Introduction

Physiologically based pharmacokinetic modeling (PBPK) is a valuable tool to evaluate inhalation exposure of volatile organic compounds (VOCs). Many literature models are ad hoc, built for a single purpose/molecule, include small subset of tissues, and rely on experimental or fitted partition coefficients. In this work, a standardized PBPK modeling platform GastroPlus[®] (Simulations Plus, Inc.) is utilized to develop a PBPK model for vapor inhalation. Previously, the inhalation capability was focused on dry powder, nebulized, or solution formulations. The focus of this work is building a model to describe vapor inhalation and validating its usage.

Figure 1: Compartmental representation of the lung model

References

- 1. Wilkinson, Paul K., et al., Clinical Pharmacology & Therapeutics 19.2 (1976): 213-223.
- 2. Dumas-Campagna, Josée, et al., Inhalation toxicology 26.2 (2014): 59-69.
- 3. Pollack, et. al., Research report (Health Effects Institute) 74 (1996): 1-48.
- , et.al., Toxicology and applied pharmacology 117.1 (1992): 26-36.
- Environmental health perspectives 103.7-8 (1995): 726-733.
- Journal of occupational and environmental medicine 38.6 (1996): 571-576
- 7. Koehler, Alfred E., et. al., Journal of Biological Chemistry 140.3 (1941): 811-825
- 8. Wigaeus, Ewa, et. al, Scandinavian journal of work, environment & health (1981): 84-94.
- 9. Jonsson, Fredrik, and Gunnar Johanson., Toxicology and applied pharmacology 179.1 (2002): 35-49.
- 10.Löf, A., et.al., Occupational and Environmental Medicine 43.8 (1986): 537-543.
- 11.Ramsey, John C., and Melvin E. Andersen. Toxicology and applied pharmacology 73.1 (1984): 159-175.

James Mullin¹, Elham Amini², Michael Lawless¹, Viera Lukacova¹, Michael B. Bolger¹ ¹ Simulations Plus, Inc., Lancaster CA; ² University of Florida, Gainesville FL

Methods

The model was tested on several available literature The VOC PBPK inhalation model was built using GastroPlus version 9.7. Mass balance equations that describe gas datasets including ethanol, methanol, acetone, and styrene flow in/out of the system were developed to calculate the [1-11]. Methanol plasma concentration (Cp) prediction VOC in different lung sections. Drug partitions into mucus after inhalation of 200 - 2000 ppm for 6 hours in rat is based on Henry's law and diffuses though the epithelial shown in Figure 3. The average Cmax and AUC % error for the 200 -2000 ppm dose was 22 and 23%. However, the cells reaching systemic circulation. Mucus and epithelial error was largely dictated by the 2000 ppm formulation. cell layer thickness is location dependent in the lung. Figure 1 and 2 show the lung compartmental model Methanol Inhalation in Rat framework and a detailed representation of a single 200 ppm Dose 1200 ppm Dose 2000 ppm Dose compartment. Input values of gas diffusion coefficient and Total Amount Henry's law constant were obtained from the EPA EPI Suite software. Physicochemical properties were calculated from ADMET[®] Predictor 9.5. Partition coefficients in the PBPK models were calculated from Lukacova method. Metabolic clearance (linear or non-Time (hr) Time (hr) Time (hr linear) was fit in all cases to IV and/or oral PK data.

Figure 2: Pulmonary PBPK model diagram

Results and Conclusions

Figure 4: Model prediction of 800 ppm methanol inhalation in human with exposure times from 0.5-1 hr. PBPK model parameters scaled from rat used to predict inhalation.

Figure 5: Predicted and observed ethanol Cp-time profile for human

Figure 6: Predicted and observed **Cp-time of acetone during vapor**

Figure 7: Predicted and observed styrene plasma concentration during vapor exposure at 50, 64.5, and 80 ppm in human. Note the amount in systemic circulation can decrease due to exhalation clearance.

The model was then applied to predict 800 ppm exposure in human with clearance from literature [5] with an average Cmax and AUC % error of 13.4% and 19.9%. Predictions of human VOC inhalation of ethanol, acetone and styrene are shown in Figure 5, 6, and 7. The same procedures were followed as the methanol model and similar error was achieved except for one outlier dataset for styrene [11]. Overall, the model was successful in predicting plasma concentrations for rat and human.

