## WebEx Tools will be Used to Record this Training Session

 Recording meeting for future reference and members not able to attend

| vll_QL_2012_update_sildes [Compatibility Mode] - Microsoft PowerPoint 🖂                                                              | e Rarticipants                                       |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| - IS · A A · 形 三・三・夜夜 垣- 山Tet Direction · 日、 ローロー · 日 · 夜夜 垣- 山Tet Direction · 日、 日 · 日 · 日 · 日 · 日 · 日 · 日 · 日 · 日                  | Speaking:                                            |
| B I U S de A → A → E = = = = = = Convert to Smartlet +<br>Font S Paramete Outlot → A → A → E = = = = = = = A → A → A → A → A → A → A | Scott Q Siler (me)                                   |
| Point         G         Paragraph         G         Drewing         G         Solution           1                                   | Brett Howell (Host)                                  |
|                                                                                                                                      |                                                      |
| DILIsym <sup>®</sup> Training Agenda –                                                                                               |                                                      |
|                                                                                                                                      |                                                      |
| September 26, 2013                                                                                                                   |                                                      |
|                                                                                                                                      |                                                      |
| • 8:30 AM – Introduction and goals                                                                                                   |                                                      |
| -DILIsym <sup>®</sup> overview and highlights                                                                                        |                                                      |
| -Model architecture notes<br>• 8:45 AM – Biomarker analysis example                                                                  |                                                      |
| • 8:45 AM – Biomarker analysis example<br>• 9:45 AM – Break                                                                          |                                                      |
| • 10:00 AM – Biomarker analysis example                                                                                              |                                                      |
| • 11:00 AM – MITOsym <sup>™</sup> overview and introduction                                                                          | () Raise Hand Audio                                  |
| • 11:30 AM – Lunch                                                                                                                   |                                                      |
| • 12:30 PM – Bile acid transport inhibitor example DILIsym <sup>®</sup>                                                              | 🖵 Chat                                               |
| • 1:30 PM – Break                                                                                                                    |                                                      |
| • 1:45 PM – Bile acid transport inhibitor example                                                                                    |                                                      |
| • 2:45 PM – Discussion and questions                                                                                                 |                                                      |
| • 3:00 PM – Training concludes                                                                                                       |                                                      |
| <ul> <li>DILI-sim modeling team is available for questions</li> </ul>                                                                |                                                      |
|                                                                                                                                      | Send to: Brett H (Host & Presenter)                  |
| Institute for Drug Safety Sciences 🔟 CONFIDENTIAL 3                                                                                  | Select a participant in the Send to menu first, type |
|                                                                                                                                      | chat message, and send                               |
|                                                                                                                                      |                                                      |
|                                                                                                                                      |                                                      |
|                                                                                                                                      |                                                      |
|                                                                                                                                      | CONFIDENTIAL                                         |
|                                                                                                                                      | JUNFIDENTIAL                                         |
|                                                                                                                                      |                                                      |
|                                                                                                                                      |                                                      |



11.11







THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

## DILIsym® v2B In-depth User Training

#### **September 26, 2013**

Lisl Shoda, Yuching Yang, Kyunghee Yang Brett Howell, Scott Siler, Jeff Woodhead

\*DILIsym<sup>®</sup> is a registered trademark, and MITOsym<sup>™</sup> a trademark, of The Hamner Institutes for Health Sciences for computer modeling software and for consulting services.



Please note: this presentation is being recorded

## DILIsym<sup>®</sup> Training Agenda – September 26, 2013

#### 8:30 AM – Introduction and goals

- -DILIsym<sup>®</sup> overview and highlights
- -Model architecture notes
- 8:45 AM Biomarker analysis example
- 9:45 AM Break
- 10:00 AM Biomarker analysis example
- 11:00 AM MITOsym<sup>™</sup> overview and introduction
- 11:30 AM Lunch
- 12:30 PM Bile acid transport inhibitor example
- 1:30 PM Break
- 1:45 PM Bile acid transport inhibitor example
- 2:45 PM Discussion and questions
- 3:00 PM Training concludes
  - -DILI-sim modeling team is available for questions





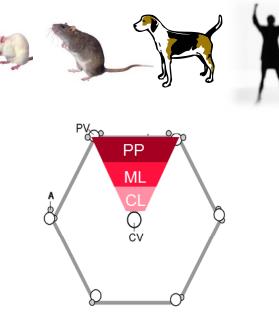


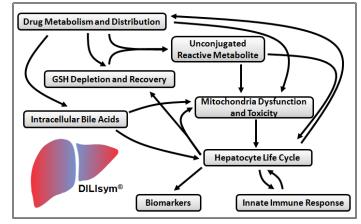
3

### Goals for the DILIsym<sup>®</sup> v2B In-depth User Training Session

#### Participants should understand the following general concepts:

- The conceptual model architecture of DILIsym<sup>®</sup> v2B
- The concept of "translatability" as it applies to DILIsym®
- Use of DILIsym<sup>®</sup> for the retrospective interpretation of liver injury associated with clinical ALT signals
- Parameter selection for the non-mechanistic representation of hepatocyte necrosis
- Intended applications for MITOsym<sup>™</sup> v1A, a model of mitochondrial function
- Using in vitro transporter inhibition data to parameterize DILIsym<sup>®</sup> and make predictions about the potential hepatotoxic effects of inhibitors on humans and animals




4

## DILIsym<sup>®</sup> v2B Overview

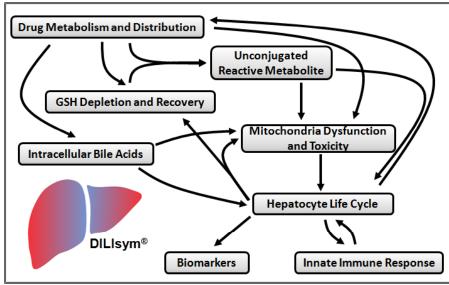
- Multiple species: human, rat, mouse, and dog
  - Population variability
- The three primary acinar zones of liver represented
- Essential cellular processes represented to multiple scales in interacting sub-models
  - Pharmacokinetics
  - Dosing (IP, IV, Oral)
  - Transporter Inhibition
  - Drug metabolism
  - GSH depletion
  - Injury progression
  - Mitochondrial dysfunction, toxicity
  - Bile acid mediated toxicity
  - Cellular energy balance
  - Hepatocyte life cycle
  - Macrophage, LSEC life cycles
  - Immune mediators
  - Caloric intake
  - Biomarkers





#### Hepatotoxicity exemplars

- Reactive metabolite mediated
  - Acetaminophen
  - Methapyrilene
  - Furosemide
  - Aflatoxin B1
- Mitochondrial dysfunction
  - Etomoxir
  - Buprenorphine
- Bile acid transporter inhibition
  - Glibenclamide
  - CP-724714
- Single, multiple dose protocols
- Single, combination drug protocols


#### Compartment-based modeling

- >480 state variables
- 'Form to function' connection
- Ordinary differential equations
- Alternative mathematical approaches are possible
- Simulations can be run using code or GUI developed in house

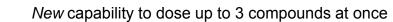




#### Highlights of DILIsym<sup>®</sup> v2A



٠


- Added direct mitochondria toxicitymediated hepatocellular necrosis
- Added bile acid-mediated toxicity hepatocellular necrosis
- Expanded representation of innate immune contributions to injury and recovery
- Expanded number of represented biomarkers of hepatocellular injury
  - Circulating (e.g., mir-122)
  - Hepatocellular (e.g., triglyceride)



- Introduced additional exemplar compounds for exposure-related toxicity
  - Etomoxir
  - Buprenorphine
  - CP-724714
- Additional SimPops<sup>™</sup>, capturing impact of variability in key pathways
- Expanded capabilities of GUI interface



# Expanded Capabilities and Features of DILIsym<sup>®</sup> v2A



- W, X, and Y; v1A included APAP, X, and NAC
- NAC representation still available
- New Compound Y option includes a simple, two compartment PK model representation
- Drug and Species parameters are now split into two separate value sets
  - Easier cross-species predictions
  - Improved clarity on what parameters apply to the biology versus the intersection of the drug and the biology
- New Output Table feature allows for easy calculation of Max, Min, AUC, Mean, and other metrics
- New Parameter Sweep option allows GUI users to sweep across a range of values for a given model parameter
  - Includes all model parameters; dose sweeps and sensitivity analyses possible
- *New* 2-Parameter Sweep option (MATLAB code version only)
- New Load/Save options for GUI results
- *New* Override protection for standard drug and species parameter sets (GUI version only)
- Data Comparisons include many more data sets and new plot options
- Caloric intake is now included for mitochondria toxicity and bile acid homeostasis; the role of caloric intake will continue to expand
- *New* 'events' feature avoids skipping discrete events, regardless of maximum step size
  - Compound W, X, and Y doses, caloric intake (meals), and mechanistic interventions included
- Added dog optimizations and capabilities
- Streamlined code base
  - No separate algebraics file
  - ODE file and many Excel and GUI files are now automatically called
- Expanded Zotero reference database (contact us for real-time access)



Institute for Drug Safety Sciences



CONFIDENTIAL

THE UNIVERSITY

CHAPEL HILL

of NORTH CAROLINA

#### DILIsym<sup>®</sup> Updates for version 2B

- Newly added functional model of bile acid homeostasis for the rat
- Additional SimPops<sup>™</sup> population samples
  - Relevant to mitochondrial dysfunction and bile acid homeostasis
- Faster, more efficient simulations
- Various bug fixes and GUI improvements
  - Semi-log plotting capability
  - Log sweep capability for parameter sweeps
  - Many others



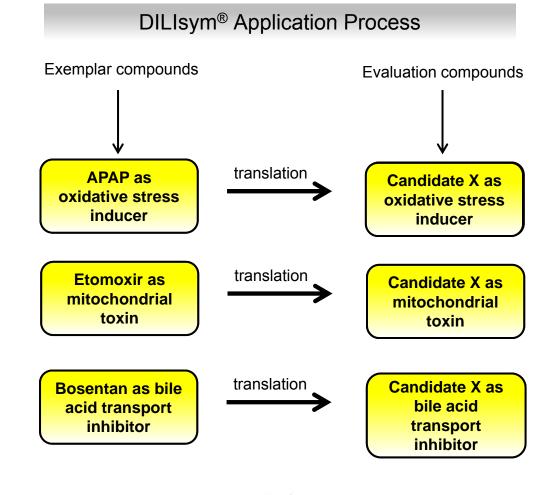




8

## DILIsym<sup>®</sup> v2C Includes Changes for Multiple, Simultaneous Mechanisms of DILI

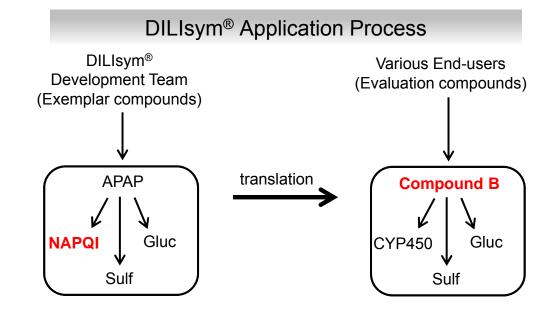
- Newest version of model released in September 2013
- Primary update:
  - Testing of v2B with multiple mitochondrial dysfunction mechanisms alerted DILI-sim team to changes that needed to be made for multi-hit simulations
- DILI-sim team recommends that members download and use v2C for future work, to the extent possible
- Changes do not affect simulations where any single mechanism for DILI were selected, or where one mitochondrial dysfunction mechanism or less was selected








## DILIsym<sup>®</sup> Architecture – Translation from Exemplar Compounds to Compounds of Interest


- The value proposition of DILIsym<sup>®</sup> lies in its ability to translate to compounds NOT used to build it
- This requires end-users with evaluation compounds to either have an idea of what mechanisms of hepatotoxicity might be in play or conduct hypothesisbased modeling
- Multiple, concurrent mechanisms of hepatotoxicity can be used and are being explored





#### DILIsym<sup>®</sup> Architecture – Using the Mechanism Selection Tool

- The mechanism selection tool allows the end-user to select an existing mechanism in the DILIsym<sup>®</sup> model
- Importantly, the tool also allows the mechanism to be applied anywhere in the metabolism tree
- The user can also apply multiple mechanisms to the same chemical species and different mechanisms to different levels of the tree
  - Parent and metabolite with same mechanism
  - Parent and metabolite with different mechanisms







#### DILIsym<sup>®</sup> Architecture – Using the Mechanism Selection Tool in the GUI

- The mechanism selection tool allows the end-user to select an existing mechanism in the DILIsym<sup>®</sup> model
- Importantly, the tool also allows the mechanism to be applied anywhere in the metabolism tree
- The user can also apply multiple mechanisms to the same chemical species and different mechanisms to different levels of the tree
  - Parent and metabolite with same mechanism
  - Parent and metabolite with different mechanisms

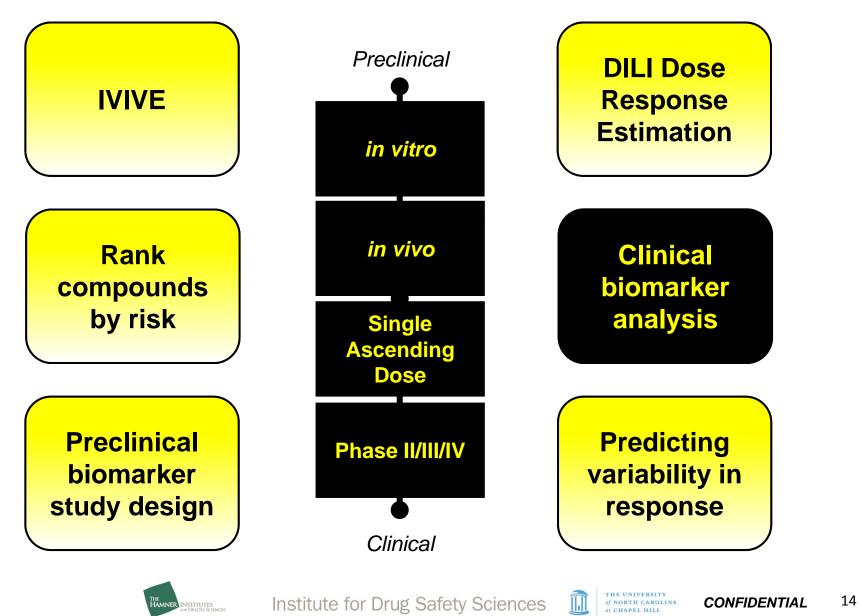
| Species                          | RNS-ROS productio | n ATP utilization | Direct necrosis | <b>BSEP/NTCP</b> inhib | Pyruvate ox inhib | Fatty acid ox inhib | ETC inhib | Mito ATP synth inh | ib Mito uncoupler | 1 Mito uncoupler | 2 MPT initiator |
|----------------------------------|-------------------|-------------------|-----------------|------------------------|-------------------|---------------------|-----------|--------------------|-------------------|------------------|-----------------|
| Compound W                       |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound W metabolite A          |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound W metabolite B          |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound W reactive metabolite 1 |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound W RM 1 protein adducts  |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound W reactive metabolite 2 |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound W RM 2 protein adducts  |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound X                       |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound X metabolite A          |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound X metabolite B          |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound X reactive metabolite 1 |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound X RM 1 protein adducts  |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound X reactive metabolite 2 |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound X RM 2 protein adducts  |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |
| Compound Y                       |                   |                   |                 |                        |                   |                     |           |                    |                   |                  |                 |

| Species                          | RNS-ROS production | ATP utilization | Dir |
|----------------------------------|--------------------|-----------------|-----|
| Compound W                       |                    |                 |     |
| Compound W metabolite A          |                    |                 |     |
| Compound W metabolite B          |                    |                 |     |
| Compound W reactive metabolite 1 | $\checkmark$       | ✓               |     |
| Compound W RM 1 protein adducts  |                    |                 |     |
| Compound W reactive metabolite 2 |                    |                 |     |
| Compound W RM 2 protein adducts  |                    |                 |     |
| Compound X                       |                    |                 |     |
| Compound X metabolite A          |                    |                 |     |
| Compound X metabolite B          |                    |                 |     |
| Compound X reactive metabolite 1 |                    |                 |     |
| Compound X RM 1 protein adducts  |                    |                 |     |
| Compound X reactive metabolite 2 |                    |                 |     |
| Compound X RM 2 protein adducts  |                    |                 |     |
| Compound Y                       |                    |                 |     |





## DILIsym<sup>®</sup> Training Agenda – September 26, 2013


- 8:30 AM Introduction and goals
  - -DILIsym<sup>®</sup> overview and highlights
  - -Model architecture notes
- 8:45 AM Biomarker analysis example
- 9:45 AM Break
- 10:00 AM Biomarker analysis example
- 11:00 AM MITOsym<sup>™</sup> overview and introduction
- 11:30 AM Lunch
- 12:30 PM Bile acid transport inhibitor example
- 1:30 PM Break
- 1:45 PM Bile acid transport inhibitor example
- 2:45 PM Discussion and questions
- 3:00 PM Training concludes
  - -DILI-sim modeling team is available for questions







