

DILIsym[®] User Training – ROS Data Collection

September 2016

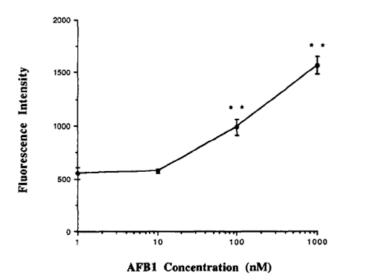
DILIsym[®] Development Team

CONFIDENTIAL

*DILIsym[®] and MITOsym[®] are registered trademarks; SimPops[™] and NAFLDsym[™] are trademarks of DILIsym[®] Services Inc. for computer modeling software and for consulting services.

Goal for This Training Session

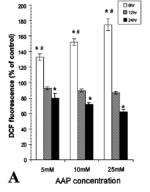
Participants should understand the following general concepts:


 Methods and tips related to gathering data in the area of oxidative stress for use within DILIsym[®]

Data Gathering for Modeling Compounds that Disturb the Reactive Oxygen Species Balance

- Data gathering
 - In vitro assessments of reactive oxygen or nitrogen species (ROS/RNS)
 - Endpoints recommended by the DILIsym[®] team
 - Exposure range recommended by the DILIsym[®] team
 - Intracellular concentration assessments or estimates recommended by the DILIsym[®] team
 - In vivo assessments of reactive oxygen or nitrogen species (ROS/RNS)

Shen 1996



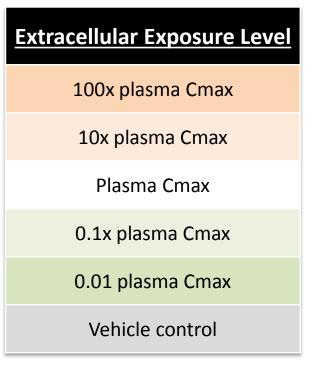
In vitro Indicators of ROS/RNS Recommended by the DILIsym[®] team

- Several *in vitro* indicators of ROS/RNS are available (examples listed here)
 - Thiobarbituric acid reactive substances (TBARS), use malondialdehyde (MDA)
 - Peroxynitrite
 - Lipid hydroperoxide
 - Fluorescent probes (DCFDA, DHR123, DHE)
 - Mitochondrial superoxide (MitoSOX[™] Red)
- Each potential cell type carries positives and negatives (sample shown in table)
 - Ideally, one molecule can be directly connected to one effect in the experiment (mixtures complicate the parameterization)
 - Active transport is also a consideration
- The more time points measured, the more information garnered on the relationship between exposure and ROS/RNS
 - Depending on stage of development and decision being supported, optimization of *in vitro* exposure may be warranted
 - If a more concise design is required, we recommend the following time points in order of decreasing importance:
 - 24 hour > 12 hour > 6 hour > 1 hour

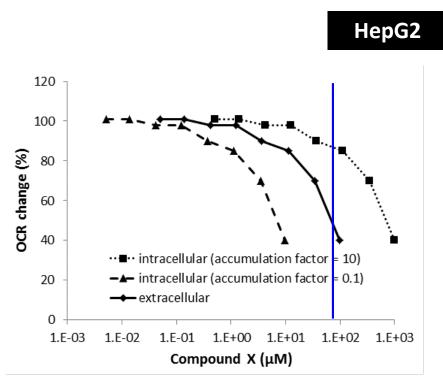
Manov 2002

Cell Type	Pros	Cons
HepG2	Availability and cost; lack of drug metabolism if pure metabolites <u>are</u> available for testing individually	Lack of drug metabolism if pure metabolites <u>are</u> <u>not</u> available for testing individually
Primary hepatocytes	Drug metabolism if pure metabolites <u>are not</u> available for testing individually	Availability and cost; drug metabolism if pure metabolites <u>are</u> available for testing individually
HepaRG	Availability and cost; drug metabolism if pure metabolites <u>are not</u> available for testing individually	Drug metabolism if pure metabolites <u>are</u> available for testing individually

4


The Recommended Extracellular Exposure Range is Based on Relevant Plasma Concentrations *in vivo*

- Extracellular exposure ranges should be relative to the plasma concentrations, or predictions thereof
 - This is critical to gathering useful data!
 - In vitro studies are often done at extremely high concentrations
 - Contrary to the approach often taken, pushing the cells to a maximal response is not the best approach for this application
- Example table shown that blankets the predicted C_{max}
 - This example is applicable when clinical PK data are unavailable
- Range should be adjusted if more information is available
 - Clinical PK data can help set lower and upper bounds of plasma levels
 - High anticipated variability in exposure may warrant a broader range



