250	1.000	2.500						

 \bullet

A Few Results

AIDD_Results_AutoDisplay - ADMET Predictor

Model-Informed Drug Development 2021 Virtual Conference - 8 ×

AIDD Module

Goal – design compounds that have:

- High activity based on a QSAR model
 - Penalizes out of scope predictions
- High synthetic feasibility
 - Based on fragment counts of PubChem compounds
- Good ADMET and PK properties
 - Incorporates absorption, CYP metabolism, toxicity, and oral bioavailability

Questions & Answers

Michael Lawless mlawless@simulations-plus.com

Model-Informed Drug Development

om

Learn More! www.simulations-plus.com