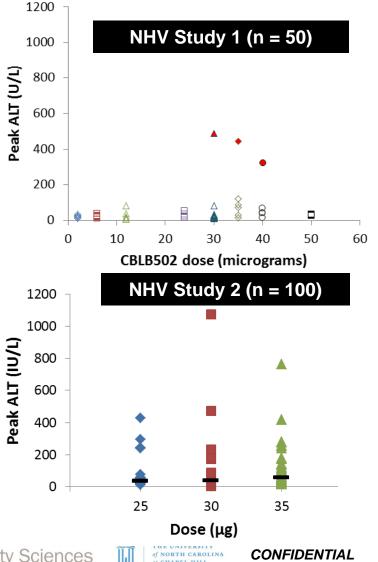
#### Examples of DILIsym<sup>®</sup> Applications



#### **Cleveland BioLabs Project Objectives**

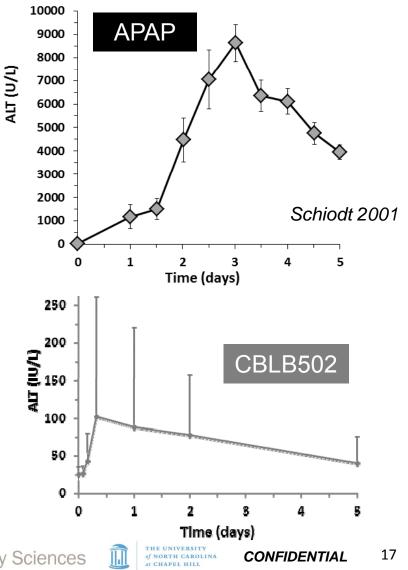
- Primary Objectives
  - Use simulations to infer hepatocellular dynamics associated with observed changes in liver biomarkers during CBLB502 clinical trials in normal, healthy volunteers (NHV)
  - Support Cleveland BioLabs in communications with regulatory agencies regarding CBLB502
- Secondary Objectives
  - Simulate protocols of past CBLB502 clinical trials
  - Determine impact of variability in key areas of hepatocellular dynamics (i.e., necrosis, proliferation) on generation of liver biomarkers using SimPops™, individual simulated patients with variability in key areas of hepatocellular dynamics
  - Present and/or publish findings at scientific conferences or in scientific journals






#### Observations of CBLB502 Clinical Data Applicable to Simulations

- Initial dose-ranging trial showed that some individuals had clinically relevant ALT increases at doses ≥30 micrograms
- Second trial included more narrow dosing range (25-35 micrograms)
- Preponderance of NHV exhibited only minor increases in liver signals
  - 70% < 1.5x ULN for ALT</p>
  - 65% < 1.5x ULN for AST</p>
- Increased ALT and AST in several NHV
  - 20% > 3x ULN for ALT
  - 26% > 3x ULN for AST
- Time to peak ALT is quite rapid (8-16 h)
  - More rapid than following APAP overdose
- AST and ALT increases are coincident
  - Implies hepatic vis a vis peripheral injury
- Slight increase in bilirubin
  - No correlation with ALT or AST


Clinical Data





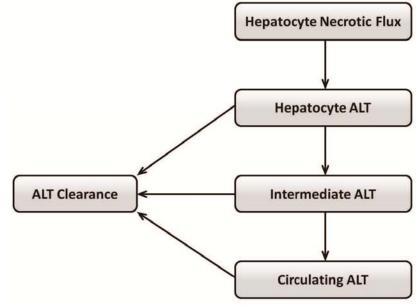
# Rapid Peak ALT with CBLB502 Compared with Acetaminophen Overdose

- Peak ALT after acetaminophen (APAP) overdose reported to be 48-84 h
- Peak ALT observed after CBLB502 8-24 h after dosing
  - Mean Tmax = 14.3 h
  - Median Tmax = 8 h
- Accelerated ALT Tmax with CBLB502 treatment required adjusting existing ALT sub-model



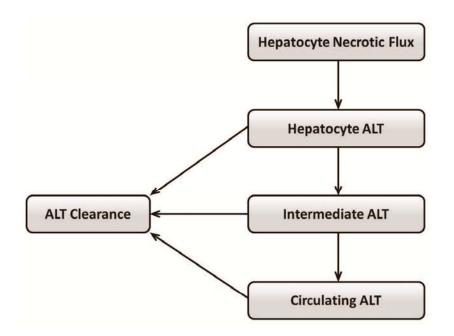
Clinical Data




## Approach for Using Simulations to Analyze **Entolimod Clinical Data**

- Approach: use ALT dynamics to infer hepatocyte loss
  - ALT content per cell based on cellular measurements
    - Boyd 1983, Remien 2012, Lindblom 2007
  - ALT release occurs upon hepatocyte necrosis
  - ALT elimination half-life based on clinical data
    - Nicoll 1997
- Initial simulations in DILIsym<sup>®</sup> ٠ baseline normal healthy volunteer (NHV)



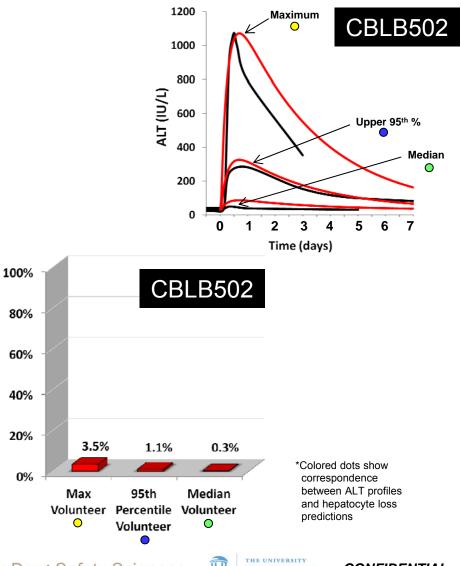







#### ALT Sub-Model Includes Hepatocellular Release and Clearance Dynamics

- Modeled ALT release is driven by rate of hepatocyte necrosis
- Liver, intermediate ALT pools included to provide timing of release consistent with reported clinical data
  - Primarily acute acetaminophen overdose
  - Transfer rate can be adjusted if necessary
- Model includes clearance from liver, intermediate, and plasma pools
  - Kupffer cells largely responsible for clearance from liver and intermediate ALT pools
  - Kidney largely responsible for clearance from plasma ALT pool
- AST sub-model is similarly designed





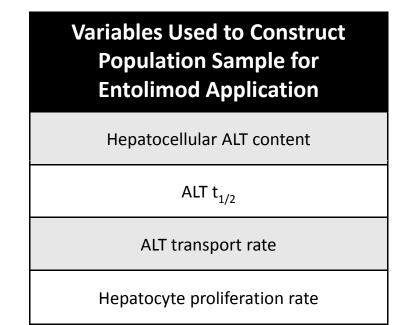



### Baseline Human Simulations Indicate Minimal Hepatocyte Loss with CBLB502

- ALT time course data indicates consistent, early peaks
  - Variations in peak height observed
- Simulations performed in baseline NHV
  - Focused comparison of simulation results with Max, 95<sup>th</sup> percentile, and median volunteer ALT levels
- Simulations agree with ALT clinical data
  - By design via optimization
- Minimal hepatocyte loss associated with observed ALT profiles
  - Volunteer with greatest peak ALT predicted to have lost <5% hepatocytes</li>



Clinical Data and Simulation Results




Percent of Hepatocytes Lost

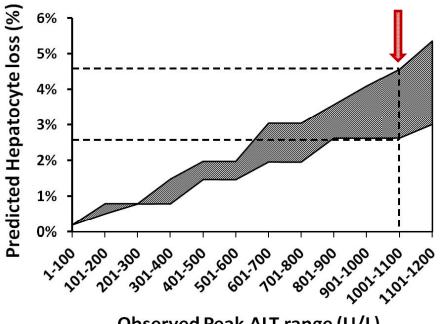
THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL CONFIDENTIAL

## Approach for Introducing Population Variability into Simulations

- Varying parameters associated with ALT dynamics in accordance with variance described in literature
  - Remien 2012, Nicoll 1997, Portmann 1975, Prescott 1979
- Compared simulated humans (N ≈ 300) with clinical data from Prescott 1979 and Portmann 1975
  - Indirect link between ALT and necrosis
- Simulated humans used to simulate Entolimod trial protocol









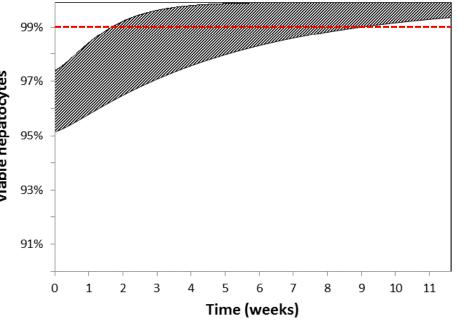

#### Variability in SimPops<sup>™</sup> Predicts Minimal Range of Hepatocyte Loss for CBLB502 Peak ALT

- SimPops<sup>™</sup> generated with variability in ٠ key aspects of ALT release
- ALT 1001-1100 U/L corresponds with 2.6-4.6% hepatocyte loss
- Did not simulate hepatocyte loss-ALT ٠ variability at ALT 201-300 due to systematic simulation approach

| Peak ALT  | Hepatocyte loss |              |  |
|-----------|-----------------|--------------|--|
| RANGE     | LOWER BOUND     | HIGHER BOUND |  |
| 1-100     | 0%              | 0.5%         |  |
| 101-200   | 0.5%            | 0.8%         |  |
| 201-300   | 0.8%            | 0.8%         |  |
| 301-400   | 0.8%            | 1.5%         |  |
| 401-500   | 1.5%            | 2.0%         |  |
| 501-600   | 1.5%            | 2.0%         |  |
| 601-700   | 2.0%            | 3.0%         |  |
| 701-800   | 2.0%            | 3.0%         |  |
| 801-900   | 2.6%            | 3.6%         |  |
| 901-1000  | 2.6%            | 4.1%         |  |
| 1001-1100 | 2.6%            | 4.6%         |  |
| 1101-1200 | 3.0%            | 5.4%         |  |



Observed Peak ALT range (U/L)


Simulation Results





### **Regenerative Hepatocyte Proliferation** Predicted to be Complete 2-9 Weeks after CBLB502 Dosing

- SimPops<sup>™</sup> generated with variability in hepatocyte proliferation
- Hepatocyte restoration complete within ~2-9 stored weeks after onset of injury (median human prediction 3 weeks)
  Shaded region reflects variation in degree of injury and hepatocyte proliferative response from the SimPops™ ٠
  - from the SimPops™
  - Viable hepatocyte restoration considered complete at 99% (dashed red line)
  - Simulation results shown for maximal ALT response to CBLB502
- Hepatocyte proliferation begins with onset of injury and persists until complete regeneration
  - Simulation results plotted from nadir of viable hepatocytes until complete restoration









#### Evidence from Literature to Support Safety of Minimal Hepatocyte Loss with CBLB502

- Excision of 20% of liver volume in living donors is generally considered safe (Florman 2006)
  - Living donors routinely recover fully after even greater portions (40-60%) of liver are excised for adult-to-adult donations (Florman 2006, Lee 2010)
- Heparins are widely considered to be safe despite associated increases in ALT
  - Reported ALT increases after heparins comparable to observed ALT after CBLB502
  - DILIsym<sup>®</sup> modeling team performed comparable ALT-hepatocyte loss on published clinical data (Harrill 2012, analysis on following slides)
  - Comparable, minimal hepatocyte loss predicted for heparins and CBLB502
- Clinical correlative data from literature indicate that minimal loss of hepatocytes due to injury has little to no effect on bilirubin levels and prothrombin clotting time (Portmann 1975)





#### **Project Summary**

- Analyses based on clinical data and simulation results indicate that volunteers with ALT elevations following CBLB502 administration likely incurred hepatocyte losses of ≤5%
- The vast majority of necrotic hepatocyte loss was predicted to have occurred within the first 24 h following dosing, and recovery (restoration of 99% viable hepatocytes) times ranged from 2-9 weeks
- Based on literature review, ~15% of hepatocytes can be lost to a necrotic event without an increase in bilirubin or symptoms associated with liver injury





#### Application Example 1: Retrospective Analysis of Observed Liver Safety Signals

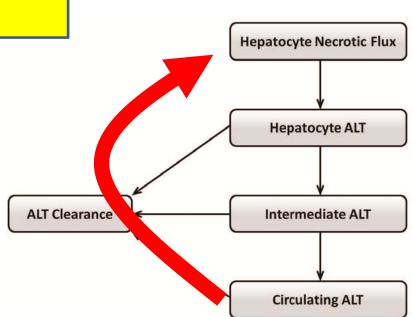
#### Issue

- ALT (and AST) elevations were reported in a single (few) individuals from early clinical trials
- No indications of liver dysfunction were observed in the early trials
- No mechanistic data for hepatotoxicity have been identified

#### **Pending Decision**

- Does the Company continue to advance this program?
  - Assume multiple inputs and data sets, potentially including modeling and simulation

#### Questions to Individual(s) Responsible for Liver Safety Assessment


- Can DILIsym<sup>®</sup> be used to retrospectively interpret the observed ALT elevations?
  - What level of injury might be inferred from the reported ALT profile?
  - How much uncertainty is associated with the estimated level of liver injury?
  - What time frame of recovery would be expected for the simulated injury?





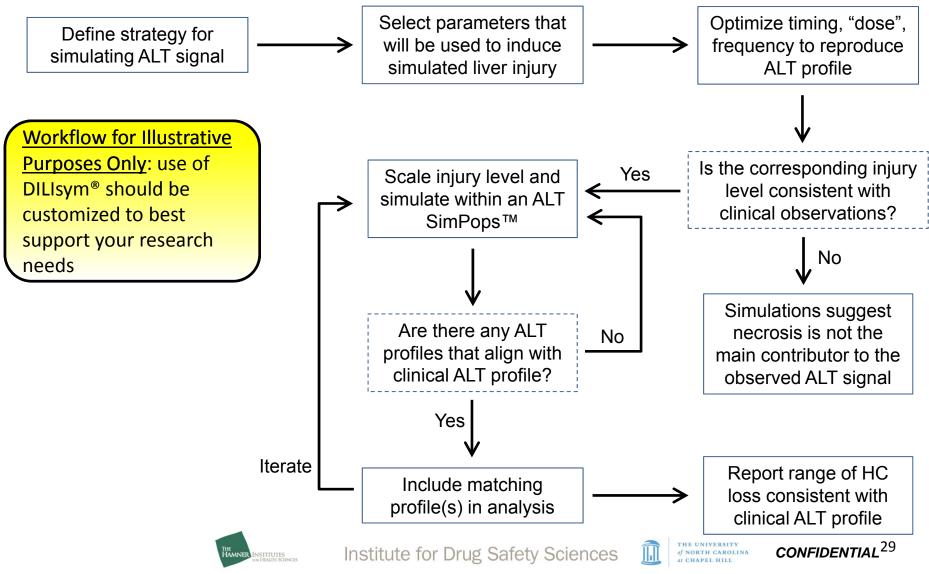
### Approach for Using Simulations to Analyze Entolimod Clinical Data

- Approach: use ALT dynamics to infer hepatocyte loss
  - ALT content per cell based on cellular measurements
    - Boyd 1983, Remien 2012, Lindblom 2007
  - ALT release occurs upon hepatocyte necrosis
  - ALT elimination half-life based on clinical data
    - Nicoll 1997
- Initial simulations in DILlsym<sup>®</sup> baseline normal healthy volunteer (NHV)

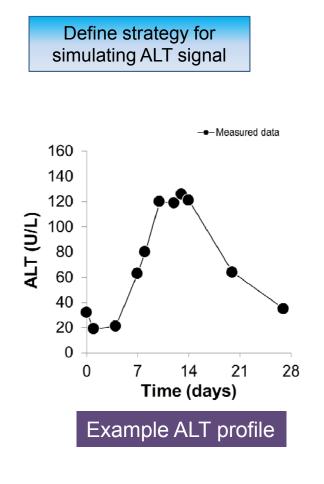







### Methodological Approach for Using DILIsym<sup>®</sup> in Retrospective Analysis

Prospective analysis: use what is known about a compound to better understand potential hepatotoxicity (e.g., degree of necrosis, ALT, bilirubin)


#### Model inputs Compound Necrosis **Mechanisms** characteristics Model outputs A simple retrospective analysis can be conducted without a detailed compound or Necrosis ALT mechanistic representation Including compound and mechanisms will result in a more Retrospective analysis: use ALT to robust analysis confirm when appropriate degree of necrosis has been simulated THE UNIVERSITY Institute for Drug Safety Sciences 28 of NORTH CAROLINA CONFIDENTIAL

