New approach to regression uncertainty analysis and applications to drug design

Marvin Waldman and Robert D. Clark

Simulations Plus, Inc.

Lancaster CA, USA

Overview

- Motivation
- Approaches/Methodology
- Application/Results
- Summary/Conclusions

Motivation

- When can you trust a decision/prediction from a machine learning model?
 - Many examples of machine learning/AI failures (just Google "recent AI failures")
- What is the "expected" accuracy of a quantitative prediction?
 - Drug candidate with predicted low solubility
 - "Distrust" the model expected accuracy is poor large prediction uncertainty
 - Synthesize anyway and measure the solubility
 - "Trust" the model expected accuracy is good small prediction uncertainty
 - Move on to another compound don't bother to synthesize

Model Building - Overview

St Simulations Plus SCIENCE + SOFTWARE = SUCCESS

Artificial Neural Network (ANN) Architecture

pKa 20 Train/Verify Test —Linear (Test) 15 **Train/Verify Set** N = 25509 Observed pKa RMSE = 0.475 MAE = 0.345 y = 1.007x - 0.044R^2 = 0.975 Test Set 0 N = 8131RMSE = 0.479 MAE = 0.339y = 1.004x - 0.027-5 R^2 = 0.974 -10 -10 -5 0 5 10 15 20 Predicted pKa

Molecular and atomic descriptors

Avoiding Overtraining: Early Stopping

- 1. Split training set into training and verification sets
- 2. Optimize network weights to improve training set performance
- 3. Monitor performance of verification set determines stopping point

SCIENCE + SOIOTWARE = SUCCESS

Artificial Neural Network Ensembles (ANNE)

- Repeat training/verify random split 165 times select best 33 networks
- Model Prediction is average of 33 network predictions (\hat{y}_i)

$$\bar{\hat{y}} = \frac{\sum_i \hat{y}_i}{N}$$

• What about the variance of the individual network predictions?

$$\sigma^2 = \frac{\sum_i (\hat{y}_i - \bar{\hat{y}})^2}{N - 1}$$

- Can this be used to assess uncertainty in the prediction?
- Previously, we showed how to estimate uncertainty in classification prediction from the degree of disagreement among the individual network predictions
 - Clark et al., J. Chem. Informatics, "Using beta binomials to estimate classification uncertainty for ensemble models" 6 34 (2014)
- What about regression models (continuous output)?

At first glance ...

Ensemble Standard Deviation

St Simulations Plus SCIENCE + SOFTWARE = SUCCESS

Earlier Work

Figure 5. The distribution of Δ_{σ}^{i} -values for the 11-net logP model. The solid line shows the best fit Gaussian.

Figure 7. Results for the logP dataset (N = 1085) with the mean values and error estimations given in eq 2.

Experimental LogP

 $P_i = \overline{P_i} \pm \overline{\Delta} \sigma_i$ Uncertainty is assumed to be proportional to standard deviation of ensemble prediction

-3

9

Predicted Log

Observed MAE (Mean Absolute Error) = 0.38 Calculated MAU (Mean Absolute Uncertainty) = 0.50

SI Simulations Plus SCIENCE + SOFTWARE = SUCCESS

Earlier Work (Part II)

Tetko et al.

1740

Errors are binned with respect to Ensemble Std. Dev. and a Gaussian is fitted to each bin – width of Gaussian is uncertainty estimate for that bin Table 3. Performances of MGDs on the Training and on the Joint Validation Sets average rank DM^a LOO 5-CV valid. STD-CONS 1.8 1 1.1STD-ASNN 2 1.2 2.5STD-kNN-DR 6.6 4.3 4.1 9.2 5.3 STD-kNN-MZ 8.3 EUCLID-kNN-DR 7.1 5.4 4.9 LEVERAGE-PLS 8.4 6.3 5 7.5 7.1 6.4 EUCLID-kNN-MZ 6.1 6.8 7 TANIMOTO-kNN-FR TANIMOTO-MLR-FR 8.3 8.3 9 10.7 10.8 9.4 CORREL-ASNN LEVERAGE-OLS-DR 12.3 12.6 11.1 EUCLID-MLR-FR 7 9.3 11.5 PLSEU-PLS 11.5 11.111.8 EUCLID-kNN-FR 12.113.3 12.1

Ensemble Std. Dev. performed best as a metric of uncertainty – ability to discriminate between small and large errors.

