

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

DILIsym[®] User Training -**Gathering Mitochondrial Toxicity** Data for DILlsym®

DILI-sim Team

*DILIsym[®] and MITOsym[®] are registered trademarks of The Hamner Institutes for Health Sciences for computer modeling software and for consulting services.

CONFIDENTIAL

Goals for This Training Session

Participants should understand the following general concepts:

- The assay systems should be used to gather mitochondrial toxicity data for compounds to be represented in DILIsym[®]
- The conditions and general protocols for the mitochondrial toxicity assay used to provide data inputs for DILIsym[®]

Overview of Mitochondria Bioenergetics Biochemistry

1

Metabolic substrate

- Fatty acids via beta oxidation
- Pyruvate via PDH
- Electron Transport Chain (ETC)
 - Electrons donated from NADH and FADH₂
 - Protons pumped out of mitochondria, establishing H⁺ gradient (ΔΨm)
 - Electrons ultimately donated to O₂, accounting for energy-related respiration
- ATP synthesis
 - H⁺ gradient used to drive ATP synthesis via ATP synthase
- 4
- Mitochondrial DNA encodes multiple mitochondria proteins
 - Within ETC

Adapted from Begriche 2011

MITOsym[®] Is Designed to Support IVIVE DILI Predictions and Mechanistic Data Interpretation

- MITOsym[®] is a standalone model of hepatocyte bioenergetics
 - Yang et al. 2015
- MITOsym[®] can be used to facilitate predictions of hepatotoxicity based on *in vitro* cellular respiration data
 - Combine with DILIsym[®] model
 - Multiple cell types: HepG2, primary human hepatocytes, primary rat hepatocytes
- MITOsym[®] can be used to develop and explore hypotheses of the mechanisms underlying observed changes in respiration and glycolysis in hepatocytes
 - Comparison with exemplar drugs

Institute for Drug Safety Sciences

4

MITOsym[®] Developed to Support Identification of DILIsym[®] Toxicity Parameter Inputs

- Simulate Seahorse-based measurements of oxygen consumption rate (OCR) with MITOsym[®]
- Determine appropriate parameter values for mitochondria toxicity to be used in *in vivo* predictions with DILIsym[®]
- MITOsym[®] can be used to develop and explore hypotheses of the mechanisms underlying observed changes in respiration and glycolysis in hepatocytes
 - ETC inhibition, Δψm uncoupling, F1F0
 ATPase inhibition, glycolysis inhibition

HAMNER INSTITUTES

General XF Analyzer Protocol for DILIsym[®] Input Panel Mitochondria Measurements: HepG2

- HepG2 cells lack drug metabolism capacity
 - Exposure with parent, metabolites
 - Cells seeded into plates and cultured for 24-48 h
- Cells incubated in Seahorse media for 1 h
- Several possibilities for administering test compound
 - Direct injection, 1 h, 6 h, 24 h incubation
 - Depends on compound characteristics
 - Need to measure cell count with longer incubations
- Mitochondria Stress Test provides information on mitochondria toxicity mechanisms
- Respiratory Reserve Test can reveal modest ETC inhibition effects
- Measure ATP levels to validate OCR measures
- Measure intracellular compound concentrations coincident with OCR and ATP measures
 - Can estimate intracellular concentrations via PBPK methods

General XF Analyzer Protocol for DILIsym[®] Input Panel Mitochondria Measurements: Hepatocytes

Test

compound

- Primary hepatocytes are metabolically competent
 - Difficult to delineate effects of parent vs. metabolites
 - Culture condition requirements differ
- Cells incubated in Seahorse media for 0.5-1 h
- Several possibilities for administering test compound
 - Direct injection, 1 h, 6 h, 24 h incubation
 - Depends on compound characteristics
 - Need to measure cell count with longer incubations
- Mitochondria Stress Test provides information on mitochondria toxicity mechanisms
- Respiratory Reserve Test can reveal modest ETC inhibition effects
- Measure ATP levels to validate OCR measures
- Measure intracellular compound concentrations coincident with OCR and ATP measures
 - Active compound transporters can make it challenging to estimate intracellular concentrations via PBPK methods

24 h

24 h

Primary hepatocyte

media

Oligomycin $(1 \mu M)$

FCCP (1 μM) Rotenone/ Antimycin (1 μM)	Mitochondria Stress Test	1 1
FCCP (1 μM)	Respiratory Reserve Test	1

0.5-1 h

Seahorse

media

ATP

measurements

XF Analyzer

measurements

The Recommended Extracellular Exposure Range is Based on Relevant Plasma Concentrations *in vivo*

- Extracellular exposure ranges should be relative to the plasma concentrations, or predictions thereof
 - This is critical to gathering useful data!
 - In vitro studies are often done at extremely high concentrations
 - Contrary to the approach often taken, pushing the cells to a maximal response is not the best approach for this application
- Example table shown that blankets the predicted C_{max}
 - This example is applicable when clinical PK data are unavailable
- Range should be adjusted if more information is available
 - Clinical PK data can help set lower and upper bounds of plasma levels
 - High anticipated variability in exposure may warrant a broader range

Improved DILIsym[®] Parameter Values When Intracellular Compound Is Measured

- Most Seahorse oxygen consumption rate (OCR) or ROS/RNS data are expressed in an exposure-response relationship
 - OCR change on y-axis
 - Extracellular compound concentration on x-axis
- Numerous compounds have been shown to accumulate in liver
 - Potency relative to intracellular concentrations different than relative to extracellular
 - Intracellular ≠ extracellular
- Basing parameter values on extracellular concentrations introduces inaccuracy for compounds that accumulate in hepatocytes
- Recommend measuring intracellular compound concentration for cell based assays used to provide DILIsym[®] parameter values
 - OCR, ROS production
 - For compounds that are known to have liver:blood ratio ≠ 1 (or not known)

	extracellular	intracellular
10X accumulation	74.4 uM	744 uM
1x accumulation	74.4 uM	74.4 uM
0.1x accumulation	74.4 uM	7.29 uM

Theoretical Preclinical Data