CHAPEL HILL

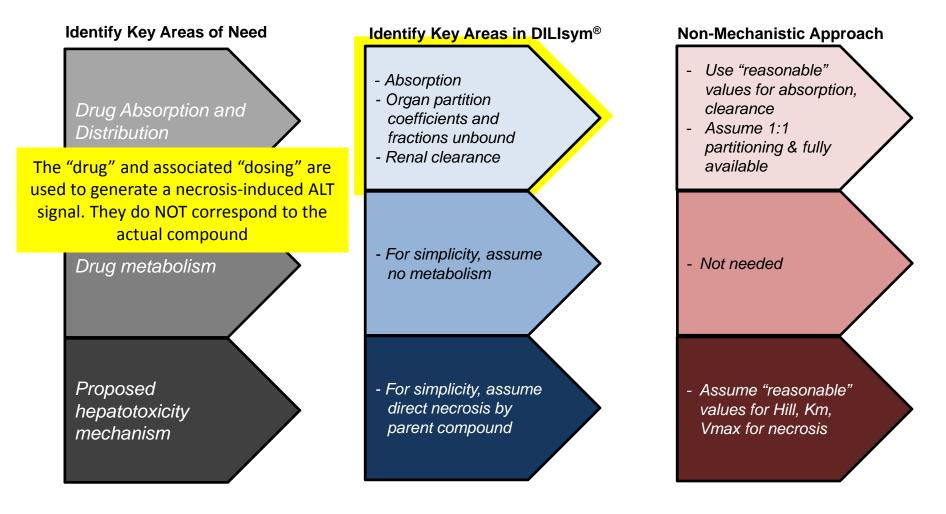
#### Workflow for Retrospective Analysis of Clinical ALT Signals Using DILIsym<sup>®</sup>



### How Can DILIsym<sup>®</sup> Be Used to Reproduce the Clinical ALT Signal?



- Clinical data
  - ALT elevations observed in a single individual
  - No liver dysfunction reported
  - No mechanistic data for liver signal available
- Using the DILIsym<sup>®</sup> baseline simulated human,
  - Assume observed ALT elevations are a result of hepatocyte necrosis
  - Apply parent compound W induces direct necrosis, to "hit" the hepatocytes and generate an ALT profile similar to the experimental data



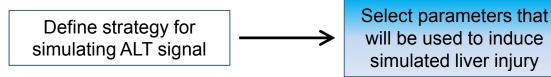


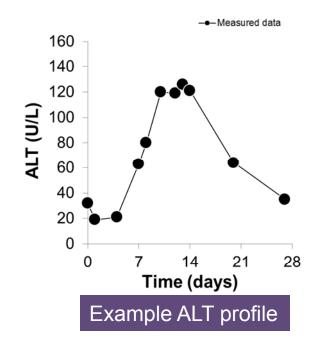



**CONFIDENTIAL**<sup>30</sup>

# Identifying the Inputs Needed to Reproduce the ALT Profile in DILIsym<sup>®</sup> (v2B)







Institute for Drug Safety Sciences



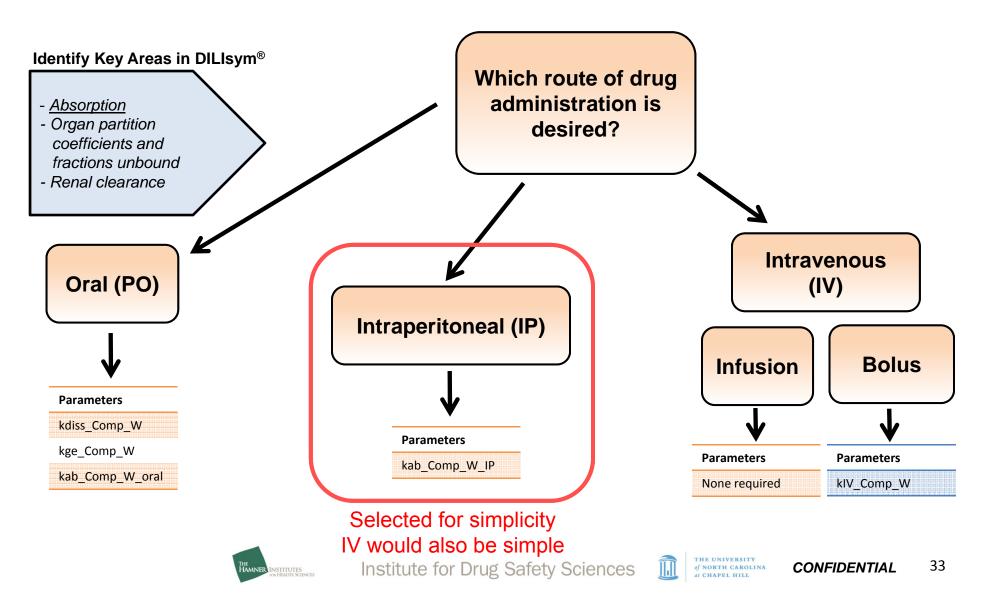
CONFIDENTIAL 31

## Identification and Selection of Injury-Inducing Parameters

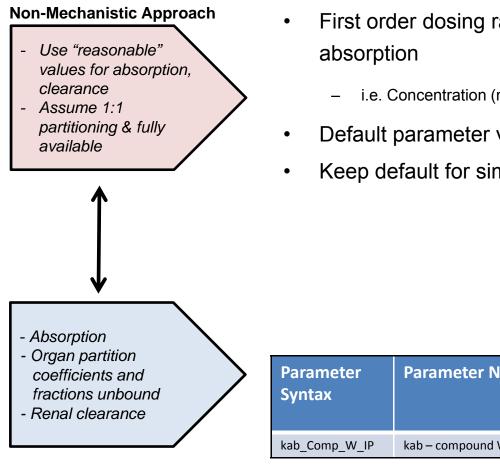




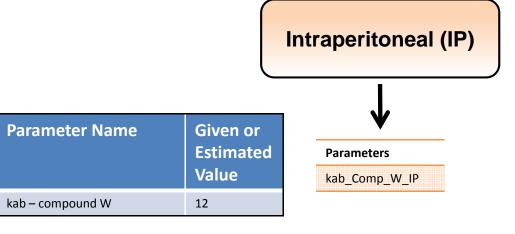
- Define simple Compound W PBPK
- Define parameters (K<sub>m</sub>, Hill, V<sub>max</sub>) for induction of direct necrosis by Compound W
- Select mechanism Compound W (parent) induces direct necrosis
- Verify species selector set to human


Note: Because "Compound W induces direct necrosis" is a simple stimulus & <u>its effects will be constrained to align with the observed ALT profile</u>, alternate parameter solutions are possible but not expected to impact the estimated liver injury

**Clinical Data** 



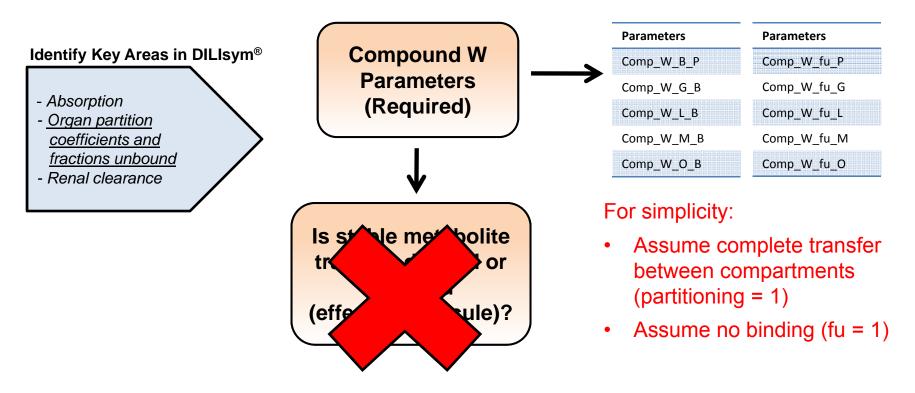

CONFIDENTIAL<sup>32</sup>


#### Selecting the DILIsym<sup>®</sup> Parameters to Use for Drug Delivery and Absorption



#### **Determining Parameter Values for Absorption**




- First order dosing rate constants determine the rate of
  - i.e. Concentration (mass/volume) \* Rate Constant (1/hour) = Rate
- Default parameter value is **12** (1/hour)
- Keep default for simplicity

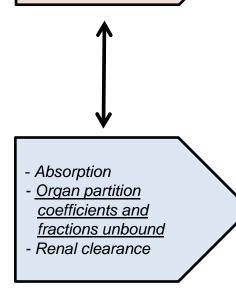






### Selecting the DILIsym<sup>®</sup> Parameters to Use for Drug/Tissue Partitioning and Binding








#### Determining Parameter Values for Tissue Distribution and Protein Binding

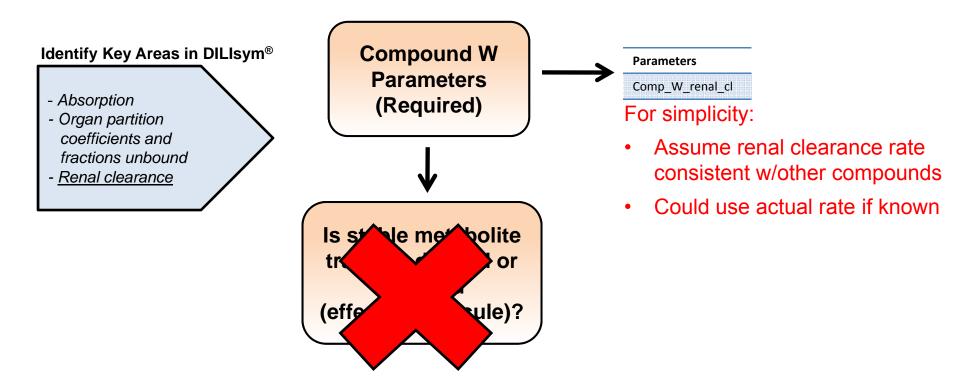
#### **Non-Mechanistic Approach**

- Use "reasonable" values for absorption, clearance
   Assume 1:1
- partitioning & fully available



THE HAMNER INSTITUTES FOR HEALTH SCIENCES

| Parameter Name                            | Given or<br>Estimated Value                                                                                                                                                                                                                                                                              |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compound W blood to plasma                | 1                                                                                                                                                                                                                                                                                                        |
| Compound W gut to blood                   | 1                                                                                                                                                                                                                                                                                                        |
| Compound W liver to blood                 | 1                                                                                                                                                                                                                                                                                                        |
| Compound W muscle to blood                | 1                                                                                                                                                                                                                                                                                                        |
| Compound W other to blood                 | 1                                                                                                                                                                                                                                                                                                        |
| Compound W fraction unbound plasma        | 1                                                                                                                                                                                                                                                                                                        |
| Compound W fraction unbound gut tissue    | 1                                                                                                                                                                                                                                                                                                        |
| Compound W fraction unbound liver         | 1                                                                                                                                                                                                                                                                                                        |
| Compound W fraction unbound muscle tissue | 1                                                                                                                                                                                                                                                                                                        |
| Compound W fraction unbound other tissue  | 1                                                                                                                                                                                                                                                                                                        |
|                                           | Compound W blood to plasmaCompound W gut to bloodCompound W liver to bloodCompound W muscle to bloodCompound W other to bloodCompound W other to bloodCompound W fraction unbound plasmaCompound W fraction unbound gut tissueCompound W fraction unbound liverCompound W fraction unbound muscle tissue |


Institute for Drug Safety Sciences



Ш

**CONFIDENTIAL** 36

#### Selecting the DILIsym<sup>®</sup> Parameters to Use for Renal Clearance







#### Determining Parameter Values for Renal Clearance

#### Non-Mechanistic Approach

- Use "reasonable" values for absorption, clearance
   Assume 1:1
- partitioning & fully available

- Absorption

- Organ partition coefficients and fractions unbound

- <u>Renal clearance</u>

| Parameter Syntax | Parameter Name             | Given or<br>Estimated<br>Value |
|------------------|----------------------------|--------------------------------|
| Comp_W_renal_cl  | Compound W renal clearance | 25                             |





#### Implementing Parameter Values for Compound W PBPK (1 of 2)

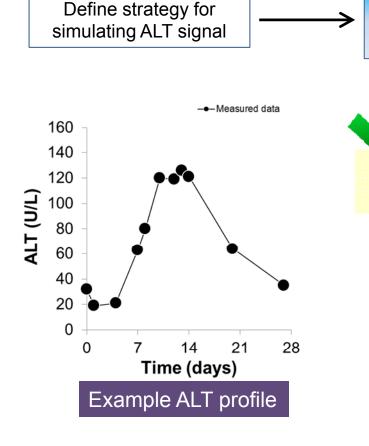
| DILIsym v2C - 2013 Q3 Training |    | DILIsym v2C - 2013 Q3 Training                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | 🛃 Drug Parameter Values-Parame 🗖 🗖 🗮 🌌                                       |
|--------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------|
| File View Results About        |    | File View Results About                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                                              |
| 😡 😡 🗘                          |    | 🖸 🛃 🖸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | ۲ ک                                                                          |
| SimSingle Setup File           |    | SimSingle Setup File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                                                              |
| SimSingle Input Options        | Se | SimSingle Input Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Select 💌             | Mechanism selection<br>Drug toxicity parameters<br>Mechanistic interventions |
| Simulation Time                | Se | Simulation Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Select 💌             | Compound W PBPK                                                              |
| Species Parameters             | Se | Species Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Select 🔻             | Compound W RM 2 PBPK                                                         |
| Drug Parameters                | Se | Drug Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parameters_Blank_v2C | Compound X PBPK<br>Comp X Metabolite A PBPK<br>Comp X Metabolite B PBPK      |
| Caloric Intake                 | Se | Caloric Intake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Select 💌             | Compound X RM 1 PBPK<br>Compound X RM 2 PBPK                                 |
| Compound W Dosing              | Se | Compound W Dosing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Select 💌             | Compound Y PK<br>Bile acid transporter inhibition constant                   |
| Compound X Dosing              | Se | Compound X Dosing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Select 💌             | CDCA transporter inhibition constants                                        |
| Compound Y Dosing              | Se | Compound Y Dosing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Select 💌             | Noncompetitive inhibition constants<br>Species identification                |
| Solver Options                 | Se | Solver Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Select 💌             |                                                                              |
| Simulate                       |    | Simulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                                                              |
| Run                            | R  | Run<br>Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Run in Parallel Data | Comparise                                                                    |
| Export to Excel                |    | Export to Exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | el Plot Ou           | tput Table                                                                   |
|                                |    | RIGHTINGEN TO THE REPORT OF TH |                      |                                                                              |

#### Implementing Parameter Values for Compound W PBPK (2 of 2)

| Parameter                                       | Value           | Units           |
|-------------------------------------------------|-----------------|-----------------|
| Comp W bil cl                                   |                 | mL/hour/kg^0.75 |
| Comp_W_B_P                                      |                 | dimensionless   |
| Comp_W_fr_recir                                 |                 | dimensionless   |
| Comp_W_fu_G                                     |                 | dimensionless   |
| Comp_W_fu_L                                     |                 | dimensionless   |
| Comp_W_fu_M                                     | 1               | dimensionless   |
| Comp W fu O                                     | 1               | dimensionless   |
| Comp_W_fu_P                                     |                 | dimensionless   |
| u_correlation_Comp_W                            |                 | dimensionless   |
| Comp_W_fu_corr_2                                |                 | dimensionless   |
| Comp_W_fu_corr_1                                |                 | dimensionless   |
| Comp_W_fu_corr_0                                |                 | dimensionless   |
| Comp_W_G_B                                      |                 | dimensionless   |
| Comp_W_L_B                                      |                 | dimensionless   |
| Comp_W_mg_mol                                   | 1               | mol/mg          |
| Comp_W_mol_mg                                   |                 | mg/mol          |
| Comp_W_M_B                                      |                 | dimensionless   |
| Comp_W_O_B                                      | 1               | dimensionless   |
| Comp_W_renal_cl                                 | 0               | mL/hour/kg^0.75 |
| ab_Comp_W_oral                                  |                 | 1/hour          |
| ab_conj_Comp_W                                  | 0               | 1/hour          |
| ab_Comp_W_IP                                    | 12              | 1/hour          |
| diss_Comp_W                                     |                 | 1/hour          |
| ge_Comp_W                                       |                 | 1/hour          |
| IV_Comp_W                                       |                 | 1/hour          |
| /max_Comp_W_ab                                  | 0               | 1/hour          |
| (m_Comp_W_ab                                    | 1.0000e+10      | mg              |
| _out_gut_Comp_W                                 |                 | 1/hour          |
|                                                 |                 |                 |
| Comp_W_Km_L_B                                   | 1.0000e+10      | mg/mL           |
| Comp_W_perm                                     | 0               | 1/hour          |
| Comp_W_Vmax_L_B<br>Comp_W_Km_L_B<br>Comp_W_perm | 0<br>1.0000e+10 | 1/hour<br>mg/mL |

- Retain most default parameter values
  - Tissue distribution values set to 1
  - Fraction unbound set to 1
- Update renal clearance to selected value = 25
- Save parameter file by a new name, e.g.,
  - Parameters\_Human\_CompW\_direct\_necrosis

| Parameter       | Value | Units          | _  |
|-----------------|-------|----------------|----|
| Comp_W_mg_mol   | 1     | mol/mg         | 1  |
| Comp_W_mol_mg   | 1     | mg/mol         |    |
| Comp_W_M_B      | 1     | dimensionless  |    |
| Comp_W_O_B      | 1     | dimensionless  |    |
| Comp_W_renal_cl | 0     | mL/hour/kg^0.7 | E, |
| kab_Comp_W_oral | 5     | 1/hour         | -  |
| kab_conj_Comp_W | 0     | 1/hour         | =  |
| kab_Comp_W_IP   | 12    | 1/hour         | -  |
| kdiss_Comp_W    | 12    | 1/hour         |    |
| kge_Comp_W      | 12    | 1/hour         |    |
| •               |       | •              | 3  |
|                 | Ammha |                |    |
| _               | Apply |                |    |