Earlier Work (Part III)

Conformal Prediction

Cortes-Ciriano and Bender, JCIM, 59, 1269 (2019) – Deep Confidence

Confidence region = $\hat{y}_j \pm (\alpha_{CL})e^{\sigma_j}$

" σ_i is the standard deviation of predicted activities across the ensemble."

- What is the basis of the exponential dependence on standard deviation?
 - Papadopoulos et al., J. Artificial Intell. Res. 40 815 (2011)
 - Conformal prediction using exponential of scaled std. dev. of k-NN predictions
 - Justification:
 - "The exponential function in definition (25) was chosen because it has a minimum value of 1, since σ will always be positive, and grows quickly as σ increases. As a result, this measure is more sensitive to changes when σ is big, which indicates that an example is unusually far from the training examples."

(Temporarily) return to the binning approach ...

$$Global RMSE = \sqrt{\frac{SSE}{N}}$$
$$SSE = \sum (\hat{y}_i - y_i)^2$$

Form bins over ensemble std. dev.

Where

Local RMSE =
$$\sqrt{\frac{SSE_j}{N_j}}$$
 \leftarrow Sum of squared errors in each bin \leftarrow Number of points in each bin

Graphically ...

Sum of Squared Errors per bin

Number of Points per bin

Removing the bins ...

$$f_j = \frac{N_j}{N} \qquad \qquad g_j = \frac{SSE_j}{SSE}$$

$$RMSE_j = \sqrt{\frac{SSE * g_j}{N * f_j}} = RMSE \sqrt{\frac{g_j}{f_j}}$$

$$u(s) \equiv RMSE(s) = RMSE\sqrt{\frac{g(s)}{f(s)}}$$

Uncertainty is defined as the "local" RMSE

s is the ensemble std. dev. and g(s) and f(s) are probability distributions of the fractional squared error and number of points with respect to s.

Formal derivation (for the mathematically inclined)

Bayes' Theorem

 $p(\varepsilon, s) = q(\varepsilon|s)f(s) \qquad \leftarrow \text{Probability of s}$ Joint probability of error ε and Ens. std. dev. s Conditional probability of ε given s $\Phi(s) \equiv \int d\varepsilon \int \varepsilon^2 p(\varepsilon, \chi) d\chi = \int f(\chi) d\chi \int \varepsilon^2 q(\varepsilon|\chi) d\varepsilon$ $\Phi(s) = \int_{0}^{\infty} \sigma^{2}(\chi) f(\chi) d\chi \qquad Note: \ \Phi(\infty) = RMSE^{2}$ $\phi(s) \equiv \Phi'(s) = \sigma^2(s)f(s)$ Fundamental Theorem of Calculus $\sigma^{2}(s) = \frac{\phi(s)}{f(s)} = RMSE^{2}\frac{g(s)}{f(s)}$ $u(s) \equiv \sqrt{\sigma^2(s)} = RMSE \sqrt{\frac{g(s)}{f(s)}}$

Choice of Distribution

Gamma Distribution – a generalized Chi-squared

$$p(x; \alpha, \beta) = \frac{(\beta x)^{\alpha} e^{-\beta x}}{x \Gamma(\alpha)} \quad \text{for } x > 0 \text{ and } \alpha, \beta > 0$$

Let $x = s - s_0$: s is Ens. std. dev. and s_0 is an added shift parameter

https://en.wikipedia.org/wiki/Gamma_distribution

Making it physically "reasonable"

$$\sigma^{2}(s) = \frac{\phi(s)}{f(s)} = RMSE^{2}\frac{g(s)}{f(s)} = RMSE^{2}\frac{p(x;\alpha_{1},\beta_{1})}{p(x;\alpha_{2},\beta_{2})} \qquad x = s - s_{0}$$

Let $\beta_1 = \beta_2$, Then:

$$u(s) = \sqrt{\sigma^2(s)} = C * RMSE * (s - s_0)^{(\alpha_1 - \alpha_2)/2}$$

If $\alpha_1 > \alpha_2$, then u(s) is monotonically increasing with *s* as <u>strongly desired</u>!

Fitting the distribution parameters using cumulative distributions

Adjust parameters of the analytical distributions to minimize the K-S value

St Simulations Plus SCIENCE + SOFTWARE = SUCCESS

Introducing Q-Q Plots

Cumulative Distribution

Q-Q Plot

St Simulations Plus SCIENCE + SOFTWARE = SUCCESS

Some Results ...

LogP Model

Cumulative Distributions

Vertical separation between cumulatives indicates positive correlation of uncertainty estimate with Ens. Std. Dev. The greater the separation, the stronger the dependence:

$$u(s) = C * RMSE * (s - s_0)^{(\alpha_1 - \alpha_2)/2}$$

The more Cum Std.Dev. > Cum Sq Err

The greater is $\alpha_1 > \alpha_2$

More Results – Fathead Minnow Toxicity

ALL: Slope=0.822 Intercept=-0.140 QSqd=0.865 RMSE=0.501 MAE=0.377 RMSU=0.502 TRAIN: Slope=0.822 Intercept=-0.149 QSqd=0.865 RMSE=0.498 MAE=0.371 RMSU=0.500 TEST: Slope=0.819 Intercept=-0.091 QSqd=0.864 RMSE=0.515 MAE=0.406 RMSU=0.517

	Train	Test
RMSE	0.498	0.515
RMSU	0.500	0.517

Cumulative Distributions

Normalized Error

If each "bin" is a normal distribution with zero mean and std. dev. equal to the uncertainty – estimate, then (in the continuous limit) ...

Let ε = observed error
Let u = uncertainty
Normalized Error:

 $\rho = \frac{\varepsilon}{u}$

Normalized Error should follow a standard normal distribution with zero mean and unit variance. Its absolute value follows a folded normal distribution. We generate the Q-Q plot for $|\rho|$ compared to the theoretical folded normal distribution. Note that no parameters are used to fit this Q-Q plot.

QQ Plots – **Normalized Error** - **Examples**

©Simulations Plus, Inc., 2019 All rights reserved

Henry's Law Constant – log Space

Deviations at $\rho > 2$ indicate a longer tail than standard normal dist. However, ±2 standard deviations represent 95% of a normal dist. So, we expect an uncertainty estimate of $\pm 2\sigma$ to be correct 95% of the time. An uncertainty estimate of $\pm \sigma$ should be correct 68% of the time.

These deviations may also indicate bad data...

Curating Data with QQ Normalized Error Plots Solubility Model – log(mol/L)

Salicylaldehyde Predicted: -1.05 Reported: -3.18 Uncertainty: 0.47 Melting Pt.: -7° C (liquid!)

Chlorophene Predicted: -3.98 Reported: -1.72 Uncertainty: 0.52

Training Points (N = 2602)

Test Points (N = 849

St SimulationsPlus SCIENCE + SOFTWARE = SUCCESS

©Simulations Plus, Inc., 2019 All rights reserved

2

Digging Deeper ...

Chlorophene

Reported (Aquasol): -1.72 (log units) \rightarrow 1.9 E-2 mol/L

"Estimated from graph"

Allawala and Riegelman, J Am. Pharm. Assoc. XLII, 267 (1953) More recently:

EPA: 6.81 E-4 mol/L

pubchem.ncbi.nlm.nih.gov/compound/2-Benzyl-4-chlorophenol

Fig. 8.—A log-log plot of the solubilization of benzylchlorophenol (5-chloro-2-hydroxy diphenylmethane) in moles/L. by solution in potassium laurate (moles/L.) at 20°. A: saturation solubility of benzylchlorophenol at pH 9–10; B: saturation solubility of benzylchlorophenol in distilled water.

Using uncertainty estimates in pharmacokinetic simulations

Create a randomly sampled normal distribution of 1000 logP values using uncertainty estimate as std. dev.

%Fraction absorbed shows little sensitivity to logP range.

Using uncertainty estimates in pharmacokinetic simulations - part 2

Create a randomly sampled log-normal distribution of 1000 Sw values using uncertainty estimate as std. dev.

%Fraction absorbed shows high sensitivity to Sw range. Solubility prediction has low confidence – should probably be measured!

At final glance ...

Is there signal in this noise? Yes!

For this data set, uncertainty is approx. square root function, not linear or exponential

Conclusions

• Left as an exercise for the reader ...

Acknowledgements

- Robert D. Clark (co-author)
- Pankaj Daga
- Michael Lawless
- David Miller

