

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

DILIsym[®] User Training -DILIsym[®] Parameters from Data: Mitochondrial Toxicity

DILI-sim Team

*DILIsym[®] and MITOsym[®] are registered trademarks of The Hamner Institutes for Health Sciences for computer modeling software and for consulting services.

CONFIDENTIAL

Goal for This Training Session

Participants should understand the following general concepts:

• Methods to parameterize and simulate mitochondrial toxicity in DILIsym®

Entacapone and Tolcapone: Similar Mechanistic Effects but Differences in Clinical Hepatotoxicity

- Entacapone and tolcapone represent a "clean/toxic" compound pair
 - Similar structure and pharmacologic mechanism
 - No hepatotoxicity reported for patients taking entacapone
 - Clinical hepatotoxicity observed with tolcapone
- Similar mechanistic hepatotoxic effects for entacapone and tolcapone
 - Both compounds uncouple the mitochondria proton gradient
 - Modest BSEP inhibition with entacapone (IC₅₀=55.6 μM, Morgan 2013) and tolcapone (IC₅₀=36.6 μM, Morgan 2013)
- Can DILIsym[®] recapture the differences in hepatotoxicity observed clinically based on mechanistic information?

HUMANS

ENTACAPONE

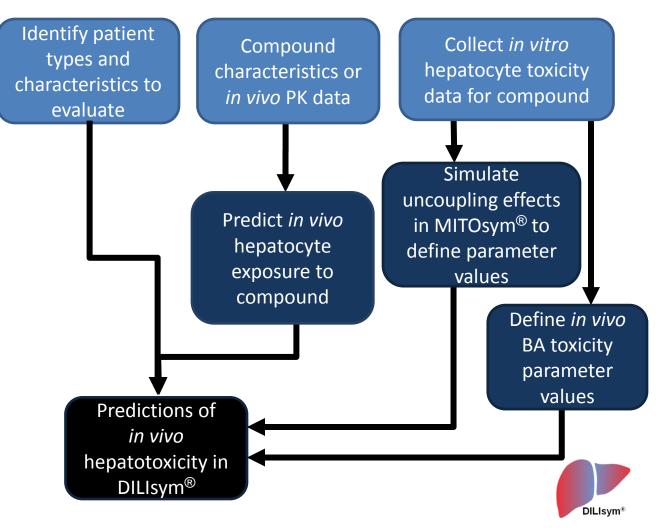
Parameter	R	CTs	E	XT	Plac	ebo
	NDA n=406	Overall n=603	NDA n≈325	Overall n=738	NDA n=296	Overall n=400
Total bilirubin	0.3%	0.2%	0	0.2%	0	0
AST	0.3%	· 0.3%	0	0.2%	0.7%	0.3%
ALT	0.5%	0.5%	0	0.2%	0.8%	0.6%
GGT	0	0.4%	0.3%	0.3%	0.4%	0*
Alkaline Phosphatase	0	0	0	0	0.4%	0.

FDA Comtan safety document

TOLCAPONE

Adverse Event	Placebo	100 mg	200 mg	
PHASE III CONTROLLED TRIALS	(n=292)	(n=294)	(n=293)	
High SGPT (ALAT)				
≥2x ULN			1	
>3x ULN	0	3(1%)	8 (3%)	
>5x ULN	0	2 (0.7%)	3 (1%)	
>8x ULN	0	1 (0.3%)	1 (0.3%)	
High SGOT (ASAT)				
≥2x ULN				
>3x ULN	0	4 (1%)	6 (2%)	
>5x ULN	0	2 (0.7%)	3 (1%)	
>8x ULN	0	0	2 (0.7%)	
High alkaline phosphatase	2 (1%)	0	1 (0.3%)	