**CONFIDENTIAL** 40

#### Select "Reasonable" Parameters for Compound Induction of Direct Necrosis

Select parameters that

will be used to induce

simulated liver injury



Define simple Compound W PBPK

- Define parameters (K<sub>m</sub>, Hill, V<sub>max</sub>) for induction of direct necrosis by Compound W
- Select mechanism Compound W (parent) induces direct necrosis
- Verify species selector set to human

Note: Because "Compound W induces direct necrosis" is a simple stimulus & <u>its effects will be constrained to align with the observed ALT profile</u>, alternate parameter solutions are possible but not expected to impact the estimated liver injury

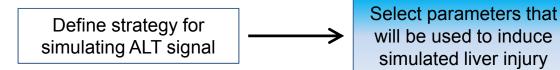
Clinical Data

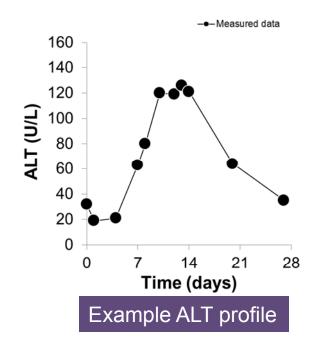




**CONFIDENTIAL**<sup>41</sup>

## Implementing Drug Toxicity Parameters for Compound W


- Recall this is a dummy "drug" intended simply to induce necrosis (not simulate real drug)
- Insert "reasonable" values, e.g., as used in Cleveland BioLabs Project
  - Hill\_direct\_necrosis = 1
  - Vmax\_direct\_necrosis = 1
  - Km\_direct\_necrosis = 0.003
- Alternate values can be used at the researcher's discretion


| led<br>ate<br>used        |        | Ag Parameter Valu<br>Mechanism select<br>Drug toxicity para<br>Mechanistic inter<br>Compound W PB<br>Comp W Metabol<br>Comp W Metabol<br>Comp W Metabol<br>Compound W RM<br>Compound W RM<br>Compound X PBF | tion<br>wentions<br>PK<br>lite A PBPK<br>lite B PBPK<br>1 1 PBPK<br>1 2 PBPK |                  | r r |
|---------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------|-----|
| Drug toxicity parameters- | Parame | ters_Blank_v2C                                                                                                                                                                                              |                                                                              | • <mark>×</mark> |     |
| Parameter                 |        | Value                                                                                                                                                                                                       | Units                                                                        |                  |     |
| RNS_ROS_prod_const        |        | 0                                                                                                                                                                                                           | mL/hour/mol                                                                  | <u> </u>         |     |
| Hill_direct_necrosis      |        | 0                                                                                                                                                                                                           | dimensionless                                                                | s 👔              |     |
| Vmax_direct_necrosis      |        | 0                                                                                                                                                                                                           | dimensionless                                                                | ;                |     |
| Km_direct_necrosis        |        | 1                                                                                                                                                                                                           | dimensionless                                                                | 3                |     |
| ATP_util_Vmax             |        | 0                                                                                                                                                                                                           | 1/hour                                                                       |                  |     |
| ATP_util_Km               |        | 1                                                                                                                                                                                                           | mol/mL                                                                       |                  |     |
| ATP_util_Hill             |        | 0                                                                                                                                                                                                           | dimensionless                                                                | 5                |     |
|                           | 4      | Apply                                                                                                                                                                                                       |                                                                              |                  |     |
|                           |        | •                                                                                                                                                                                                           |                                                                              | 4                |     |
|                           |        |                                                                                                                                                                                                             |                                                                              |                  |     |





#### Specify Compound W Induces Direct Necrosis





Define simple Compound W PBPK

- Define parameters ( $K_m$ , Hill,  $V_{max}$ ) for induction of direct necrosis by Compound W
- Select mechanism Compound W (parent) induces direct necrosis
- Verify species selector set to human

Note: Because "Compound W induces direct necrosis" is a simple stimulus & <u>its effects will be constrained to align with the observed ALT profile</u>, alternate parameter solutions are possible but not expected to impact the estimated liver injury

**Clinical Data** 





**CONFIDENTIAL**<sup>43</sup>

## DILIsym<sup>®</sup> Hepatotoxicity Mechanism Selection for Simply Reproducing an ALT Profile

#### Identify Key Areas in DILIsym®

| <ul> <li>Absorption</li> <li>Organ partition<br/>coefficients and<br/>fractions unbound</li> </ul> | Parameter<br>Syntax | Parameter Name              | Given or<br>Estimated<br>Value | Units         | Method of<br>Estimation |
|----------------------------------------------------------------------------------------------------|---------------------|-----------------------------|--------------------------------|---------------|-------------------------|
| - Renal clearance                                                                                  | Compound W          | Mechanism for<br>Compound W | Direct<br>necrosis             | dimensionless | Not applicable          |
| - For simplicity, assume<br>no metabolism                                                          |                     |                             |                                |               |                         |
| - For simplicity, assume direct necrosis by parent compound                                        |                     |                             |                                |               |                         |





#### Implementing Compound W Direct Necrosis

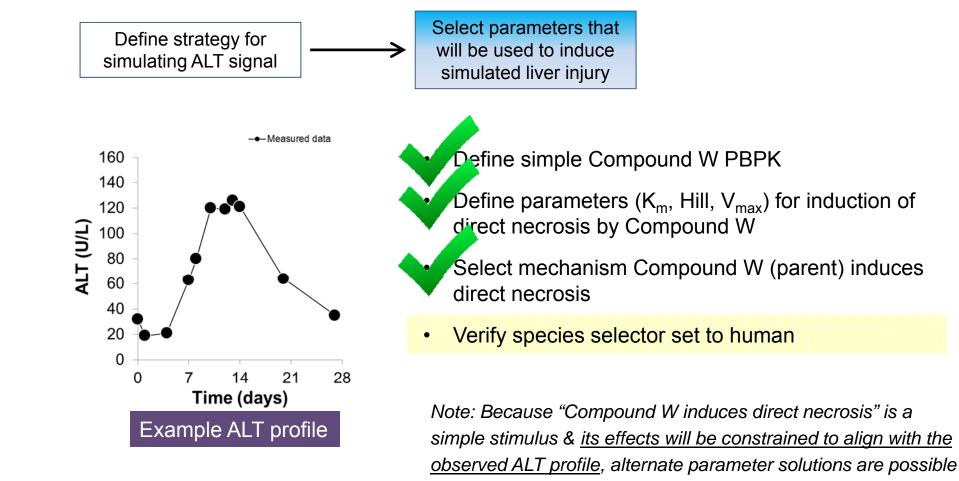
| J Drug Parameter Values-Parame          |   |   |   | x |
|-----------------------------------------|---|---|---|---|
|                                         |   |   |   | ъ |
|                                         |   |   |   |   |
| Mechanism selection                     |   |   | * |   |
| Drug toxicity parameters                |   |   |   |   |
| Mechanistic interventions               |   |   |   |   |
| Compound W PBPK                         |   |   |   |   |
| Comp W Metabolite A PBPK                |   |   |   |   |
| Comp W Metabolite B PBPK                |   |   |   |   |
| Compound W RM 1 PBPK                    |   |   |   |   |
| Compound W RM 2 PBPK                    |   |   |   |   |
| Mechanism selection-Parameters_Blank_v2 | с | - |   |   |

1

- Select "direct necrosis" for the parent • compound W
- Leave all other mechanisms unchecked •

at CHAPEL HILL

| Species                         | RNS-ROS production | ATP utilization | Direct necrosis | BSEP/NTCP inhib | Pyruvate ox inhib | Fatty acid ox inhib | ETC inhib | Mito ATP s |
|---------------------------------|--------------------|-----------------|-----------------|-----------------|-------------------|---------------------|-----------|------------|
| ompound W                       |                    |                 |                 |                 |                   |                     |           | ·          |
| ompound W metabolite A          |                    |                 |                 |                 |                   |                     |           |            |
| ompound W metabolite B          |                    |                 |                 |                 |                   |                     |           |            |
| ompound W reactive metabolite 1 |                    |                 |                 |                 |                   |                     |           |            |
| ompound W RM 1 protein adducts  |                    |                 |                 |                 |                   |                     |           |            |
| ompound W reactive metabolite 2 |                    |                 |                 |                 |                   |                     |           |            |
| ompound W RM 2 protein adducts  |                    |                 |                 |                 |                   |                     |           |            |
| ompound X                       |                    |                 |                 |                 |                   |                     |           |            |
| ompound X metabolite A          |                    |                 |                 |                 |                   |                     |           | E          |
| ompound X metabolite B          |                    |                 | 100             | (m)             | <b>E</b>          |                     |           | E          |
| ompound X reactive metabolite 1 |                    |                 | <b>F</b>        |                 |                   |                     |           | E.         |
|                                 | III                | Di Pilen        |                 |                 |                   |                     |           | •          |


#### **Appropriate Species Selection**

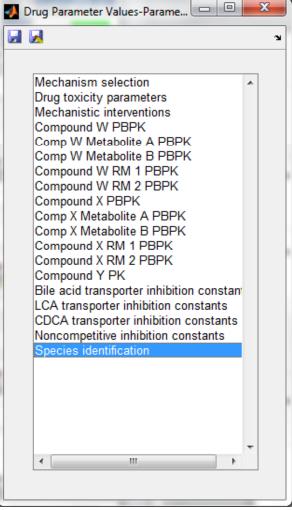
but not expected to impact the estimated liver injury

Institute for Drug Safety Sciences

THE UNIVERSITY

of NORTH CAROLINA at CHAPEL HILL CONFIDENTIAL<sup>46</sup>



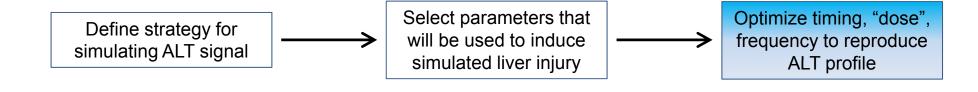

**Clinical Data** 

THE HAMNER INSTITUTES

#### Set Species Selection for Human Simulations

- DILI simulations may be run for mice, rats, dogs, or humans
- Species is specified by number
  - **1** mice
  - **2** rats
  - **3** dogs
  - **4** humans

| Param  | eter | Value | Units |  |
|--------|------|-------|-------|--|
| pecies |      | 4     | ↓ n/a |  |
|        |      |       |       |  |
|        |      |       |       |  |
|        |      |       |       |  |
|        |      | Apply |       |  |




THE UNIVERSITY

at CHAPEL HILL

of NORTH CAROLINA

#### Optimization to Reproduce the ALT Profile

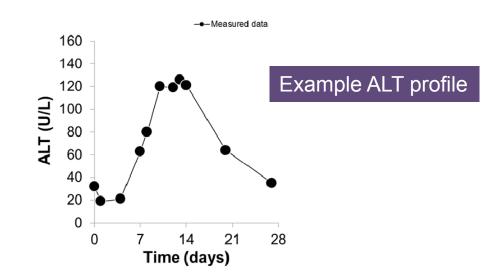


Workflow for Illustrative Purposes Only: use of DILIsym<sup>®</sup> should be customized to best support your research needs

- Optimize for a Compound W "protocol" that reproduces the ALT profile of interest
  - Time of 1st "dose" §
  - "Dose" magnitude
  - "Dose" frequency

<sup>§</sup> Compound W and associated "dosing" are used to induce injury. They do NOT correspond to the real compound and therefore need not reflect the real compound protocol.




Institute for Drug Safety Sciences



**CONFIDENTIAL**<sup>48</sup>

#### Optimization Goal: Simulate Injury that Results in the Measured ALT Profile

- Objective is to characterize:
  - Timing of ALT elevation
  - Relationship between "dose" and ALT
- Initial set-up design
  - Short duration
  - Single "dose"
- Save Compound W dose scheme & SimSingle<sup>™</sup> under appropriate names



| Time (days) | Time (hours) | ALT (U/L) |
|-------------|--------------|-----------|
| 0           | 0            | 32        |
| 1           | 24           | 19        |
| 4           | 96           | 21        |
| 7           | 168          | 63        |
| 8           | 192          | 80        |
| 10          | 240          | 120       |
| 12          | 288          | 119       |
| 13          | 312          | 126       |
| 14          | 336          | 121       |
| 20          | 480          | 64        |
| 27          | 648          | 35        |

**Clinical Data** 

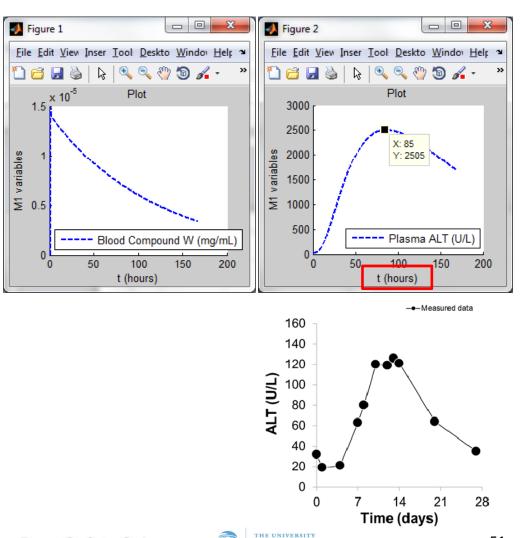


Institute for Drug Safety Sciences

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

**CONFIDENTIAL**<sup>49</sup>

## Set up an Initial SimSingle™

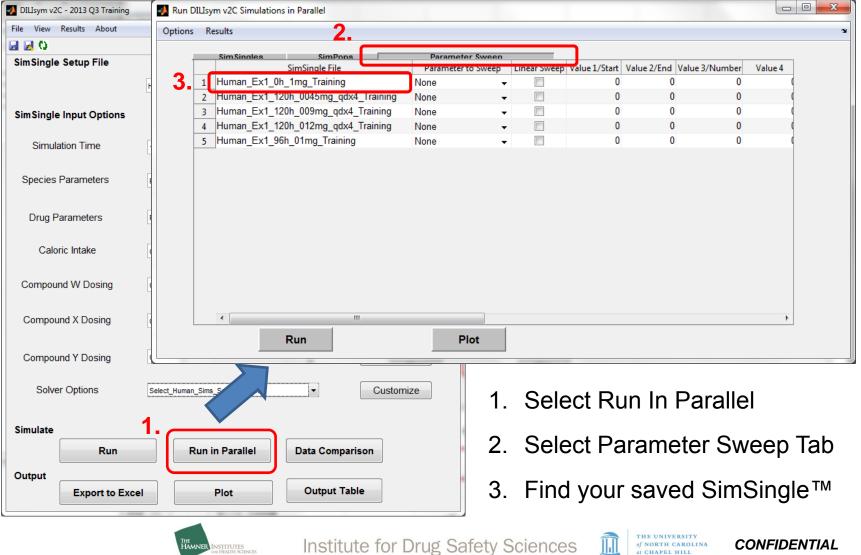

- Simulation Time
  - 1\_week\_Default
- Species Parameters
  - Parameters\_human\_specific\_v2C
- Drug Parameters
  - As specified in previous section
  - Parameters\_human\_CompW\_direct\_necrosis
- Caloric Intake
  - Caloric\_intake\_parameters\_blank\_v2C
- Compound W Dosing
  - Create a new test set
  - Specify 1 mg dose, 1 total dose
- Compound X Dosing
  - Compound\_X\_dosing\_blank\_v2C
- Compound Y Dosing
  - Compound\_Y\_dosing\_blank\_v2C
- Solver Options
  - Select\_Human\_Sims\_Solver\_Options

HAMNER INSTITUTES

|                          | JILIsym v2C - 2013 Q3 Training | Cature an Initial (                                        |                      |
|--------------------------|--------------------------------|------------------------------------------------------------|----------------------|
|                          | File View Results About        |                                                            | ۲.                   |
|                          | 🖬 🛃 🛈                          | ave SimSingle™ file                                        |                      |
|                          | SimSingle Setup File           |                                                            |                      |
|                          |                                | Human Ex1 0h 1mg Training                                  |                      |
| c v2C                    |                                | Human_Ex1_0h_1mg_Training                                  |                      |
| 0_720                    | SimSingle Input Options        | Select a short default tin                                 | ne                   |
| tion                     | Simulation Time                | Select human species p                                     | arameters            |
| <i>W_direct_necrosis</i> |                                | Ocicet numari species p                                    | arameters            |
|                          | Species Parameters             | Coloct Comp/A/ direct po                                   | orogio               |
|                          |                                | Select CompW direct ne                                     | CIOSIS               |
| blank v2C                | Drug Parameters                | Select Calorie Intake de                                   | fault narameter      |
|                          |                                | Select Calolle Illiake de                                  | iault parameter      |
|                          | Caloric Intake                 | Customize Compound V                                       | V docina             |
|                          |                                | Customize Compound V                                       | vuosing              |
|                          | Compound W Dosing              | Calact Correspond V daf                                    |                      |
| ose                      |                                | Select Compound X defa                                     | auit parameters      |
|                          | Compound X Dosing              |                                                            | 14 4                 |
|                          |                                | Select Compound Y defa                                     | ault parameters      |
| k_v2C                    | Compound Y Dosing              |                                                            | 0.5700 dimensionless |
|                          |                                | Select Human Solver                                        | 0.0500 hours         |
|                          | Solver Options                 | Select_Human start_IP_Comp_W_bolus_dose_                   | 0 hours              |
| k_v2C                    |                                | period_iP_Comp_VV_bolus_dose                               | 40 hours             |
|                          |                                | IP_Comp_W_bolus_dose_1                                     | 1 mg                 |
|                          | Simulate                       | total_IP_Comp_W_bolus_dose_<br>start_IP_Comp_W_bolus_dose_ | 1 dimensionless      |
| er_Options               | Run                            | Period IP Comp W bolus dose                                | 24 hours             |
|                          |                                | IP_Comp_W_bolus_dose_2                                     | 0 mg                 |
| Run SimSingl             | е™                             | total IP Comp W bolus dose                                 | 0 dimensionless      |
|                          | Export to Exc                  | start_IP_Comp_W_bolus_dose_                                | 96 hours             |
|                          |                                | neriod IP Comp W bolus dose                                | 24 hours             |
| Institute                | e for Drug Safety S            | Sciences                                                   | •                    |
| A SCIENCES INCLUCIO      |                                |                                                            |                      |

## Use Initial Results to Guide Next Steps in Optimization

- Use **Plot** button on GUI to visualize simulation results
- Plotting blood compound W verifies that a single dose was simulated
- Plotting ALT reveals 1 mg elicits too much injury, too fast
- Use parameter sweep
   feature to test
  - Lower "doses"
  - Alternate start times




of NORTH CAROLINA at CHAPEL HILL **CONFIDENTIAL** 

51

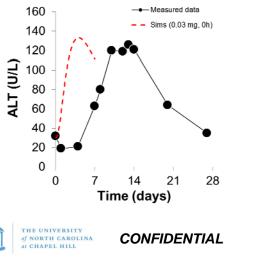


#### Parameter Sweep Functionality is Available Through Run In Parallel



52

## Use Log Sweep to Identify a "Dose" Range Better Aligned with Target ALT Profile


|             | e DILI and R1 (fo      |                                                  | imPons                                          |            |                        | ter Sween                     |                    |          |         |                  |           |                      |                                   |
|-------------|------------------------|--------------------------------------------------|-------------------------------------------------|------------|------------------------|-------------------------------|--------------------|----------|---------|------------------|-----------|----------------------|-----------------------------------|
|             | thmic Sweep (ba        |                                                  | Sweep Lin                                       | near Sweep | Value 1/Start          | Value 2/End                   | Value 3/Nu         | imber V  | alue 4  | Value            | 5 V       | alue 6               | Value 7                           |
|             | Human_E                |                                                  | •                                               |            | 0                      | 0                             |                    | 0        | 0       |                  | 0         | 0                    |                                   |
| 2           | Human_E                | None                                             | •                                               |            | 0                      | 0                             |                    | 0        | 0       |                  | 0         | 0                    |                                   |
| DILIS       | sym v2C Simulat        | ions in Paral                                    | llel                                            |            |                        |                               |                    |          |         |                  |           |                      |                                   |
|             |                        | SimSi                                            | ngle File                                       |            | Pa                     | arameter to Sv                | veep               | Log Swee | p Value | 1/Start          | Value 2/E | nd Value 3           | 3/Number                          |
| 2           |                        | _0h_1mg_T<br>_120h_004                           | 5mg_qdx4_                                       |            | IP_Com<br>None         | arameter to Sv<br>p_W_bolus_q | - 1_eaob           |          |         | 00e-03<br>0      | Value 2/E | nd Value 3<br>1<br>0 | 3/Number<br>7<br>0                |
| 2           | Human_Ex1<br>Human_Ex1 | _0h_1mg_T<br>_120h_004<br>_120h_009i             | Training<br>5mg_qdx4_<br>mg_qdx4_T              | raining    | IP_Com<br>None<br>None |                               | dose_1 -<br>-<br>- |          |         | 00e-03           | Value 2/E | 1                    | 3/Number<br>7<br>0<br>0<br>0      |
| 2<br>3<br>4 | Human_Ex1<br>Human_Ex1 | _0h_1mg_T<br>_120h_004<br>_120h_009<br>_120h_012 | Training<br>5mg_qdx4_<br>mg_qdx4_T<br>mg_qdx4_T | raining    | IP_Com<br>None         |                               | - 1_eaob           |          |         | 00e-03<br>0<br>0 | Value 2/E | 1<br>0<br>0          | 8/Number<br>7<br>0<br>0<br>0<br>0 |





#### Use Parameter Sweep Results to Guide Further Optimization

- 🚺 Figure 1 Insert Tools Desktop File Edit View Window Help 🐌 🗜 🔏 🕤 Ð ् 🥎 리 R Human Ex1 0h 1mg;IP Comp W bolus dose 1 =0.001 Human Ex1 0h 1mg;IP Comp W bolus dose 1 =0.0031623 Human Ex1 0h 1mg;IP Comp W bolus dose 1 =0.01 Human Ex1 0h 1mg; IP Comp W bolus dose 1 =0.031623 Human Ex1 0h 1mg;IP Comp W bolus dose 1 =0.1 Human Ex1 0h 1mg;IP Comp W bolus dose 1 =0.31623 Human Ex1 0h 1mg;IP Comp W bolus dose 1 =1 Plasma ALT (U/L) vs t (hours) 3000 2500 Plasma ALT (U/L) vs t (hours) Plasma ALT (U/L) 2000 140 **Delete ALT profiles** X: 98 120 1500 Y: 133.2 that are too high Plasma ALT (U/L) 100 1000 80 500 60 40 50 100 150 t (hours) 20 L 50 100 150 200 t (hours) Clinical Data and THE HAMNER INSTITUTES Institute for Drug Safety Sciences Simulation Results
  - Lowering injury-inducing "dose" range by ~2 orders of magnitude puts ALT into a range similar to data
  - Dynamics of single "dose" are a poor match and suggest delayed start time and multiple "doses" should be evaluated
    - <u>Note</u>: multiple "dose" scenario will necessitate further "dose" lowering



54

#### Create a Derivative SimSingle<sup>™</sup> with Closer "Dosing" to Continue Optimization

| DILIsym v2C - 2013 Q3 Training | Canada Contraction of Canada         |               |           | ×                                                          |          |                      |     |
|--------------------------------|--------------------------------------|---------------|-----------|------------------------------------------------------------|----------|----------------------|-----|
| File View Results About        |                                      |               |           |                                                            |          | of Walasa 2          | ,   |
| SimSingle Setup File           |                                      |               |           | <ul> <li>Delay start ti</li> </ul>                         | me for 1 | <sup>st</sup> "dose" | •   |
| SimSingle Input Options        | Human_Ex1_96h_01mg_Training          |               | Customize | Lower "dose"     reported ALT                              | 0        | nto the              |     |
| Simulation nine                | 4_weeks_Training                     |               | Gustomize |                                                            |          |                      |     |
| Species Parameter: Ac          | djust to target tin                  | ne frame      | Customize | IP Bolus                                                   | Dosing   |                      |     |
| Drug Parameters                | Parameters_human_CompW_direct_necros | sis_T 🔻       | Customize | Parameter                                                  | Value    | Units                |     |
| Caloric Intake                 | Caloric_intake_parameters_blank_v2C  | •             | Customize | IP_ratio_gut_Comp_W_IP                                     |          | dimensionless        |     |
| Commental Williams             |                                      |               |           | duration_IP_Comp_W_bolus                                   | 0.0500   |                      |     |
| Compound W Dosing              | CompW_96h_01mg_Training              |               | Customize | start_IP_Comp_W_bolus_dose_<br>period_IP_Comp_W_bolus_dose |          | hours<br>hours       | =   |
| Compound X Dosir FL            | urther customize                     | •             | Customize | IP_Comp_W_bolus_dose_1                                     | 0.0100   | ng                   |     |
| Compound Y Dosing              | Compound_Y_dosing_blank_v2C          | •             | Customize | total_IP_Comp_W_bolus_dose_                                |          | dimensionless        |     |
| g                              |                                      |               |           | start_IP_Comp_W_bolus_dose_                                |          | hours                | - 1 |
| Solver Options                 | Select_Human_Sims_Solver_Options     | •             | Customize | period_IP_Comp_W_bolus_dose                                |          | hours                | - 1 |
|                                |                                      |               |           | IP_Comp_W_bolus_dose_2                                     |          | mg                   | - 1 |
| Simulate                       |                                      |               |           | total_IP_Comp_W_bolus_dose_                                |          | dimensionless        | - 1 |
| Run                            | Run in Parallel                      | Data Comparis | on        | start_IP_Comp_W_bolus_dose_<br>period_IP_Comp_W_bolus_dose |          | hours<br>hours       | -   |
| Output                         |                                      |               |           |                                                            | /4       | nours<br>•           |     |
| Export to Exe                  | Plot                                 | Output Table  | •         |                                                            |          |                      |     |





## Use Linear Sweep to Identify a Frequency Range Better Aligned with Target ALT Profile

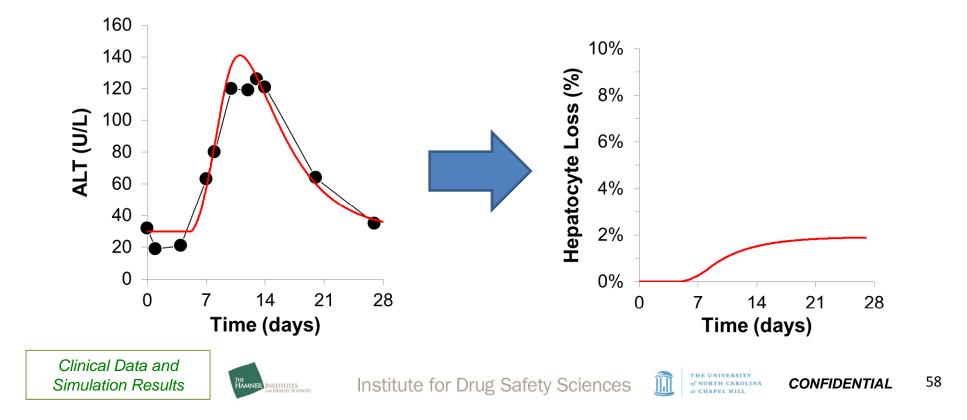
|   | SimSingles SimPops                  | Parameter Sween              | _   |              |               |             |                |
|---|-------------------------------------|------------------------------|-----|--------------|---------------|-------------|----------------|
|   | SimSingle File                      | Parameter to Sweep           | 1   | Linear Sweep | Value 1/Start | Value 2/End | Value 3/Number |
| 1 | Human_Ex1_0h_1mg_Training           | None                         | -   |              | 0             | 0           | 0              |
| 2 | Human_Ex1_120h_0045mg_qdx4_Training | None                         | •   |              | 0             | 0           | 0              |
| 3 | Human_Ex1_120h_009mg_qdx4_Training  | None                         | •   |              | 0             | 0           | 0              |
| 4 | Human_Ex1_120h_012mg_qdx4_Training  | None                         | -   |              | 0             | 0           | 0              |
| 5 | Human_Ex1_96h_01mg_Training         | total_IP_Comp_W_bolus_dose_1 | •   | <b>V</b>     | 1             | 7           | 8              |
|   | Swee                                | p number of "dose            | es" | (necr        | osis-in       | ducing      | j hits)        |
|   | Swee                                | p number of "dose            | s"  | (necr        | osis-in       | ducing      | g hits)        |



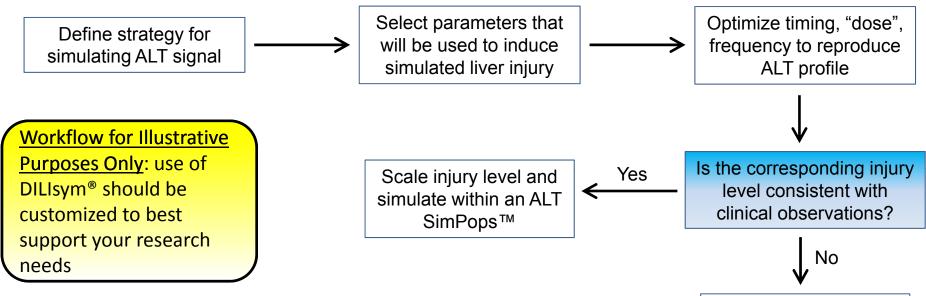


#### Use Linear Sweep to Identify Better Timing of 1<sup>st</sup> Dose

|   | SimSingles SimPons                  | Parameter Sweep              |   |              |               |             |                |
|---|-------------------------------------|------------------------------|---|--------------|---------------|-------------|----------------|
|   | SimSingle File                      | Parameter to Sweep           |   | Linear Sweep | Value 1/Start | Value 2/End | Value 3/Number |
| 1 | Human_Ex1_0h_1mg_Training           | None                         | • |              | 0             | 0           | 0              |
| 2 | Human_Ex1_120h_0045mg_qdx4_Training | None                         | • |              | 0             | 0           | 0              |
| 3 | Human_Ex1_120h_009mg_qdx4_Training  | None                         | • |              | 0             | 0           | 0              |
| 4 | Human_Ex1_120h_012mg_qdx4_Training  | None                         | • |              | 0             | 0           | 0              |
| 5 | Human_Ex1_96h_01mg_Training         | start_IP_Comp_W_bolus_dose_1 | • | <b>V</b>     | 24            | 192         | 8              |
|   |                                     |                              |   |              |               |             |                |
|   |                                     |                              |   |              |               |             |                |







## Optimization Provides an ALT Profile Similar to the Clinical Data

Time of 1<sup>st</sup> dose = 120 h Dose number = 4 Dose frequency = daily Dose magnitude = 0.009 mg

Reproducing the observed ALT profile in DILIsym<sup>®</sup> corresponds to ~2% hepatocyte loss

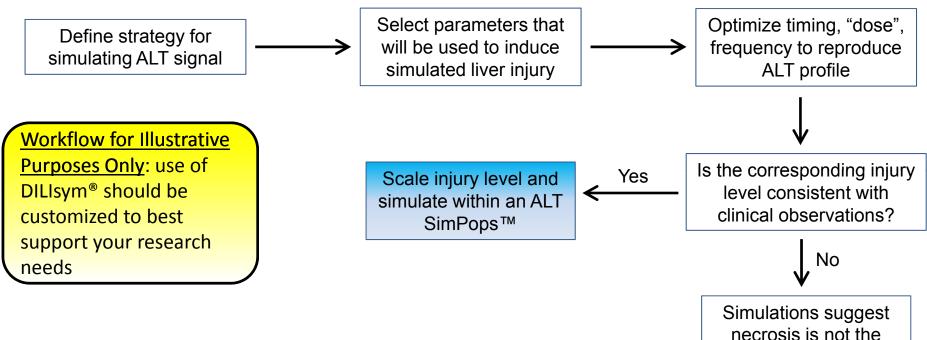


## Injury Level Associated with Optimized ALT Profile is Evaluated



- Clinical data indicated "no evidence of liver dysfunction"
- It seems reasonable that ~2% hepatocyte loss would not result in measurable liver dysfunction
- Select "yes" direction on flow chart & continue DILIsym® retrospective analysis






Simulations suggest

necrosis is not the main contributor to the

observed ALT signal

## Variability in Predicted Injury Can Be Assessed Using SimPops™

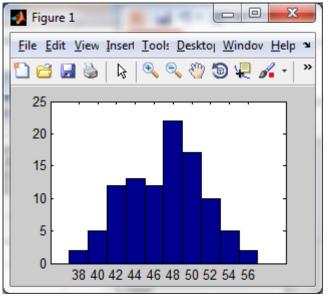


Simulate the optimized compound W scheme in all simulated humans within the SimPops<sup>™</sup>



CONFIDENTIAL<sup>60</sup>

main contributor to the


observed ALT signal





### ALT SimPops<sup>™</sup> Include Variation in Biomarker Appearance and HC Regeneration

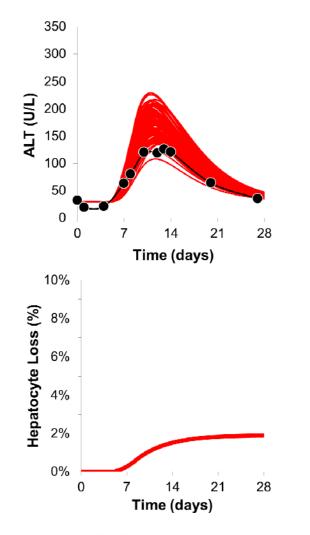
- SimPops<sup>™</sup> Variables
  - HC ALT content
  - HC ALT release rate
  - ALT half-life
  - HGF production rate
  - HGF effect on regeneration
- Use normal distribution function to generate parameter combinations (alternate simulated individuals)
  - 1000 for full SimPops™
  - 100 for training SimPops™
- Screen simulated individuals against available data on liver function vs. biomarker



Distribution of ALT half-life across 100 simulated individuals<sup>§</sup>

 $\$  Plasma ALT half-live of 47  $\pm$  10h. Normal distribution function used to fill in range from 37-57h.





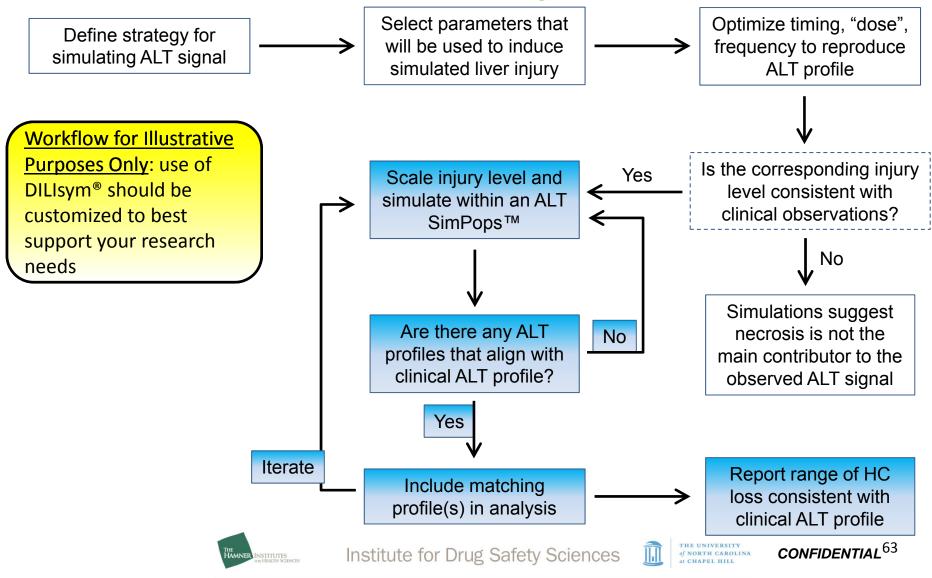

Institute for Drug Safety Sciences



### Use the Optimized Injury Profile in Training SimPops<sup>™</sup> (n=100) to Guide Scaling

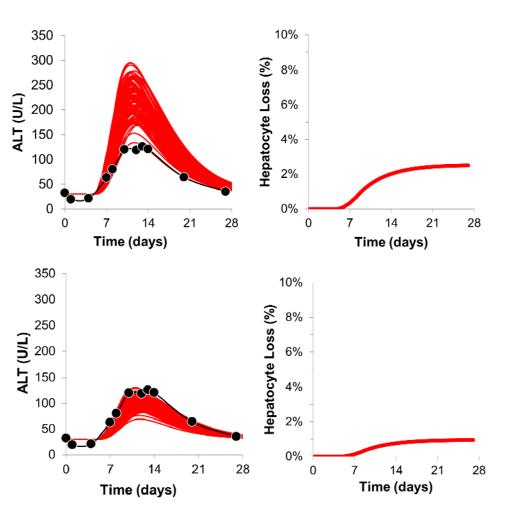
- Optimized injury profile in training SimPops<sup>™</sup> shows peak ALT varying from 108-229 U/L
  - Max injury is 2% loss for all these profiles (lower figure)
- Evaluate max and min ALT profiles to guide "dose" scaling
  - Optimized to peak 141 U/L
  - Max 229 U/L, suggests "dose" reduction ~0.5x
  - Min 108 U/L, suggests "dose" escalation ~1.3x




THE UNIVERSITY

at CHAPEL HILL

of NORTH CAROLINA




#### Test Different Injury Levels for Consistency with ALT Data Using SimPops™



# Scale Injury to Identify the Limits of Injury that are Still Consistent with ALT Data

- Injury scaled up and down in the SimPops<sup>™</sup>
  - Injury limits identified by the ability to match the ALT profile within the SimPops<sup>™</sup>
  - Injury inducing ~3% hepatocyte loss remains consistent with the measured ALT data
  - Injury inducing ~1% hepatocyte loss remains consistent with the measured ALT data
- Analysis suggests the clinical ALT profile is consistent with 1-3% hepatocyte loss



Clinical Data and Simulation Results



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

CONFIDENTIAL 64

## Retrospective Analysis of Observed Liver Safety Signals

#### Issue

- ALT (and AST) elevations were reported in a single (few) individuals from three early clinical trials
- No indications of liver dysfunction were observed in the early trials
- No mechanistic data for hepatotoxicity have been identified

#### **Pending Decision**

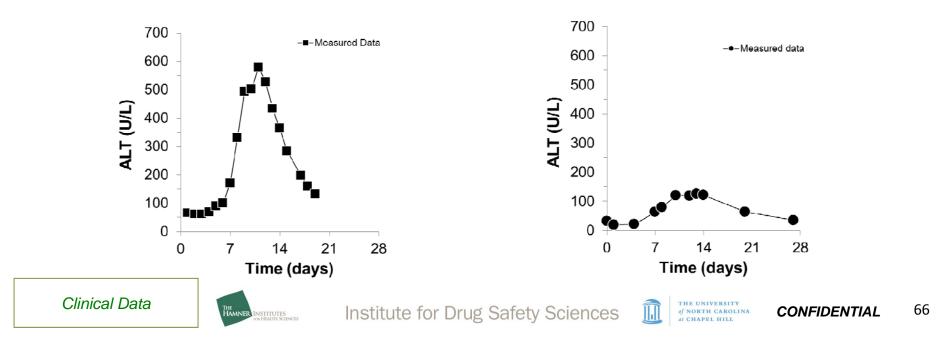
- Does the Company continue to advance this program?
  - Assume multiple inputs and data sets, potentially including modeling and simulation

#### Questions to Individual(s) Responsible for Liver Safety Assessment

- Can DILIsym<sup>®</sup> be used to retrospectively interpret the observed ALT elevations?
  - What level of injury might be inferred from the reported ALT profile?
  - How much uncertainty is associated with the estimated level of liver injury?
  - What time frame of recovery would be expected for the simulated injury?






#### Compare & Contrast Two ALT Profiles from Compounds Intended for Different Indications

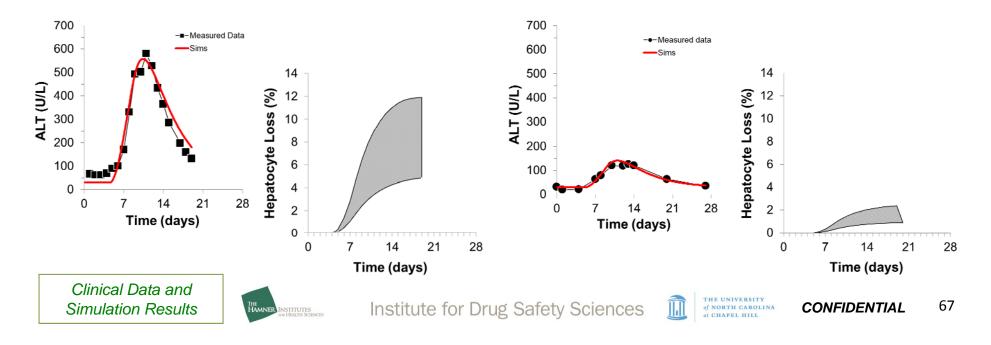
#### Compound 1 – Indication A

- ALT measurements shown for a single NHV
- Increase first noted at d5
- Increase >3x ULN by d8
- Max ALT ~ 600 U/L

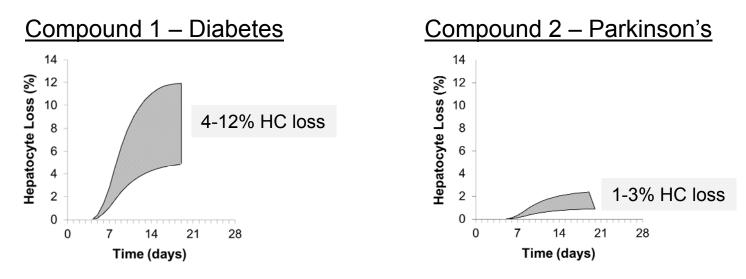
#### Compound 2 – Indication B

- ALT measurements shown for a single NHV
- Increase first noted at d7
- Increase >3x ULN by d10
- Max ALT ~ 125 U/L




#### Reproducing ALT Curves Provides Estimates for Associated Hepatocyte Necrosis

#### Compound 1 – Indication A


- ALT match in baseline simulated person
- Varying injury level & matching ALT profile in SimPops<sup>™</sup> yields an estimated 4-12% range of hepatocyte loss

#### Compound 2 – Indication B

- ALT match in baseline simulated person
- Varying injury level & matching ALT profile in SimPops<sup>™</sup> yields an estimated 1-3% range of hepatocyte loss



## Estimated Hepatocyte Necrosis in the Context of Disease Indication



- Estimated range for hepatocyte loss may directly figure into the risk assessment
- Speed of recovery (simulation results not shown) may directly figure into the risk assessment
- Hepatocyte loss may be considered in the context of the intended indication (e.g., disease morbidity and mortality, availability and efficacy of currently approved drugs; market size)
  - Would Compound 1 estimated HC loss be considered too risky for a diabetes drug?
  - Would Compound 2 estimated HC loss be considered acceptable for a Parkinson's drug?
  - Interpretation is user and company specific open for general discussion



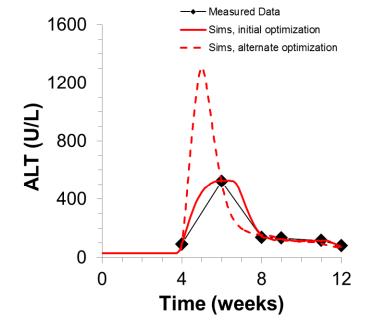


### Evidence from Literature to Support Interpretation of Hepatocyte Loss Simulations

- Excision of 20% of liver volume in living donors is generally considered safe (Florman 2006)
  - Living donors routinely recover fully after even greater portions (40-60%) of liver are excised for adult-to-adult donations (Florman 2006, Lee 2010)
- Heparins are widely considered to be safe despite associated increases in ALT
  - Reported ALT increases after heparins were moderate (>700 U/L peak, 1-2 week time frame)
  - DILIsym<sup>®</sup> modeling team performed comparable ALT-hepatocyte loss on published clinical data (Harrill 2012)
  - Maximal hepatocyte loss predicted for heparins of around 5% of viable hepatocytes
- Clinical correlative data from literature indicate that minimal loss of hepatocytes due to injury has little to no effect on bilirubin levels and prothrombin clotting time (Portmann 1975)

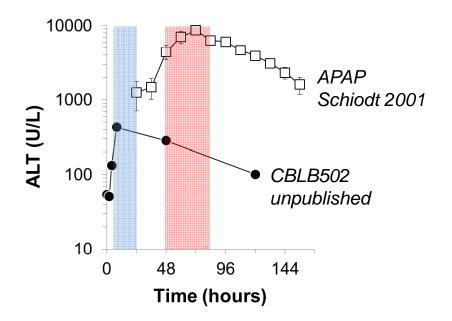





### Additional Insights: Fitting Long-Term ALT **Elevations Reveals Critical Uncertainties**

- Long time courses (weeks to months) often include infrequent sampling
  - 1-2 week sampling intervals allow for missing the true peak
- Simulations can still provide an estimate of ٠ liver injury but with room for alternate solutions
  - Note that this can require a necrotic "event" to last for weeks to months
- Additional sources of uncertainty can have ٠ greater impact with long-term ALT elevation
  - ALT clearance rates
  - Mechanisms of injury
  - Adaptation
  - Regeneration

Clinical Data and Simulation Results



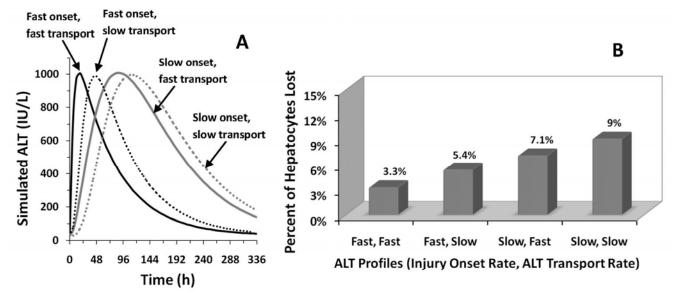





## Additional Insights: CBLB502 Data Highlighted Additional Variables Affecting Measured ALT

- CBLB502 induced ALT elevations much more rapidly that the more prototypical APAP profile
  - CBLB502 peak 8-24h (shaded blue)
  - APAP peak 48-84h (shaded red)
- Dramatically different dynamics highlighted additional areas of potential variability
  - Speed of injury onset
  - Speed of ALT release from necrotic cells
- 4 possible combinations identified




|                       | Injury onset<br>rate | ALT transport<br>rate |
|-----------------------|----------------------|-----------------------|
| Injury onset<br>rate  | Fast, fast           | Fast, slow            |
| ALT transport<br>rate | Slow, fast           | Slow, slow            |

Clinical Data





# Simulating the Combinations Demonstrates the Most Conservative Assumption



- "Dose" adjusted such that all combinations achieve similar peak ALT levels
- Corresponding hepatocyte loss illustrates that slow injury onset and slow ALT release from necrotic hepatocytes is associated with the greatest level of necrosis, i.e., most conservative
- The examples described thus far have used the slow, slow parameter settings (i.e., most conservative) in the optimization of ALT profiles
  - Re-optimizing to fast, fast can be conducted and is expected to provide lower estimates of hepatocyte loss







### **Assumptions and Limitations**

- Simulations are based on induced hepatocyte necrosis (i.e., apoptosis and extra-hepatic ALT release are not accounted for)
- Optimization examples assume the experimental data illustrate the shape of the ALT curve
  - Wide sampling intervals can potentially miss the "true" ALT peak
  - More frequent sampling increases confidence that the optimized ALT profile accurately reflects the human experience
  - Prolonged ALT elevation (weeks to months) may not be simultaneously compatible with hepatocyte necrosis and absence of clinical signs
- Alternate optimization solutions that result in the same ALT profile will give the same level
   of HC loss
  - Solutions resulting in a different ALT peak or AUC are expected to alter the estimated level of injury
- Optimization examples assume slow onset of injury and slow ALT release, leading to conservative estimates of hepatocyte loss
  - Speeding up either parameter and re-optimizing to the ALT data is expected to result in less simulated hepatocyte injury
- Larger SimPops<sup>™</sup> will provide a more complete distribution of injury vs. ALT





### Retrospective Analysis of Observed Liver Safety Signals - Summary

#### Participants should understand the following general concepts:

- Use of DILIsym<sup>®</sup> for the retrospective interpretation of liver injury associated with clinical ALT signals
- Parameter selection for the non-mechanistic representation of hepatocyte necrosis
- Set-up, simulation, and visualization for parameter sweeps
- Use of SimPops<sup>™</sup> to identify a range of injury consistent with a particular ALT profile
- Key uncertainties associated with large time interval sampling
- Impact of speed of injury onset and ALT release on estimated hepatocyte injury

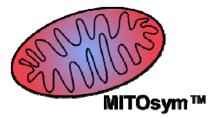
#### And for compound comparisons:

- Simulations suggest the ranges of liver injury associated with ALT signals from compound 1 and compound 2 were both less than 15%
- While no clinical measures of liver dysfunction (e.g., bilirubin) were observed, the estimated level of injury could inform the compound safety assessment





## DILIsym<sup>®</sup> Training Agenda – September 26, 2013


- 8:30 AM Introduction and goals
  - -DILIsym<sup>®</sup> overview and highlights
  - -Model architecture notes
- 8:45 AM Biomarker analysis example
- 9:45 AM Break
- 10:00 AM Biomarker analysis example
- 11:00 AM MITOsym<sup>™</sup> overview and introduction
- 11:30 AM Lunch
- 12:30 PM Bile acid transport inhibitor example
- 1:30 PM Break
- 1:45 PM Bile acid transport inhibitor example
- 2:45 PM Discussion and questions
- 3:00 PM Training concludes
  - -DILI-sim modeling team is available for questions



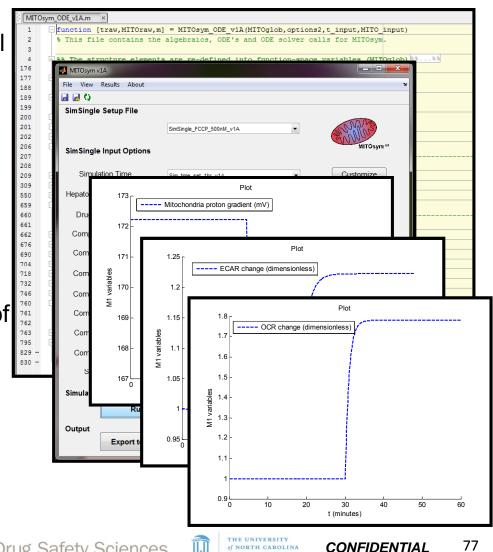




## MITOsym<sup>™</sup> Training Agenda



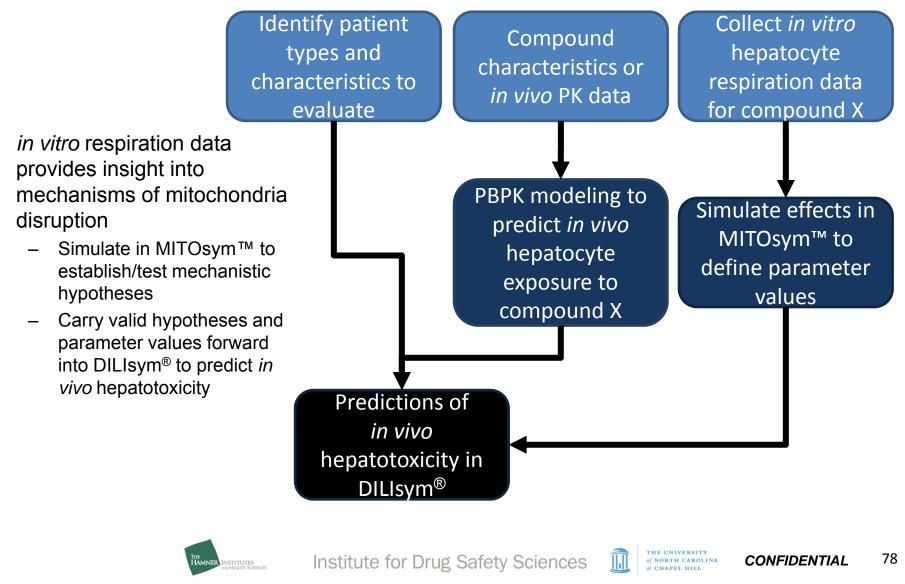
### Introduction


- ✤ Components of MITOsym<sup>™</sup> model
- ♦ Optimization of MITOsym<sup>™</sup> model
- Tolcapone as example of translation of *in vitro* data to predictions of *in vivo* toxicity



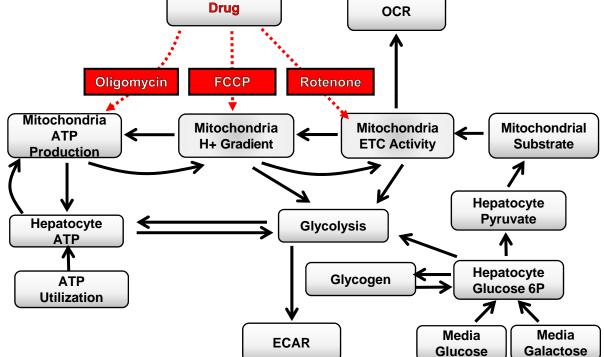


## MITOsym<sup>™</sup> Is Designed to Support IVIVE DILI Predictions and Mechanistic Data Interpretation


- MITOsym<sup>™</sup> is a standalone model of hepatocyte bioenergetics
- MITOsym<sup>™</sup> can be used to facilitate predictions of hepatotoxicity based on *in vitro* cellular respiration data
  - Combine with DILIsym<sup>®</sup> model
- MITOsym<sup>™</sup> can be used to develop and explore hypotheses of the mechanisms underlying observed changes in respiration and glycolysis in hepatocytes



at CHAPEL HILL




# Workflow for Predicting *in vivo* Risk Based on *in vitro* Mitochondria Function Data

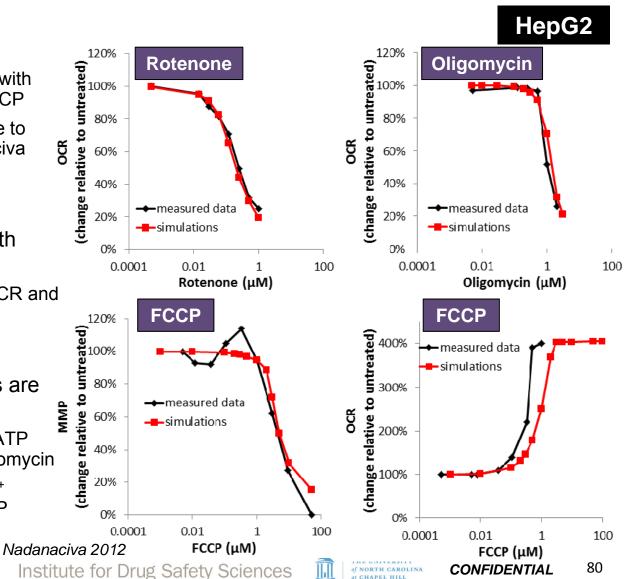


### MITOsym<sup>™</sup> Model Includes Essential Components of Hepatocyte Bioenergetics

- Includes mitochondria ETC activity, proton gradient and ATP production
  - Also includes glucose uptake, glycolysis, and ATP utilization
- Includes respiration (OCR) as a primary model output
  - Also includes ATP,  $\Delta \Psi m$ , ECAR
- Includes effects of exemplar drugs
- Includes adaptive, compensatory glycolysis increases with declining mitochondria function
  - Provides ATP unless galactose is primary media substrate



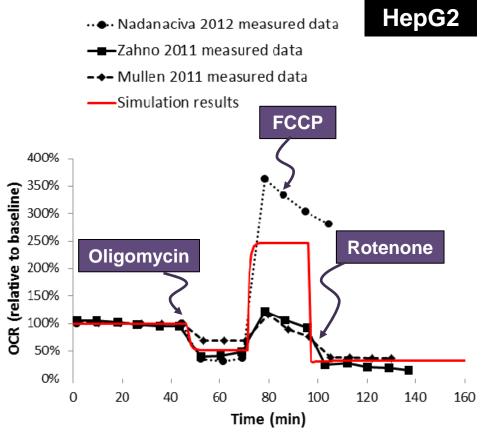





### OCR Simulations Optimized to Align with **Response to Individual Mitochondrial Effectors**

- Relative changes to oxygen consumption rate (OCR)
  - Dose response vs. treatment with rotenone, oligomycin, and FCCP
  - Simulation results comparable to measured data from Nadanaciva 2012
- Reduction in mitochondria membrane potential (MMP) with increasing doses of FCCP
  - Also simulating changes in OCR and MMP with time
- Simulation results provide confidence that ETC dynamics are captured
  - Decreased respiration when ATP \_ synthase is inhibited with oligomycin
  - Increased respiration when H<sup>+</sup> gradient is reduced with FCCP





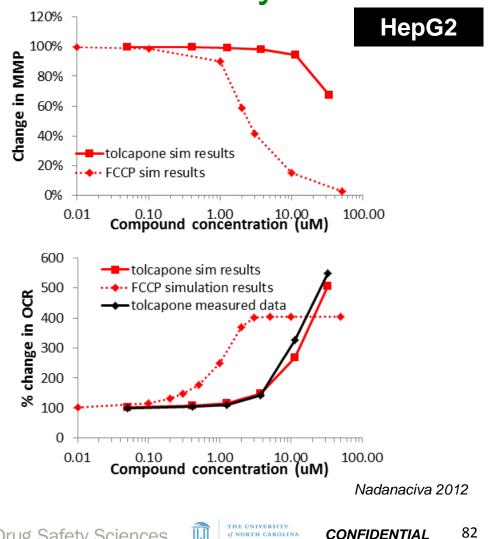



I.

# OCR Simulations Optimized to Align with Response to Multiple Mitochondrial Effectors

- Oxygen consumption rate (OCR) predicted to change as reported by Mullen 2011, Zahno 2011, and Nadanaciva 2012
  - Classic mitochondria disruptors used to characterize mitochondria function
  - 1 µM oligomycin, 1 µM FCCP,
     1 µM rotenone added sequentially
- Simulation results provide confidence that integrated dynamics are appropriately represented
  - Decreased maximum in respiration when FCCP follows oligomycin
  - Fully suppressed respiration when rotenone follows FCCP




Mullen 2011, Zahno 2011, Nadanaciva 2012





### *in vitro* Respiration Data Used to Determine Tolcapone Mitochondria Uncoupler Parameter Values with MITOsym<sup>™</sup>

- Used MITOsym<sup>™</sup> model to simulate OCR, ECAR, and MMP response to tolcapone
  - Confirmed mechanism is uncoupling
  - Used FCCP measured data and simulations to infer tolcapone parameter values
  - Good agreement with measured OCR data (by design)
- MitoK\_UC1\_Km parameter value is 10x greater for tolcapone than FCCP
  - MitoK\_UC1\_Vmax and MitoK\_UC1\_Hill parameter values unchanged



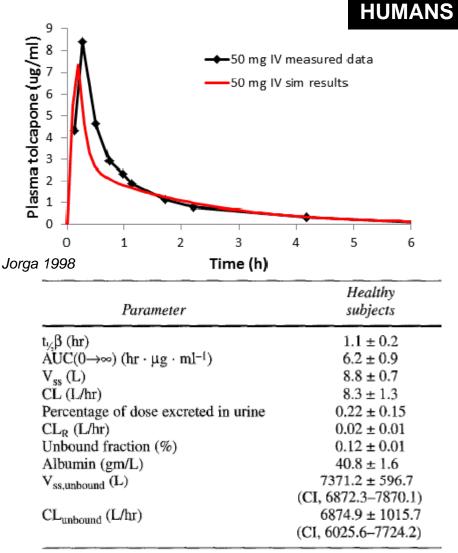
CHAPEL HILL



# DILIsym<sup>®</sup> and MITOsym<sup>™</sup> Have Minor Differences in Mito Drug Parameter Values

|                           |               | MITO            | sym™    |                |               | DILIS           | sym®    |                |
|---------------------------|---------------|-----------------|---------|----------------|---------------|-----------------|---------|----------------|
| Parameter                 | Rote-<br>none | Oligo-<br>mycin | FCCP    | Tolca-<br>pone | Rote-<br>none | Oligo-<br>mycin | FCCP    | Tolca-<br>pone |
| MitoS_ETC_Inhib_1 (mM)    | 1.2e-05       |                 |         |                | 1.2e-04       |                 |         |                |
| MitoS_ATP_Inhib_1 (mM)    |               | 1.0e-03         |         |                | -             | 1.0e-03         | -       |                |
| MitoK_UC1_Vmax (unitless) |               |                 | 40      | 40             |               |                 | 190     | 190            |
| MitoK_UC1_Km (mM)         |               |                 | 2.0e-02 | 2.0e-01        |               |                 | 2.0e-03 | 2.0e-02        |
| MitoK_UC1_Hill (unitless) |               |                 | 1       | 1              |               |                 | 1       | 1              |

- Parameter values relative to the mitochondria exemplar drugs in MITOsym<sup>™</sup> are what should be used in DILIsym<sup>®</sup>
   - e.g., MitoK UC1 Km for tolcapone
- Minor differences between MITOsym<sup>™</sup> and mitochondria sub-model of DILIsym<sup>®</sup>


- Account for differences in mitochondria drug-related parameters





## Good Agreement for PBPK Modeling of Tolcapone

- Used Compound Y PBPK structure in DILIsym<sup>®</sup>
  - Simpler than Compounds W and X
  - No explicit hepatic metabolism of parent compound with this paradigm
- Used data from series of tolcapone PK studies (Jorga 1998)
  - Used for parameter values and optimization
- Reasonable agreement between simulation results and measured data
  - Maintained 5-15% liver to plasma tolcapone ratio





# Parameters Varied in SimPops<sup>™</sup> Used for Tolcapone Simulations

### HUMANS

| Parameter                | Pathway                 | Baseline | Minimum | Maximum | Mitochondria<br>compromised<br>patients |
|--------------------------|-------------------------|----------|---------|---------|-----------------------------------------|
| Basal_Stdzd_MitoETC_Flux | ETC flux                | 25       | 19.26   | 30.77   | 5-25                                    |
| Resp_Reserve_Scalar      | Respiratory reserve     | 1        | 0.39    | 1.53    | 0.3-1.0                                 |
| Basal_Glycogen_Conc      | Glycogen                | 284      | 250.54  | 316.94  | 284                                     |
| ATP_dec_necrosis_Vmax    | ATP-dependent necrosis  | 0.370    | 0.19    | 0.55    | 0.370                                   |
| Body_mass                | Drug distribution       | 70       | 50.05   | 108.07  | 70                                      |
| HGF_regen_Vmax           | Hepatocyte regeneration | 1.650    | 0.84    | 2.43    | 1.650                                   |

- Used SimPops<sup>™</sup> 'Human\_mito\_v2B\_1\_exploration' in DILIsym<sup>®</sup>
  - Parameters varied based on ranges extracted from literature
  - Used a Gaussian distribution pattern, n=176
  - Currently, there aren't population response data with which to validate
- Mitochondria compromised patients included changes to mitochondriarelated parameters exclusively
  - Substantial reduction in basal and adaptive ETC flux

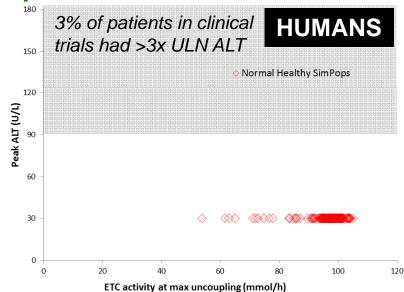




### SimPops<sup>™</sup> Mito Characteristics Variability Described by Simulated Max Uncoupler Protocol

- Used simulation protocol to understand how collection of parametric changes to individual simulated patients within SimPops<sup>™</sup> affected overall system
  - SimPops<sup>™</sup> based on control patient mitochondria function variability in Perez-Carrera 2003
  - Mitochondria compromised patients based on NASH patient variability in Perez-Carrera 2003
- Simulated administration of a potent uncoupling agent (i.e., FCCP) to each simulated patient
  - Determined predicted ETC activity at basal and maximal response




Simulation Results





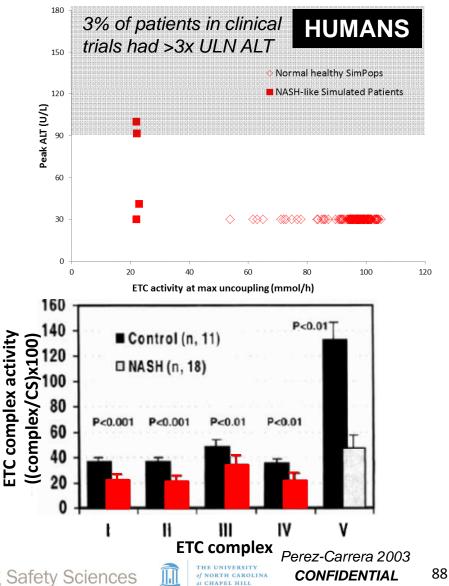
# No Injury Predicted in Normal Healthy SimPops<sup>™</sup> with Tolcapone Treatment

- Simulated 200 mg t.i.d. tolcapone treatment in NHV mitochondria SimPops™
- No liver injury was predicted in any of the simulated patients
  - 97% of clinical patients treated with tolcapone did not have increased ALT or AST
- ATP loss due to tolcapone uncoupling is prevented due to adaptive increase in ETC flux
- What are characteristics of patients who are sensitive to tolcapone-induced liver injury?



| Variable                                  | Pre-<br>treatment | Post-<br>treatment |
|-------------------------------------------|-------------------|--------------------|
| ALT (U/L)                                 | 30±0              | 30±0               |
| ATP decrease (%)                          | 0.1±0.1           | 0.5±0.1            |
| ETC flux increase (%)                     | 0.7±0.2           | 18±2               |
| simulated patients with liver signals (#) | 0                 | 0                  |




## Liver Injury Predicted when Including Patients with Severely Compromised Mito Function

- Generated simulated patients with substantial reductions in mitochondria function
  - Within observed range for NASH patients<sup>1</sup>
  - ETC activity at max uncoupling substantially lower in these simulated patients
- ALT increases predicted for several of the mitochondria-compromised simulated patients
  - More sensitive to effects of uncoupler
  - Unable to increase ETC flux to adequately compensate for uncoupling effect
- NASH incidence estimated to be 3-5%<sup>2</sup>
  - NAFLD incidence estimated to be 20%<sup>3</sup>
- Hypothesis: NASH-type mitochondria function patients were included in tolcapone clinical trials
  - Ability to screen and exclude these patients from treatment could reduce incidence of DILI

<sup>1</sup>Perez-Carrera 2003, <sup>2</sup>Ruhl 2004, <sup>3</sup>Papandreou 2007

Clinical Data and Simulation Results





## DILIsym<sup>®</sup> Training Agenda – September 26, 2013

- 8:30 AM Introduction and goals
  - -DILIsym<sup>®</sup> overview and highlights
  - -Model architecture notes
- 8:45 AM Biomarker analysis example
- 9:45 AM Break
- 10:00 AM Biomarker analysis example
- 11:00 AM MITOsym<sup>™</sup> overview and introduction

### • 11:30 AM – Lunch

- 12:30 PM Bile acid transport inhibitor example
- 1:30 PM Break
- 1:45 PM Bile acid transport inhibitor example
- 2:45 PM Discussion and questions
- 3:00 PM Training concludes
  - -DILI-sim modeling team is available for questions







## DILIsym<sup>®</sup> Training Agenda – September 26, 2013

- 8:30 AM Introduction and goals
  - -DILIsym<sup>®</sup> overview and highlights
  - -Model architecture notes
- 8:45 AM Biomarker analysis example
- 9:45 AM Break
- 10:00 AM Biomarker analysis example
- 11:00 AM MITOsym<sup>™</sup> overview and introduction
- 11:30 AM Lunch

• 12:30 PM – Bile acid transport inhibitor example

- 1:30 PM Break
- 1:45 PM Bile acid transport inhibitor example
- 2:45 PM Discussion and questions
- 3:00 PM Training concludes
  - -DILI-sim modeling team is available for questions







### Application Example 2: Potential for Bile Acid Transporter Inhibitors to Cause Clinical DILI

#### Issue

- Two drugs (bosentan and telmisartan) have been flagged by *in vitro* assays as BSEP inhibitors
- Clinical DILI is linked to BSEP inhibition
- Rat studies have shown no signs of liver injury

#### **Pending Decision**

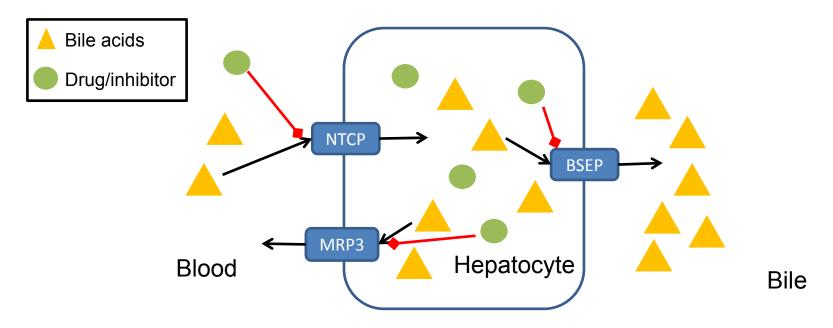
• Should the Company take extra precautions for potential liver injury during clinical trials?

