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• Motivation

• Approaches/Methodology

• Application

• Comparison

• Summary/Conclusions

©Simulations Plus, Inc., 2018 All rights reserved



Motivation
• Until recently, machine learning classification models in Cheminformatics literature have 

generally modeled binary endpoints (active/inactive, substrate/non-substrate, 
toxic/non-toxic, etc.)

• Recent examples of multi-class models and/or endpoints relevant to drug discovery
• Mode of Action of 220 phenols in T. pyriformis toxicity assay (4 class decision tree model)

• Schüürmann et al, Chem Res Tox, 16, 974 (2003)

• Extended Clearance Classification System
• Predicts 1 of 3 dominant clearance mechanisms via a 6 class decision tree scheme

• Varma et al, Pharm Res, 32, 3785 (2015) and subsequent publications

• Acute Rat Toxicity based on LD50
• GHS (Globally Harmonized System of Classification and Labelling of Chemicals)

• 5 toxic classes

• https://en.wikipedia.org/wiki/Globally_Harmonized_System_of_Classification_and_Labelling_of_Chemicals

• EPA uses 4 toxicity classes derived from essentially the same data
• https://en.wikipedia.org/wiki/Toxicity_category_rating

• AMES Mutagenicity
• NIHS Japan uses 3 categories, strongly positive, positive, negative
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https://en.wikipedia.org/wiki/Globally_Harmonized_System_of_Classification_and_Labelling_of_Chemicals
https://en.wikipedia.org/wiki/Toxicity_category_rating


Approach

• Extend the machine learning algorithms of ADMET Modeler™ and ADMET 
Predictor™ to train and deploy Artificial Neural Network Ensemble (ANNE) models 
for predicting multi-class endpoints
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Multi-Class Architecture
Binary Classifier Architecture



Multi-Classifier ANN Architecture - Deployment
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Outputs

Weights optimized to improve training set model performance 
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Largest output is winning class.

For example, if g1 > (g2 or g3),

we predict class 1.

Logistic Output



• Let gij be the i’th output for observation j of the training set.  Let observation j belong 
to class k.  Let the number of observations in class k be Nk.  Let the number of 
classes be K.  Then:

Multi-Class ANN Objective Function - Training
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• Averaging

𝐺𝑖 =
1

𝑁𝑛𝑒𝑡𝑠


𝑗=1

𝑁𝑛𝑒𝑡𝑠
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• Voting
• Plurality with elimination (also known as instant runoff voting)

• https://en.wikipedia.org/wiki/Instant-runoff_voting
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Combining Individual Network Predictions

Largest Gi is winning class

Class 1

Class 2

Class 3

Network 1

Class 1

Class 2

Class 3

Network 2

https://en.wikipedia.org/wiki/Instant-runoff_voting


Some Alternative ANN Approaches

• Softmax Output
• https://en.wikipedia.org/wiki/Softmax_function

• Cross-Entropy Loss function
• https://en.wikipedia.org/wiki/Cross_entropy

• Did not offer any improvement over logistic output and squared error loss on data 
sets we investigated
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Model Building - Overview



Early Stopping Avoids Overtraining
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1. Split training set into training and verification sets

2. Optimize network weights to improve training set performance

3. Monitor performance of verification set – determines stopping point

Optimized result for verification set
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Some Metrics for Two-Class models

• Accuracy

𝐴𝑐𝑐 = 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡/𝑁𝑡𝑜𝑡𝑎𝑙

• Matthews Correlation Coefficient (perfect = 1, random = 0, worst = -1)
• Matthews, Biochem Biophys Acta, 405, 442, (1975)

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 𝑇𝑃 + 𝐹𝑁 (𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

• Youden’s Index (perfect = 1, random = 0, worst = -1)
• Youden, Cancer, 3, 32 (1950)

𝑌 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
= sensitivity + specificity − 1