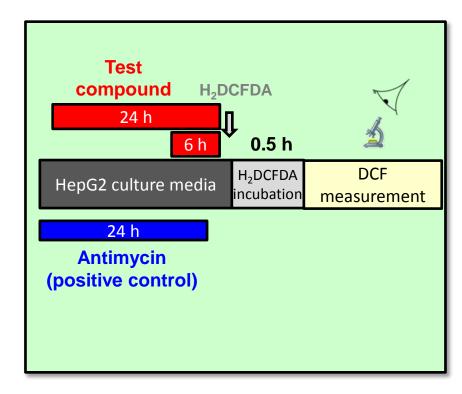
Improved DILIsym[®] Parameter Values When Intracellular Compound Is Measured

- Most Seahorse oxygen consumption rate (OCR) or ROS/RNS data are expressed in an exposure-response relationship
 - OCR change on y-axis
 - Extracellular compound concentration on x-axis
- Numerous compounds have been shown to accumulate in liver
 - Potency relative to intracellular concentrations different than relative to extracellular
 - Intracellular ≠ extracellular
- Basing parameter values on extracellular concentrations introduces inaccuracy for compounds that accumulate in hepatocytes
- Recommend measuring intracellular compound concentration for cell based assays used to provide DILIsym[®] parameter values
 - OCR, ROS production
 - For compounds that are known to have liver:blood ratio ≠ 1 (or not known)

	extracellular	intracellular
10X accumulation	74.4 uM	744 uM
1x accumulation	74.4 uM	74.4 uM
0.1x accumulation	74.4 uM	7.44 uM

Establishing a Dose Response Requires Choosing an Exposure Estimate and Preferred Time Point(s)

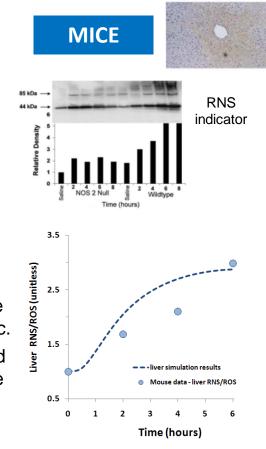
ñ


- A relationship between exposure and normalized ROS/RNS response at a single time point is typically used
 - Could also choose to fit multiple time courses
- Intracellular exposure can be estimated in three ways
 - Measured (see previous slide); this is the recommended method, but is not always possible
 - Estimated using media concentration and PBPK parameters such as liver to blood concentration ratio
 - Assumed from media concentration; this is the least optimal approach, in our opinion

7

Example Protocol for DILIsym[®] Input Panel ROS Measurements

- HepG2 cells lack drug metabolism capacity
 - Exposure with parent, metabolites
 - Cells seeded into plates and cultured for 24-48 h
- Cells incubated with multiple doses of Test compound and a single dose of Antimycin for 24h prior to measuring ROS.
 - Cell count for viability and data correction (if necessary)
- 2',7'-dichlorodihydrofluorescein diacetate (H₂DCFDA) acetate groups are cleaved by esterases and then oxidated to fluorescent 2',7'dichlorofluorescein (DCF) during a 30 min incubation
- Measure intracellular compound concentrations coincident with DCF measures
 - Can estimate intracellular concentrations via PBPK methods



In vivo Assessments of ROS/RNS are Useful but Rarely Available

- In vivo assessments of ROS/RNS in the liver after drug exposure are sometimes (but rarely) available
- These assessments are useful for obtaining the necessary parameter within DILIsym[®] to represent ROS/RNS increases if:
 - A PBPK model has been established for the drug and species from which the data originate
 - The molecular entity (parent or metabolite) suspected of causing the ROS/RNS is represented in the liver within the PBPK model
 - e.g. NAPQI in an APAP PBPK model
- Simulations of ROS/RNS are fitted to the data
- The use of in vitro data is much more common
 - In vivo endpoints related to ROS/RNS are practically never available for compounds in development with multiple doses, time courses, etc.
 - In vivo endpoints related to ROS/RNS can be used for validation and refinement of the *in vitro* approach post-hoc if they become available during the latter stages of development

Michael 2001 - 300 mg/kg APAP, liver RNS/ROS

Thank You!