### Questions to Individual(s) Responsible for Liver Safety Assessment

- Can DILIsym<sup>®</sup> be used to predict whether DILI might occur in humans?
  - Interpretation of lack of rat toxicity
  - Determination of maximum safe dose for drugs not expected to be toxic





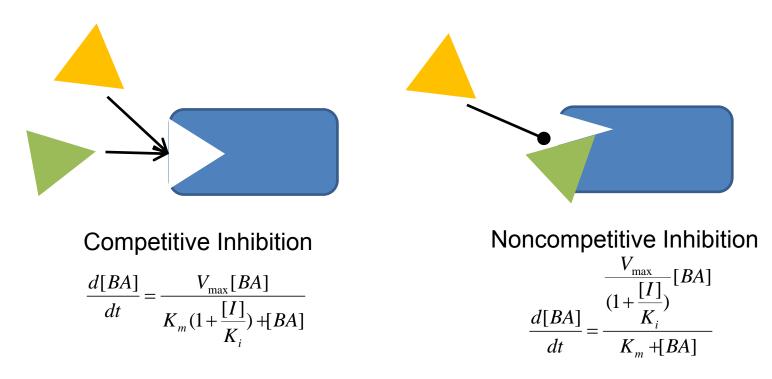

### DILIsym<sup>®</sup> Prediction of Potential Bile Acid-Induced Hepatotoxicity

- Using the DILIsym<sup>®</sup> baseline simulated human and rat,
  - Build a model of bosentan and telmisartan including results from *in vitro* inhibition assays
    - Where mechanism of inhibition is unclear, perform simulations with both competitive and non-competitive inhibition
- Using human and rat SimPops<sup>™</sup>,
  - Simulate bosentan within the rat and human SimPops<sup>™</sup>
  - Simulate telmisartan within the human SimPops™
  - Identify the presence of human individuals with ALT elevations
  - Explore hepatocyte necrosis, ATP, and bile acid accumulation data to better understand differences between drugs and between species
  - Identify potential risk factors that would make certain individuals more sensitive to toxicity from these drugs





### **Bile Acid Transport Inhibition**

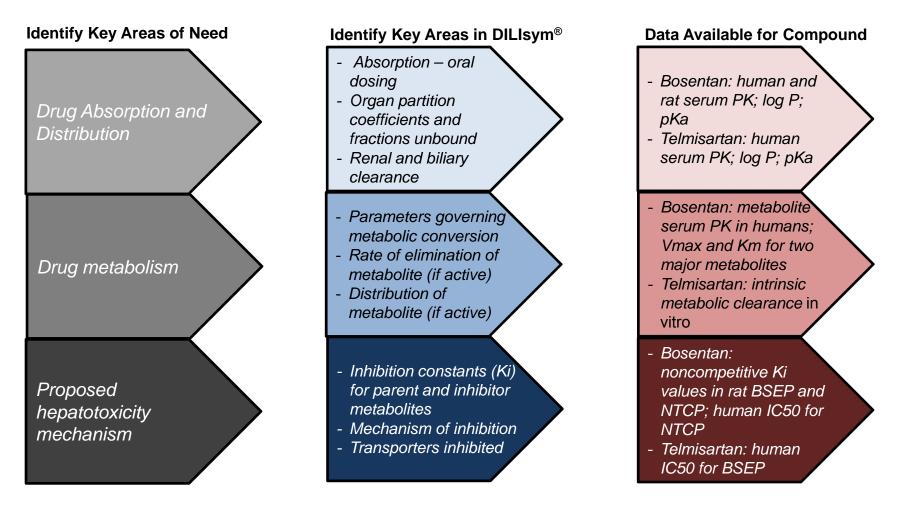



- Bile acids (<sup>A</sup>) are taken up into hepatocytes by uptake transporters (NTCP) and transported out of cells by basolateral and canalicular efflux transporters (MRP3 and BSEP)
- Drugs () can inhibit any of these transport processes
- Bile acid buildup can cause toxicity in liver cells
- Our model represents bile acid transport and its inhibition by drugs mechanistically





### **Competitive and Noncompetitive Inhibition**

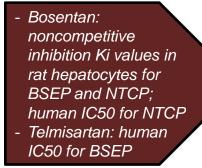



- Competitive inhibition involves drug and bile acids competing for same active site on an enzyme
  - Affects enzyme affinity for the bile acid, i.e.  $K_m$
- Noncompetitive inhibition involves drug preventing bile acid from binding on the enzyme altogether
  - Affects enzyme activity with respect to bile acid, i.e. V<sub>max</sub>





### Identifying the Inputs Needed for Bile Acid Toxicity Prediction in DILIsym<sup>®</sup> v2B








### Determining Parameter Values for Transporter Inhibition: Bosentan

#### **Data Available**



- Inhibition constants (Ki) for parent compound and any metabolite that also inhibits transporters
- Mechanism of inhibition
- Transporters inhibited

- Value of Ki and mechanism known in rat hepatocytes for BSEP
  - Both parent and metabolite
  - Will use this value for humans too; literature has shown that bosentan has similar potency for rat and human BSEP
- Value of Ki for NTCP known in rat hepatocytes

#### Ki for NTCP known in human hepatocytes

| Parameter Syntax               | Parameter Name                                                         | Experimental<br>Value   |
|--------------------------------|------------------------------------------------------------------------|-------------------------|
| Ki_noncomp_BSEP_CompX          | Noncompetitive Ki for BSEP; parent<br>Compound X                       | 12 uM (Fattinger 2001)  |
| Ki_noncomp_BSEP_CompX<br>_MetA | Noncompetitive Ki for BSEP; Compound X metabolite A                    | 8.5 uM (Fattinger 2001) |
| Ki_NTCP_CompX                  | Competitive Ki for bulk bile acid uptake;<br>parent Compound X (human) | 18 uM* (Leslie 2007)    |
| Ki_noncomp_NTCP_Comp<br>X      | Noncompetitive Ki for bile acid uptake;<br>parent Compound X (rat)     | 0.28 uM (Leslie 2007)   |





### Selecting the Appropriate Mechanism

#### **Data Available**

- Bosentan: noncompetitive inhibition Ki values in rat hepatocytes for BSEP and NTCP; human IC50 for NTCP
   Telmisartan: human IC50 for BSEP
- Competitive vs. noncompetitive inhibition can be important to outcome of model
  - Can be difficult to discern from experimental data; often a blend of the two is responsible
  - Assay to differentiate competitive from noncompetitive inhibition is often not performed
- Can set the model up to run both mechanisms if mechanism is unknown/in doubt
  - In our case, that applies to telmisartan BSEP

| Competitive               | Noncompetitive        |
|---------------------------|-----------------------|
| Ki_BSEP_CompX             |                       |
| LCA_canal_Ki_CompX        |                       |
| LCAamide_canal_Ki_CompX   | Ki nancomn BCED ComnY |
| LCAsulfate_canal_Ki_CompX | Ki_noncomp_BSEP_CompX |
| CDCA_canal_Ki_CompX       |                       |
| CDCAamide_canal_Ki_CompX  |                       |
|                           |                       |

- Inhibition constants (Ki) for parent compound and any metabolite that also inhibits transporters
- Mechanism of inhibition
- Transporters inhibited





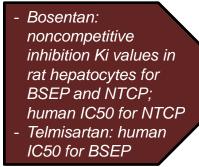
### Selecting the Appropriate Mechanism

.

#### **Data Available**

 Bosentan: noncompetitive inhibition Ki values in rat hepatocytes for BSEP and NTCP; human IC50 for NTCP
 Telmisartan: human IC50 for BSEP

- In DILIsym<sup>®</sup>, competitive inhibition is governed by individual Ki values for each bile acid species, while noncompetitive inhibition is governed by a single constant for each inhibitor
  - Constants can often be different for different bile acid species (e.g. glibenclamide)
  - However, assays are often done using only one substrate (generally TCA)
  - To represent competitive inhibition accurately, all six Ki values must be defined in the parameter set


| Competitive               | Noncompetitive        |
|---------------------------|-----------------------|
| Ki_BSEP_CompX             |                       |
| LCA_canal_Ki_CompX        |                       |
| LCAamide_canal_Ki_CompX   | Ki noncomp BSEP CompX |
| LCAsulfate_canal_Ki_CompX | KI_HORCOMP_BSEP_COMPX |
| CDCA_canal_Ki_CompX       |                       |
| CDCAamide_canal_Ki_CompX  |                       |

- Inhibition constants (Ki) for parent compound and any metabolite that also inhibits transporters
- Mechanism of inhibition
- Transporters inhibited

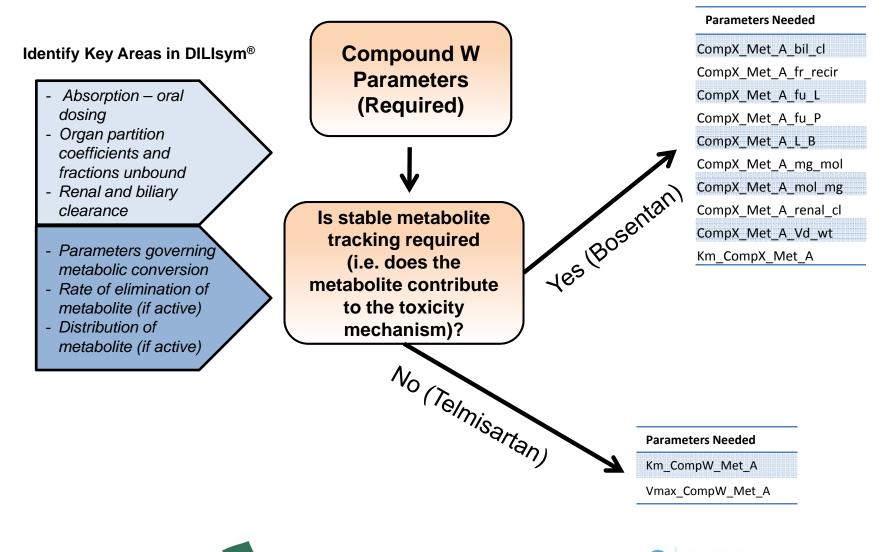
THE HAMNER INSTITUTES FOR HEALTH SCIENCES

### Determining Parameter Values for Transporter Inhibition: Telmisartan

#### **Data Available**



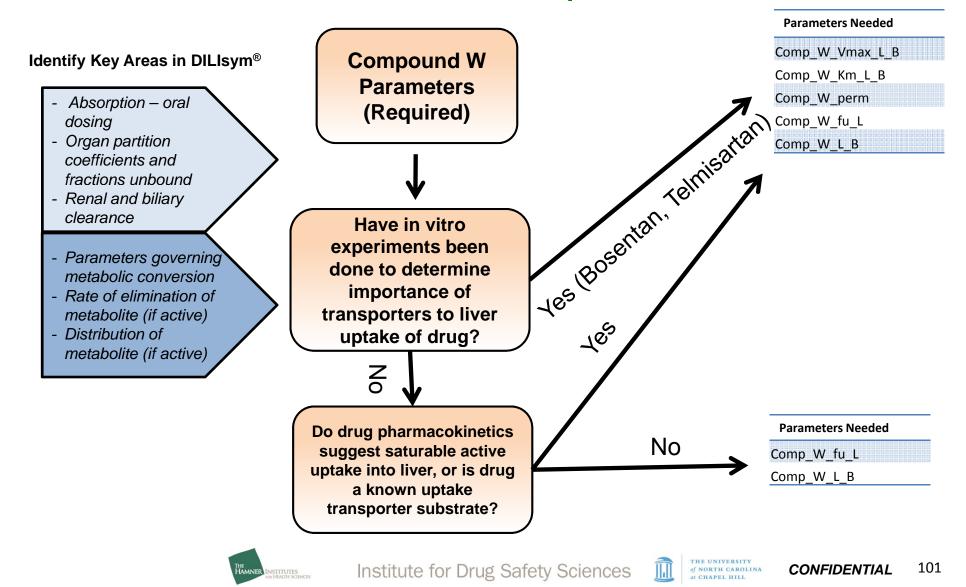
- Inhibition constants (Ki) for parent compound and any metabolite that also inhibits transporters
- Mechanism of inhibition
- Transporters inhibited


- Value of Ki unknown
- Value of IC50 for human BSEP known from *in vitro* experiment
  - Can use this value as a crude approximation of Ki
  - Will set up parameter sets representing both competitive and noncompetitive inhibition

| Parameter Syntax          | Parameter Name                                                                 | Experimental Value |
|---------------------------|--------------------------------------------------------------------------------|--------------------|
| Ki_BSEP_CompW             | Competitive Ki for bulk bile acids for<br>Compound W                           |                    |
| LCA_canal_Ki_CompW        | Competitive Ki for lithocholic acid for<br>Compound W                          |                    |
| LCAamide_canal_Ki_CompW   | Competitive Ki for lithocholic acid amide conjugates for Compound W            |                    |
| LCAsulfate_canal_Ki_CompW | Competitive Ki for lithocholic acid sulfate conjugates for Compound W          | 16.2 uM            |
| CDCA_canal_Ki_CompW       | Competitive Ki for chenodeoxycholic<br>acid for Compound W                     |                    |
| CDCAamide_canal_Ki_CompW  | Competitive Ki for chenodeoxycholic<br>acid amide conjugates for<br>Compound W |                    |






### Selecting the DILIsym<sup>®</sup> Parameters to Use for Metabolite PBPK



Institute for Drug Safety Sciences

HE HAMNER INSTITUTES

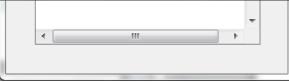
### Selecting the DILIsym<sup>®</sup> Parameters to Use for Active Liver Uptake



## Implementation of Bile Acid Toxicity – Creating Parameter Sets to Account for Unknown Inhibition Mechanisms

- For some transporters, the mechanism of inhibition is unknown, i.e. the drug could be either a competitive or a noncompetitive inhibitor
  - Telmisartan and bosentan for human uptake
  - We will treat bosentan as a competitive inhibitor of human uptake for this exercise
- We will need to build alternate drug parameter sets for competitive and noncompetitive inhibition and run both
- We will make four parameter sets in total today
  - Human telmisartan competitive
  - Human telmisartan noncompetitive
  - Human bosentan
  - Rat bosentan
- The PBPK portion of the input has been filled in already; we will concentrate on inputs that are special to the bile acid model






### Implementing Hepatotoxicity Mechanism for Bile Acid Toxicity

| 🛃 Drug Parameter Values-Parame 💷 😐       | - | x |
|------------------------------------------|---|---|
|                                          |   | 3 |
|                                          |   |   |
| Mechanism selection                      |   |   |
| Drug toxicity parameters                 |   |   |
| Mechanistic interventions                |   |   |
| Compound W PBPK                          |   |   |
| Comp W Metabolite A PBPK                 |   |   |
| Comp W Metabolite B PBPK                 |   |   |
| Compound W RM 1 PBPK                     |   |   |
| Compound W RM 2 PBPK                     |   |   |
| Compound X PBPK                          |   |   |
| Comp X Metabolite A PBPK                 |   |   |
| Comp X Metabolite B PBPK                 |   |   |
| Mechanism selection-Parameters Blank v2B |   |   |

- Telmisartan: check "BSEP/NTCP inhib" for Compound W
- Bosentan: check "BSEP/NTCP inhib" for Compound X and Compound X metabolite A
- Leave all other mechanisms unchecked

| Species                          | RNS-ROS production | ATP utilization | Direct necrolis | BSEP/NTCP inhib | ruvate ox inhib | Fatty acid ox inhib | ETC inhib | Mito ATP synth inhib | Mito uncoupler 1 | Mito uncoupler 2 | MPT initiator |   |
|----------------------------------|--------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------|----------------------|------------------|------------------|---------------|---|
| Compound W                       |                    |                 |                 |                 |                 |                     |           |                      |                  |                  |               |   |
| Compound W metabolite A          |                    |                 |                 |                 |                 |                     |           |                      |                  |                  |               |   |
| Compound W metabolite B          |                    |                 |                 |                 |                 |                     |           |                      |                  |                  |               | Ξ |
| Compound W reactive metabolite 1 |                    |                 |                 |                 |                 |                     |           |                      |                  |                  |               |   |
| Compound W RM 1 protein adducts  |                    |                 |                 |                 |                 |                     |           |                      |                  |                  |               |   |
| Compound W reactive metabolite 2 |                    |                 |                 |                 |                 |                     |           |                      |                  |                  |               |   |
| