Model-Informed Drug Development

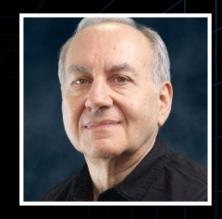
2021 Virtual Conference

Untold Stories of Data Curation

MDCK Project : Data Curation & Modeling

Phyo Phyo Kyaw Zin, Pankaj Daga, Michael Lawless, Bob Clark

Acknowledgement

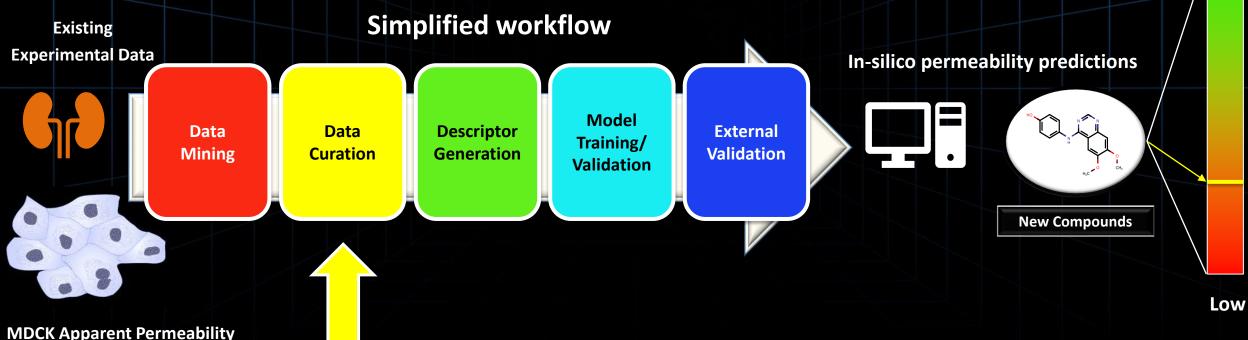

Pankaj Daga

Michael Lawless

Robert Clark

Marvin Waldman

David Miller



Apparent Permeability

MDCK (Madin-Darby Canine Kidney)

- MDCK is a popular mammalian cell line used to measure apparent permeability.
- Permeability is an important property of drug candidates that influences absorption & distribution. High

MDCK Data Curation Workflow

Original Set (13k entries)

Data mining from databases & literature

ChEMBL, GOSTAR, Litero

Cell line categorization

Distinguishing avacrimental 9 prodicted values

Fourches, D., Muratov, E., & Tropsha, A. (2011). Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research.

A fundamental assumption of any cheminformatics study is the correctness of the input data generated by experimental scientists and available in various datasets. Nevertheless, a recent study⁶ showed that on average there are two errors per each medicinal chemistry publication with an overall error rate for compounds indexed in the WOMBAT database⁷ as high as 8%. In another recent study⁸, the authors investigated several public and commercial databases to calculate their error rates: the latter were ranging from 0.1 to 3.4% depending on the database.

Waldman, M., Fraczkiewicz, R., & Clark, R. D. (2015). Tales from the war on error: The art and science of curating QSAR data. *Journal of Computer-Aided Molecular Design*, 29(9), 897–910.

An enormous body of data is now available for use in modeling quantitative structure/activity relationships (QSARs) and modern cheminformatics tools make it more accessible than ever before. Fortunately, most of the data are accurate, which is a testament to the skill and determination of those who produced it. Unfortunately, the fraction that is not accurate is uncomfortably large—estimated at up to 10 % overall [1, 2]. This is not surprising, given that access to the data is primarily through secondary sources—large public and commercial compilations—and

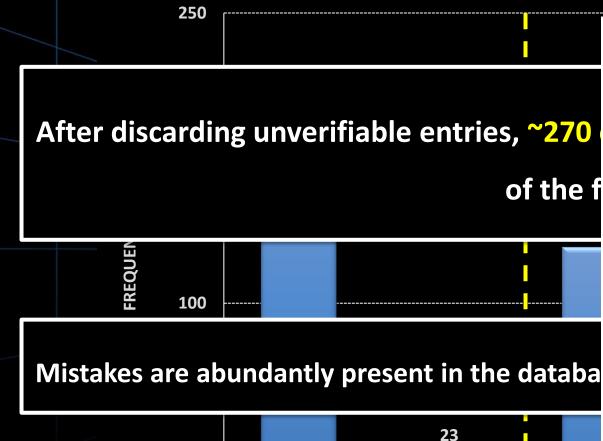
Data Analysis +
Automated Scripts +
Duplicate Assessment +
Human Intelligence +

Manual Assessment

Chemical Data Curation

Mistake Detection
(Papp Values, Cell-lines, Structures, Units)

Manual Inspection


Mistake Diagnosis and Correction

Curated Set (891 entries)

Mistakes Found During MDCK Data Curation Process

ambiguous cell-line

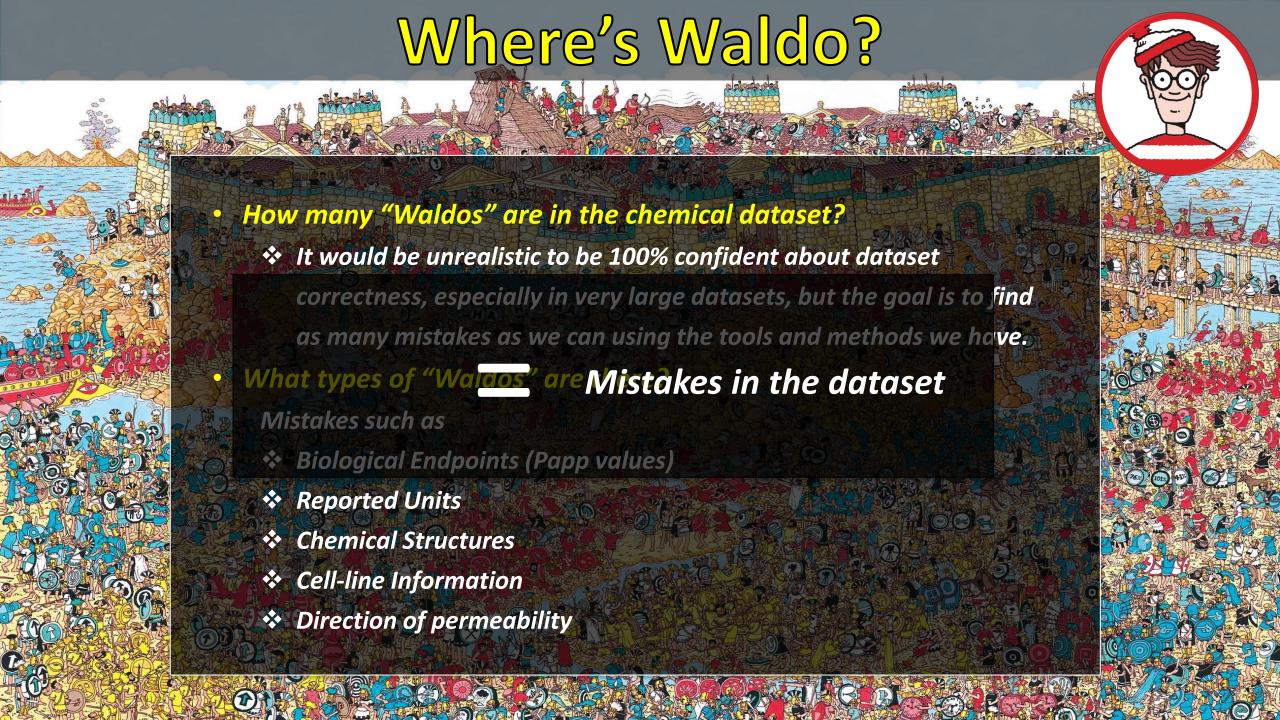
Table 4. Pharmaceutical Property Profile of Selected Compounds^a MDCK A-B Papp MDCK B-A Papp solubility compound (μM) (10^6 s^{-1}) >100 36.4

for ~30%

 $F_{\rm u}$ (%) < 0.0026 >100 27.8 < 0.0005 5n >100 14.7 >100 0.61 < 0.0008 6g < 0.0003 >100 0.33 >100 16.7 14.1 < 0.0004 >100 12.9 3.4 < 0.0002 7c >100 < 0.0006 45.2 >100 < 0.0006 14.0 58.4 0.003 7n>100 7p >100 4.79 0.004 >100 3.89 0.0007 7q >100 16.1 0.002 >100 18.6 < 0.0003

curation.

wrong cell line annotation


odd unit

wrong Papp direction

wrong Papp values wrong structure

^aAll experiments performed at Q² Solutions Ltd.

Inconsistency in Papp Unit Formats Reported

Physical properties for compounds 11–13									
Compd	$\log D_{7.4}^{\mathrm{a}}$	Mouse PPB ^b (% free)	Rat PPB ^b (% free)	Solubility ^c (μM)	MDCK permeability ^d Papp $(\times 10^{-6} \text{ cm s}^{-1})$	CYPS ^e IC ₅₀ (μM)	$\begin{array}{l} hERG^f\ IC_{50} \\ (\mu M) \end{array}$	Rat Heps Clint (μL/min/ 10 ⁶ ells)	
4.4	2.0	0.4	F 1	2.2	22 (A D). (D A)	A11 × 20	10	13	

Source of error: Database

Type of error: Unit Formatting Inconsistency from Literature

Detection: Distribution Analysis

						5 7			
2	Corrected t	to 10 ⁻⁶ cm/s	15	0.033					<u> </u>
44	oon colou		5	0.007		-C/4	W. T.		
49	70	7	12	0.028	IC ₅₀ μM (bioch)	0.04	0.06	0.07	0.09
51	57	13	1	0.015	IC ₅₀ μM (cell)	0.11	0.07	0.64	0.55
53	25	10	13	0.011	AlogP	2.3	3.4	2.4	2.1
54	48	14	15	0.017	MLM	65, 109	76	93	77
Model-Informed Drug Develor	Model-Informed Drug Development				(mL/min/kg BW)				
					MDCK EER	3.0	1.2	3.2	4.9
2021 Virtual Conference				7	Papp A-B (cm/s x	280	294	234	175
					10^{6})				

"Waldo"s in Papp Values

Source of error: Database (unit conversion mistakes; common)

Source of error: Database (decimal mistakes; common)

Source of error: Database Type of error: Human Mistake

Detection: Distribution Analysis, Duplicate Structure Assessment

piperazine-2-carboxylic acid tert-butylamide

(Database) MDCK Papp = 0.87 nm/s (Literature) MDCK Papp = 0.87 x 10⁻⁶ cm/s

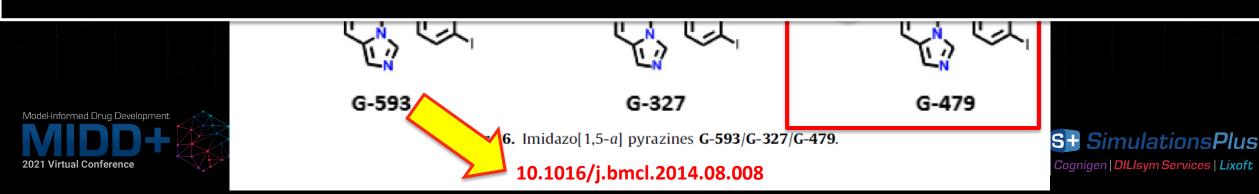
DOI: 10.2174/138920007782109733

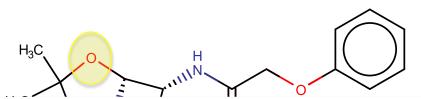
(Database) MDCK Papp = 0.000301 cm/s (Literature) MDCK Papp = 30 x 10⁻⁶ cm/s

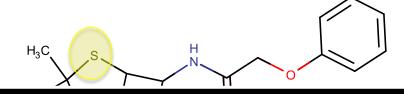
DOI: 10.1016/j.bmcl.2009.12.071

(Database) INDCK Papp = 0.000131 cm/s (Literature) MDCK Papp = 13 x 10⁻⁶ cm/s

DOI: 10.1016/j.bmcl.2009.12.071






Source of error: Database Type of error: Human Mistake

Detection: Duplicate Endpoint Assessment

*Source of error: Literature

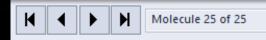
Source of error: Literature
Type of error: Human Mistake

Detection: Structural Verification Script

Penicillin V Phenytoin Pindolol

10.1111/j.1745-7254.2005.00166.x

https://pdfs.semanticscholar.org/0d4b/4786970a447a627c34c7362dd072a8a8d450.pdf

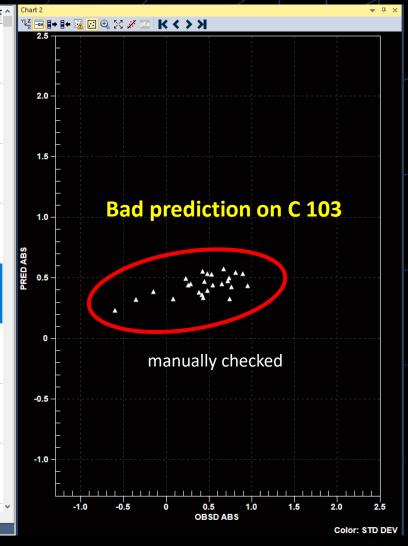

Compound structure

Source of error: Database Type of error: Human Mistake

Detection: Cluster Analysis

15j, $Z = 3-NMe_2$

Compound 15e Papp (MDCK) = 0.78 ucm/s



Compound 15e Papp (MDCK) = 0.78 ucm/s

	Clas	Representative S	Identifier	Class Size ∇	Dist(med	PRED ABS	OBSD ABS	STD DEV	activity_clif ^
1	C 1	HN	Compou	42	-1.2 0.5 2.3	1.078	1.192	0.213	
2	C 7	H ₂ N N N N N N N N N N N N N N N N N N N	CHEMBL	39	-1.2 0.5 2.3	1.043	1.106	0.197	
3	C 93	HN	CHEMBL	28	-1.2 0.5 2.3	0.643	0.524	0.222	yes
4	C 40	H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Compou	28	-1.2 0.5 2.3	0.538	0.645	0.255	
5	C 103		CHEMBL	25	-1.2 0.5 2.3	0.438	0.432	0.172	yes
6	C 53		Compou	25	-1.2 0.5 2.3	1.019	0.996	0.174	
7	C 17		Compou	25	-1.2 0.5 2.3	0.256	0.150	0.272	
8	C 298	NH,	CHEMBL	25	-1.2 0.5 2.3	0.711	0.807	0.237	
<	C 107	`	^	2.4		2 442	^ 44 4	0.470	>
Comp	ounds C	Classes R Tables Pairs	Keys						

Conclusions

- Several mistakes exist in chemical & biological databases and literature.
 (Biological Endpoints, Reported Units, Chemical Structures, Cell-line Information, Direction of permeability, etc.)
- These mistakes can be detected using a set of methodical, creative approaches based on the project's nature.
 - Distribution analysis
 - Duplicate endpoint and structural analysis
 - Cluster analysis
 - Structure verifications
 - Manual inspection
- A lot of effort must go into mistake detection and diagnosis part of the data curation process.

Model-Informed Drug Development

2021 Virtual Conference

Q&A

Questions & Answers

phyophyo@simulations-plus.com

Learn More! www.simulations-plus.com

