PURPOSE

Therapeutic monoclonal antibodies (mAbs) represent a growing segment
of the development pipeline In the pharmaceutical industry.
Physiologically based pharmacokinetic (PBPK) modeling has been
extensively applied in small molecule drug development and has a great
potential of helping In the development of mAbs and functional
derivatives. In this study, a comprehensive PBPK model for mAbs was
developed to simulate plasma as well as individual tissue concentrations
after intravenous (IV) or subcutaneous (SC) administration in preclinical
animals and humans.

METHODS

The whole-body PBPK model previously developed in GastroPlus™
(Simulations Plus, Inc.) was expanded to include mechanisms related to
the absorption and disposition of mAbs. Each organ in the PBPK model is
divided Into three major compartments representing the vascular,
endosomal, and interstitial spaces, as shown in Figure 1.
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Figure 1: Schematic representation of individual tissue compartments

The following mechanisms are included in the PBPK model.

* Transport of mAb into the tissue interstitial space via convective flow
through the paracellular pores in the vascular endothelium

« Uptake of mAb from the vascular and Iinterstitial spaces into the
endosomal space via fluid-phase endocytosis

* pH-dependent binding of mAb to FcRn in the endosomal space

* FcRn binding competition between therapeutic mAb and endogenous
1gG

* Recycling of mADb to the vascular and interstitial spaces

 Endosomal degradation of the unbound mAb

* Return of mADb from the tissue to the bloodstream through convective
transport with lymph flow

» Specific mAb binding to antigen (TMDD)

of the local subcutaneous tissue. The local tissue was also divided into
three compartments as shown Iin Figure 1. The same endosomal
nonspecific clearance processes were applied to both the systemic
clearance and local first-pass clearance after SC administration.

Convective transport through the lymphatic endothelium and fluid-phase
endocytosis are the main mechanisms of absorption into the systemic
circulation following SC administration of mAD.

The vascular (o,) and lymph (o) reflection coefficients, and the fraction of
mADb recycled (FR) were obtained from literature (Garg & Balthasar, J
Pharmacokinet Pharmacodyn, 34 (2007), 687-709). Other model
parameters (pH-dependent mAb-FcRn binding constants, mAb degradation
In endosomal space, endosomal uptake, and recycle rates) were fitted
using datasets from studies of 14 different antibodies and the reported
synthesis rate of endogenous IgG (Junghans, Blood, 90 (1997), 3815-
3818; Cure & Cremer, J Immunol, 102 (1969), 1345-1353) for different
species. The fitted mAb-FcRn binding constants were within the range of
reported In vitro values (Datta-Mannan et al., J Biol Chem, 282 (2007),
1709-1717; Andersen et al., J Biol Chem, 285 (2010) 4826-4836).

RESULTS

The PBPK model for mAbs was used to simulate plasma concentration-
time profiles of MEDI-528 in human and Rituximab in rats across different
dose levels after IV and SC administration. The simulated profiles were In
close agreement with published clinical results (White et al., Clin Ther, 31
(2009), 728-740; Kagan et al., Pharm Res, 29 (2012), 490-499).
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Figure 2. Comparison of simulated (lines) and measured (points) MEDI-528 for
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9, 3, and 1 mg/kg doses in healthy subjects after IV (a) and SC (b) doses.

Default model parameters for human were used for MEDI-528 simulations.
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Figure 3: Comparison of simulated (lines) and measured (points) Rituximab for
1 and 10 mg/kg doses in Wistar rats after IV (a) and SC (b) doses

The association coefficient between Rituximab and rat FcRn was estimated
using the data from the 1 mg/kg IV dose. For the simulation of Rituximab In
rats after SC administration, an additional linear clearance was included In
the local first-pass clearance in addition to the endosomal nonspecific
clearance processes and was estimated using the data from the 1 mg/kg
SC dose. Other parameters used the default GastroPlus values for rat.
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Figure 4. Parameter sensitivity of bioavailability

CONCLUSIONS

 PBPK modeling of mADbs in GastroPlus accurately simulates PK profiles
after IV and SC administration.

« This model can help to Investigate the factors responsible for the
systemic disposition of mADbs In preclinical animals and human.

* This model could also be applied to assess dose-dependent nonlinear
clearance related to TMDD
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