Tasmar FDA filing documents

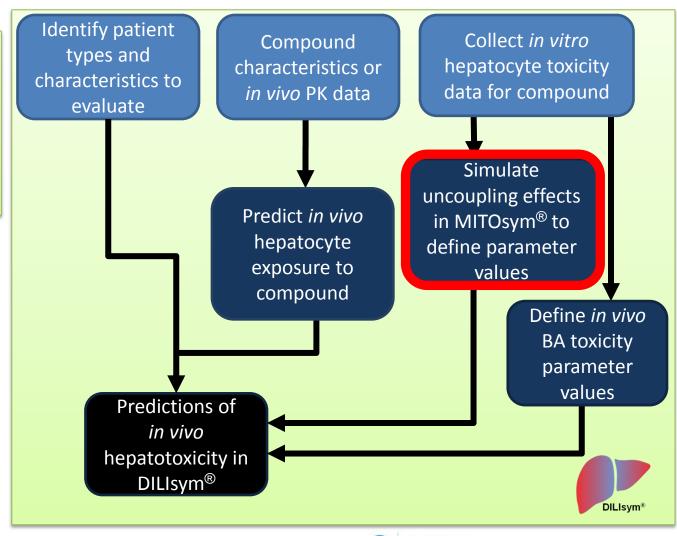


Workflow for Modeling Entacapone and Tolcapone with MITOsym[®] and DILIsym[®]

Approach: Predict *in vivo* risk based on PK modeling and *in vitro* hepatocyte toxicity data for mitochondrial and BA toxicity mechanisms

Case study: Compare the simulated hepatotoxicity profile between tolcapone and entacapone

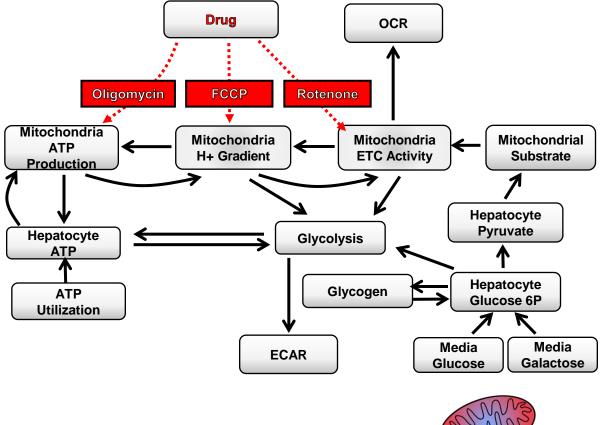
Baseline human and SimPops[™]



Workflow for Modeling Entacapone and Tolcapone with MITOsym[®] and DILIsym[®]

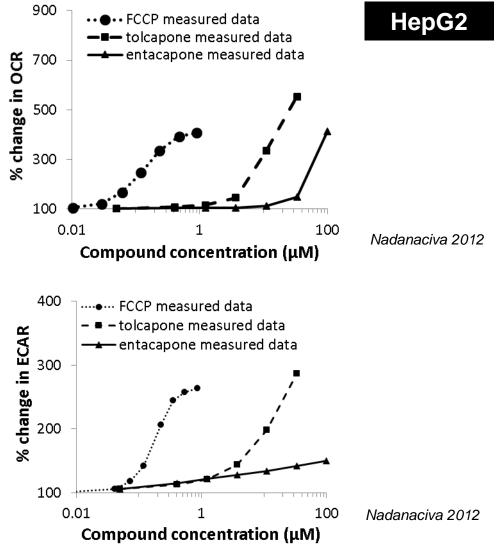
Approach: Predict *in vivo* risk based on PK modeling and *in vitro* hepatocyte toxicity data for mitochondrial and BA toxicity mechanisms

Case study: Compare the simulated hepatotoxicity profile between tolcapone and entacapone


Baseline human and SimPops[™]

MITOsym[®] Model Includes Essential Components of Hepatocyte Bioenergetics

- Includes mitochondria ETC activity, proton gradient and ATP production
- Includes respiration (OCR) as a primary model output
 - Also includes ATP, $\Delta \Psi m$, ECAR
- MITOsym[®] simulates and recapitulates the reported dynamic changes exemplar drugs in HepG2, primary human and rat hepatocytes
- MITOsym[®] model is designed to provide inputs into the DILIsym[®] model to predict *in vivo* hepatotoxicity based on *in vitro* data



MITOsym[®]

Simulating Uncoupling Effects in MITOsym[®] to Define Mitochondrial Toxicity Parameter Values

Objective:

- Use MITOsym[®] model to simulate changes in OCR and ECAR caused by uncoupling
- Determine uncoupling parameter values for entacapone and tolcapone by comparing simulated dose response curves to HepG2 measured data (Nadanaciva 2012)
 - FCCP is a MITOsym[®] exemplar compound with a strong uncoupling effect
 - Use HepG2 FCCP SimSingle available in MITOsym[®] as a starting point

Institute for Drug Safety Sciences

Creating Entacapone SimSingle[™] in MITOsym[®]

MITOsym	v2A			
File View	Results About			لا
SimSingle S	Setup File			
		SimSingle_HepG2_FCCP_1uM_v2A		and have
				MITOsym™
SimSingle I	nput Options			wir obym
Simul	lation Time	Sim_time_set_4hr_v2A	•	Customize
Hepatocy	te Parameters	Parameters_HepG2_glucose_Specific_v2A	•	Customize
	r			
Drug F	Parameters	Parameters_HepG2_FCCP_v2A	•	Customize
Compo	und 1 Dosing	Compound_1_dosing_blank_v2A	-	Customize
Compo				Customize
Compo	ound 2 Dosing	Compound_2_dosing_FCCP_1uM_v2A	•	Customize
_	-			
Compo	ound 3 Dosing	Compound_3_dosing_blank_v2A	▼_	Customize
Compo	ound 4 Dosing	Compound_4_dosing_blank_v2A	•	Customize
	-			
Compo	ound 5 Dosing	Compound_5_dosing_blank_v2A	▼	Customize
Compo	ound 6 Dosing	Compound_6_dosing_blank_v2A	•	Customize
Compo	Sand o Dooling			Customize
Compo	ound 7 Dosing	Compound_7_dosing_blank_v2A	•	Customize
0.1	or Ortiger			
500	ver Options	Default_Solver_Options	•	Customize
Simulate				
	Run	Run in Parallel	Data Campani	
	Run	Run in Parallel	Data Comparis	son
Output				
	Export to Exce	I Plot	Output Table	e

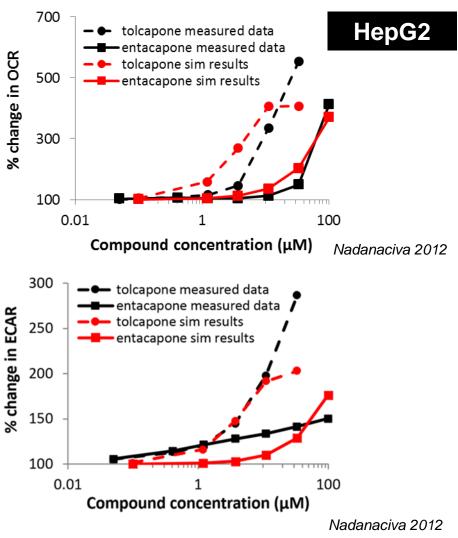
- 1. Select HepG2 FCCP SimSingle in MITOsym[®]
- 2. Save SimSingle as: SimSingle_HepG2_Entacapone_1uM
- 3. View "Compound 2 Dosing" and save as: Compound_2_dosing_Entacapone
- 4. Select "Drug Parameters", rename/save as: Parameters_HepG2_Entacapone
- View "Mechanism selection", verify "Mitochondrial uncoupler 1" is selected

Changing the Uncoupling Drug Toxicity Parameter in MITOsym[®]