Note: Balanced Accuracy BA =
𝑌 + 1

2



• Accuracy

𝐴𝑐𝑐 = 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡/𝑁𝑡𝑜𝑡𝑎𝑙

• Generalized Matthews Correlation Coefficient (perfect = 1, random = 0)
• Gorodkin, Comp. Biol. Chem., 28, 367 (2004)

𝑀𝐶𝐶 =
𝑁𝑡𝑜𝑡𝑁𝑐𝑜𝑟𝑟 − σ𝑜𝑘𝑝𝑘

𝑁𝑡𝑜𝑡
2 − σ𝑜𝑘𝑜𝑘 𝑁𝑡𝑜𝑡

2 − σ𝑝𝑘𝑝𝑘

ok, pk : Number observed, predicted in class k

• Generalized Youden’s Index (perfect = 1, random = 0)

𝑌 =
𝑁𝑡𝑜𝑡𝑁𝑐𝑜𝑟𝑟 − σ𝑜𝑘𝑝𝑘

𝑁𝑡𝑜𝑡
2 − σ𝑜𝑘𝑜𝑘
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Some Metrics for Multi-Class models



Evaluate Performance of ANNE Models
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• Dominant Clearance Mechanism
• Compare to ECCS scheme (Extended Clearance Classification System)

• Acute Rat Toxicity Class
• Based on LD50 cutoffs

• 4 class scheme used by EPA

• 5 class scheme used by GHS (Globally Harmonized System)
• https://en.wikipedia.org/wiki/Globally_Harmonized_System_of_Classification_and_Labelling_of_Chemicals

• AMES Mutagenicity (provided by NIHS Japan)
• 3 class model (strongly positive, positive, negative)
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Data Sets

https://en.wikipedia.org/wiki/Globally_Harmonized_System_of_Classification_and_Labelling_of_Chemicals


• Predicts dominant clearance mechanism of drugs
• Varma et al, Pharm Res, 32, 3785 (2015) and subsequent publications

• ~300 compounds
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Extended Clearance Classification System



ECCS –ANNE Model
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Test Set Training Set



ECCS Comparisons
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Statistic ECCS ANNE-Train ANNE-Test ANNE-All SVME-Train SVME-Test SVME-All

Youden 0.83 0.84 0.90 0.85 0.98 0.90 0.97

MCC 0.82 0.80 0.85 0.81 0.98 0.85 0.97

Accuracy 91% 89% 95% 90% 99% 95% 99%

ANNE Model: 7 neurons, 16 descriptors
Descriptors selected by Input Gradient method
Some Key Descriptors: FAnion, S+logP, FZwitter, QAvgNeg, QAvgPos

SVME Model: 23 Descriptors selected by Genetic Algorithm
Some Key Descriptors: S+logP, No. Pi systems, T_Dipole, E-states, No. acidic atoms

ECCS : Benefit of the doubt for Class 3B (Hep. Uptake or Renal) 



• Workshop on Predictive Models for Acute Oral Systemic Toxicity (April 2018)
• Sponsor: National Toxicology Program Interagency Center for the Evaluation of Alternative 

Toxicological Methods (NICEATM)
• https://ntp.niehs.nih.gov/pubhealth/evalatm/3rs-meetings/past-meetings/tox-models-2018/index.html

• Various toxicity data sets available to develop in silico models and present at workshop

• 2 Multi-class toxicity datasets were included
• Both based on acute rat LD50 data with cutoffs

• 4 Category model using cutoffs based on EPA guidelines
• Category 1 : LD50 ≤ 50 mg/kg

• Category 2 : 50 mg/kg < LD50 ≤ 500 mg/kg

• Category 3 : 500 mg/kg < LD50 ≤ 5000 mg/kg

• Category 4 : LD50 > 5000 mg/kg

• 5 Category model using cutoffs based on GHS guidelines
• Category 1 : LD50 ≤ 5 mg/kg