4			<u>د</u>		
Mechanism selection					
Drug toxicity parameters					
Drug toxicity parameters-Paran	neters_HepO	62_FCCP_v2A			
Parameter	Value	Units	Parameter Name	Parameter Descript	ion
MitoS_ETC_Inhib_1	1	тM	Coefficient to quantify	This parameter	
MitoS_ETC_Inhib_2	1	тM	Coefficient to quantify	This parameter	
MitoS_ATP_Inhib_1	1	тM	Coefficient to quantify	This parameter	
MitoS_ATP_Inhib_2	1	тM	Coefficient to quantify	This parameter	
MitoS_FA_Ox_Inhib_1	1	тM	Coefficient to quantify	This parameter	
MitoS_FA_Ox_Inhib_Hill_1	1	dimensionle	es. Hill coefficient for fatty	This parameter	
FA_Inhib_eff_ratio_1	1	dimensionle	es Coefficient to correct for	This parameter	
MitoS_FA_Ox_Inhib_2	1	mМ	Coefficient to quantify	This parameter	1
MitoS_FA_Ox_Inhib_Hill_2	1	dimensionle	es. Hill coefficient for fatty	This parameter	
FA_Inhib_eff_ratio_2	1	dimensionle	es Coefficient to correct for	This parameter	
MitoS_Pyr_Ox_Inhib_1	1	mМ	Coefficient to quantify	This parameter	
MitoS_Pyr_Ox_Inhib_2	1	тM	Coefficient to quantify	This parameter	
MitoK_UC1_Vmax	40	dimensionle	es.Uncoupler 1 effect Vmax	This parameter	_
MitoK_UC1_Km	0.0125	тM	Uncoupler 1 effect Km	This parameter	
MitoK_UC1_Hill	1	dimensionle	es Uncoupler 1 effect Hill	This parameter	
MitoK_UC2_Vmax	0	dimensionle	es Uncoupler 2 effect Vmax	This parameter	
MitoK_UC2_Km	1	тM	Uncoupler 2 effect Km	This parameter	
MitoK_UC2_Hill	1	dimensionle	es Uncoupler 2 effect Hill	This parameter	
MitoK_MPT1_Vmax	0	dimensionle	es Mitochondria	This parameter	
MitoK_MPT1_Km	1	тM	Mitochondria	This parameter	-
•			···· ·		•

- 1. View "Drug toxicity parameters"
- 2. The Km for the effect of Uncoupler 1 is 0.0125 mM for FCCP
- 3. Based on previous simulation, Km for Tolcapone is about 5X higher than FCCP
- 4. Entacapone is a much weaker uncoupler than Tolcapone,
 - Try Km ~50x higher than FCCP as a first guess:
 - Change MitoK_UC1_Km to 0.5 mM
 - Apply and Save

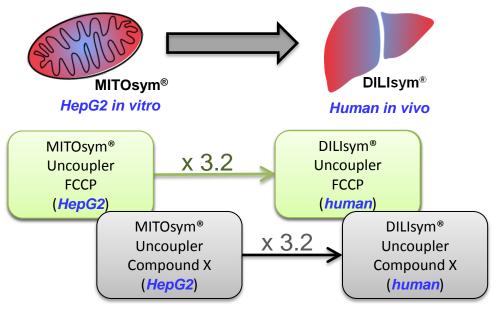
9


Running a Dose Sweep in MITOsym[®]

File View Results About											
0 🐱 🖸		Options Resul	ts								
SimSingle Setup File											
	SimSingle_HepG2_Entacapone_1uM		SimSingles P	Parameter Sweep							
			SimSingle File	Parameter to Sweep	Linear Sweep	Value 1/Start \	/alue 2/End	Value 3/Number	Value 4	Value 5	Value 6
SimSingle Input Options		1	HepG2_Basal_Condition_v2A	None 🔻		0	0	0	0	0	0
Simolingle input Options		2	HepG2_Gal_Basal_Condition_v2A	None 🔻		0	0	0	0	0	0
Simulation Time	Circ firms and the vOA	3	HumanHC_CaseA_Basal_Condition_v2A	None 👻		0	0	0	0	0	0
	Sim_time_set_4hr_v2A	4	HumanHC_CaseB_Basal_Condition_v2A	None 🔻		0	0	0	0	0	0
Hepatocyte Parameters	Parameters_HepG2_glucose_Specific_v2A	5	RatHC_Basal_Condition_v2A	None 👻		0	0	0	0	0	0
		6	SimSingle_HepG2_Entacapone_1uM	Comp_2_dose 🔹 🔻		1.0000e-04	1.0000e-03	0.0030	0.0100	0.0300	0.1000
Drug Parameters	Parameters_HepG2_Entacapone	7	SimSingle_HepG2_FCCP_1uM_v2A	None 🔻		0	0	0	0	0	0
		8	SimSingle_HepG2_Gal_FCCP_1uM_v2A	None 👻		0	0	0	0	0	0
Compound 1 Dosing	Compound_1_dosing_blank_v2A	9	SimSingle_HepG2_Gal_oligomycin_1uM_v	. None 🗸 👻		0	0	0	0	0	0
Compound 2 Dosing	Compound_2_dosing_Entacapone_1uM	10	SimSingle_HepG2_Gal_rotenone_1uM_v2A	None 👻		0	0	0	0	0	0
	composind_z_socialg_initedupond_rum	11	SimSingle_HepG2_MitoQ_1uM_v2A	None 👻		0	0	0	0	0	0
Compound 3 Dosing	Compound_3_dosing_blank_v2A	12	SimSingle_HepG2_oligomycin_1uM_v2A	None 👻		0	0	0	0	0	0
		13	SimSingle_HepG2_oligomycin_FCCP_rote	. None 🗸 👻		0	0	0	0	0	0
Compound 4 Dosing	Compound_4_dosing_blank_v2A		•	111							
		Ru	Plot								
Compound 5 Dosing	Compound_5_dosing_blank_v2A		FIOL								
Compound 6 Dosing	Compound_6_dosing_blank_v2A	_									
Compound o Dosing	compound_o_dooling_blank_v25										
Compound 7 Dosing	Compound_7_dosing_blank_v2A	-	Customize								
			1		oromo	torowa	on fo	r Comp	2 do	~~	
Solver Options	Default_Solver_Options	~	Oustornize	. Run a pa			ep io	r Comp_	_z_uu	56	
			fr	om 0.0001	1 to .1	mМ					
Simulate]		_		_					
Run	Run in Parallel	Data Compariso	2	2. Iterate u	ntil the	e simul	ated	OCR an	ld EC	AR	
				laca racas		arooo	with r	noocura	d day		
Output				lose-respo	JUSE 9	grees		neasure	u ua	d	
Export to Exc	cel Plot	Output Table									

Entacapone and Tolcapone Uncoupler Parameter Values with MITOsym[®]

- Used MITOsym[®] model to simulate OCR and ECAR response to entacapone and tolcapone
 - Good agreement with measured OCR and ECAR data (by design)
- Entacapone is a weaker uncoupler than tolcapone
 - MitoK_UC1_Km parameter value is ~10x greater for entacapone than tolcapone
 - Entacapone Km 1.0
 - Tolcapone Km 0.065

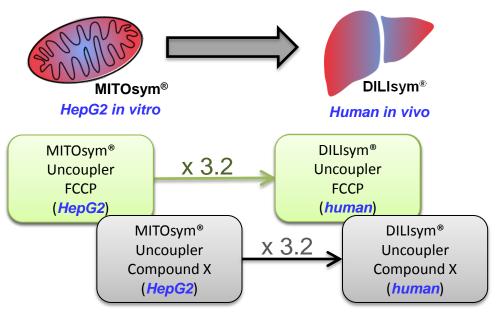

Preclinical Data and Simulation Results

Exemplars Used to Translate MITOsym[®] Toxicity Parameters to DILIsym[®] Mitochondrial Toxicity Parameters

- MITOsym[®] exemplar compounds used to facilitate translation to DILIsym[®] in vivo mitochondrial toxicity parameters
- Exemplar mitochondria toxicity compounds simulated in DILIsym[®]
 - ETC inhibitor: rotenone
 - Uncoupler: FCCP
 - ATPase inhibitor: oligomycin
- Entacapone and tolcapone optimized Uncoupler parameter values normalized to FCCP for translation to DILIsym[®]
 - Conversion factor of 3.2 for uncoupling

MITOsym[®] to DILIsym[®] Mitochondrial Toxicity Parameter Value Conversion Factors

MITOsym [®] cell type	Mitochondria toxicity mechanism	DILIsym [®] species	MITOsym [®] to DILIsym [®] parameter conversion factor
HepG2	ETC inhibitor	Human	34.7
HepG2	Uncoupler	Human	3.20
HepG2	ETC inhibitor	Rat	3.47
HepG2	Uncoupler	Rat	0.40
Primary human hepatocyte	ETC inhibitor	Human	3.13
Primary human hepatocyte	Uncoupler	Human	3.20
Primary human hepatocyte	ETC inhibitor	Rat	0.31
Primary human hepatocyte	Uncoupler	Rat	0.40
Primary rat hepatocyte	ETC inhibitor	Human	3.75
Primary rat hepatocyte	Uncoupler	Human	3.20
Primary rat hepatocyte	ETC inhibitor	Rat	0.38
Primary rat hepatocyte	Uncoupler	Rat	0.40



Institute for Drug Safety Sciences

Exemplars Used to Translate MITOsym[®] Toxicity Parameters to DILIsym[®] Mitochondrial Toxicity Parameters

- MITOsym[®] exemplar compounds used to facilitate translation to DILIsym[®] in vivo mitochondrial toxicity parameters
- Exemplar mitochondria toxicity compounds simulated in DILIsym[®]
 - ETC inhibitor: rotenone
 - Uncoupler: FCCP
 - ATPase inhibitor: oligomycin
- Entacapone and tolcapone optimized Uncoupler parameter values normalized to FCCP for translation to DILIsym[®]
 - Conversion factor of 3.2 for uncoupling

Compound	Mechanism	MITOsym [®] (mM)	DILIsym [®] (mM)
FCCP	Uncoupler	.0125	.040
Entacapone	Uncoupler	1.000	3.20
Tolcapone	Uncoupler	.065	0.208

Defining Drug Toxicity Parameters in DILIsym[®]: Mitochondrial Uncoupler Example

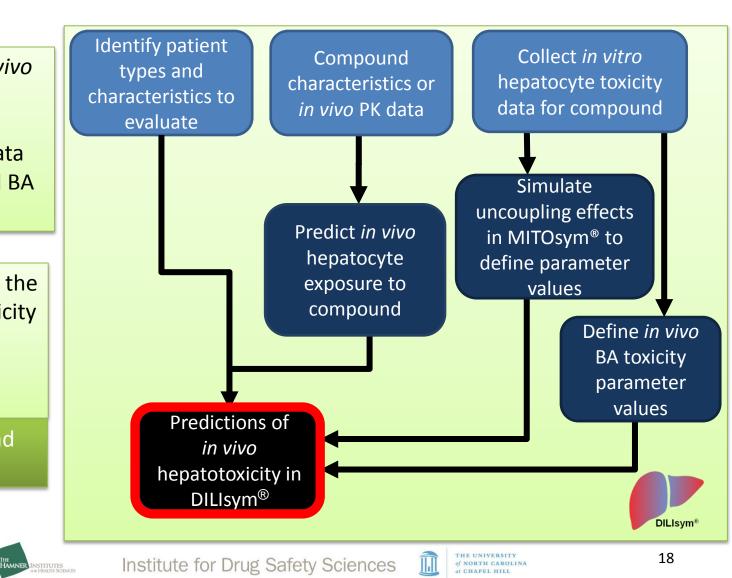
DILIsym v4B				
File Results View Help				
9 C 🛥 🛥 🛥 D 💡				
SimSingle Setup		_		
New SimSingle	Tolcapone_Human			
Load SimSingle		_		
Input Parameters				
Species	Parameters_Species_Human_v4B	Customize		
Drug	Parameters_Drug_Blank_v4B	Customize		
		Mechanism		
Caloric Intake	Parameters Carries Blank v4B	ation	-	
Comp W Dosing	Parameters_Comp VDosing_Bla	Mechanisms All Mechanisms		
Comp X Dosing	Parameters_CompXDosing	All Mechanisms DirectApoptosis		
Comp Y Dosing	Parameters_CompYDosing_Blar	DirectNeerosis MitoUncoupler1		
Time	Decemetere Time Diank u/D	MitoUncoupler3		
	Parameters_Time_Blank_v4B	incATPutilization incRNSROSproduction1		
Solver	Parameters_Solver_Default_v4B	incRNSROSproduction2 incRNSROSproduction3		
Input Panel	Panel_Blank	inhBAtransport inhETC1		
		inhETC2 inhETC3		
Simulate	Run in Parallel SimPop Table View Table View		Cancel Changes Save As New	Save As New w/ Custom
Specify Data		inhMitoATPsynthesis	1	
Plot	Table Export Save Resu	Its SimSingle		
			THE UNIVERSITY	4 -
	HANNER INSTITUTES ROUBLACH SCIENCES Institute for Drug	Safety Sciences	of NORTH CAROLINA at CHAPEL HILL	15

Drug Parameters in DILIsym[®]: Input MitoUncoupler1 Toxicity Parameter Values

DILIsym Parameter Customization	n			
Molecule CompY	 Mechanisms All Mechanisms 	•		
CompY	MitoUncoupler1	Uncoupler 1 effect Km Uncoupler 1 effect Hill coefficient Uncoupler 1 effect Vmax Basal effect of multiple uncouplers on ETC activity Effect of multiple uncouplers on ETC activity Hill coeff.	2e-07 nol/mL 1 timensionless 190 timensionless 100 timensionless 0.5 timensionless	 Optimized value Default values for DILIsym[®] uncouplers
Table View	V Save w/ Custo	om Cancel Changes Save As	s New Save As New w/ Custom	need to input

Bile Acid Transport Inhibition DILIsym[®] Parameters for Entacapone and Tolcapone

- Bile acid transport inhibition constants (IC₅₀) for entacapone and tolcapone have been measured in Morgan 2013
 - Assumed noncompetitive BSEP and MRP inhibition
 - Used reported BSEP IC_{50} data as basis for noncompetitive BSEP Ki
 - Used reported MRP4 IC₅₀ as basis for noncompetitive basolateral Ki



Workflow for Modeling Entacapone and Tolcapone with MITOsym[®] and DILIsym[®]

Approach: Predict *in vivo* risk based on PK modeling and *in vitro* hepatocyte toxicity data for mitochondrial and BA toxicity mechanisms

Case study: Compare the simulated hepatotoxicity profile between tolcapone and entacapone

Baseline human and SimPops[™]

in vivo Hepatotoxicity Profiles Assessed Using Human BA-MITO SimPops[™]

- No ALT elevations observed in simulations at the population level following oral administration with entacapone
 - Clinical protocol (up to 8 oral doses of 200mg)
 - None of the human SimPops[™] exhibited serum ALT elevations greater than 3x ULN
 - Consistent with lack of clinical hepatotoxicity reported for entacapone
- Small percentage of simulated patients treated with tolcapone with elevated ALT
 - Consistent with infrequent clinical hepatotoxicity reported for tolcapone
 - 3% of patients in clinical trials had >3x ULN ALT
 - NAFLD/NASH simulated patients most responsive to tolcapone hepatotoxic effects
- Simulation results revealed BSEP transporter inhibition contributed minimal liver toxicity

HUMANS	Simulated with Human_mito_BA_v3A_6 SimPops™, n=229	Simulated ALT >3x ULN	Clinical Data
	Entacapone 200mg oral 8xday 1 week	0/229 (0%)	0/1000s (0%)
	Tolcapone 200mg oral TID 1 week	6/229 (3%)	8/293 (3%)
Clinical Data and Simulation Results	Institute for Drug Safety Scien	THE UNIVERSITY of NORTH CAROLINA of CHAPPEL HILL	19