• Category 2 : 5 mg/kg < LD50 ≤ 50 mg/kg

• Category 3 : 50 mg/kg < LD50 ≤ 300 mg/kg

• Category 4 : 300 mg/kg < LD50 ≤ 2000 mg/kg

• Category 5 : LD50 > 2000 mg/kg

• ~8000 compounds in each data set

• ~4000 blind compounds for prediction
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Multi-Class Toxicity Models

https://ntp.niehs.nih.gov/pubhealth/evalatm/3rs-meetings/past-meetings/tox-models-2018/index.html


EPA 4 Class ANNE Model Performance
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Descriptors: Standard + ANNE regression model of LD50 using NICEATM data

Training time for entire grid : ~3.5 hours



EPA 4 Class ANNE Model Performance
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Training Set Test Set



SVM Model Performance
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Training time: ~11 hours



EPA 4 Class Model Performance
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Obs/Pred 1 2 3 4

1 441 78 24 19

2 338 742 284 72

3 194 762 1427 867

4 37 75 274 887

Obs/Pred 1 2 3 4

1 105 26 8 1

2 96 175 70 19

3 62 280 340 205

4 10 20 75 213

ANNE Training Set

SVM Test Set

Obs/Pred 1 2 3 4

1 400 102 49 11

2 239 768 366 63

3 122 681 1927 530

4 20 87 383 783

Obs/Pred 1 2 3 4

1 93 28 16 3

2 63 168 105 24

3 41 178 461 135

4 8 21 123 166

SVM Training Set

ANNE Test Set



EPA 4 Class Model Performance Metrics
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ANNE
Train

ANNE
Test

ANNE
All

SVM
Train

SVM
Test

SVM
All

Youden 0.39 0.39 0.37 0.42 0.34 0.41

MCC 0.36 0.38 0.36 0.41 0.33 0.39

Acc 54% 52% 53% 59% 54% 58%

Overtrained



GHS 5 Class Model Performance
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GHS 5 Class Model Performance
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Training Set Test Set



GHS 5 Class Model Performance
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Obs/Pred 1 2 3 4 5

1 110 12 3 6 1

2 114 193 63 55 19

3 84 199 226 256 107

4 69 160 325 1178 584

5 50 84 179 576 1938

Obs/Pred 1 2 3 4 5

1 18 12 2 0 0

2 23 42 16 11 4

3 20 53 59 68 11

4 18 40 78 293 147

5 16 20 36 132 529

Training Set Test Set

Train Test All

Youden 0.37 0.39 0.37

MCC 0.36 0.38 0.36

Acc 55% 57% 56%



Comparison with other Participants
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https://ntp.niehs.nih.gov/iccvam/meetings/at-models-2018/ppt/5-mansouri.pdf



• Data from NIHS Japan
• http://www.nihs.go.jp/dgm/index-e.html

• http://www.nihs.go.jp/dgm/amesqsar.html

• ~12000 data points

• 3 classes

• Class A : Strongly positive

• Induces >1000 mutated colonies/mg in at least one AMES strain (+/- rat S9)

• Class B : Positive

• Induces >2-fold increase in mutated colonies relative to negative control in at least one AMES strain

• Class C : Negative

• Not A or B
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AMES Mutagenicity 3 class model

http://www.nihs.go.jp/dgm/index-e.html
http://www.nihs.go.jp/dgm/amesqsar.html


Mut 3 Class Model Performance
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Obs/Pred A B C

A 373 89 54

B 292 319 251

C 1161 1424 5488

Obs/Pred A B C

A 99 32 15

B 69 75 58

C 269 343 1403

Training Set

Test Set

Obs/Pred A B C

A 0 0 662

B 0 0 1064

C 0 0 10088

Brain Dead
All Predictions =
Class C, Negative



Mut 3 Class Model Performance Comparison
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Train Test All
Brain
Dead

Youden 0.39 0.41 0.40 0

MCC 0.27 0.28 0.27 0/0

Acc 65% 67% 66% 85%



Summary

• ADMET Multi-Class models are seeing increased usage in industry and 
government

• ANNE Multi-Class methodology provides good model performance and training 
time performance compared to SVM and other approaches

• Use of proper metrics is critical in assessing quality of multi-class models, 
especially for heavily imbalanced data sets
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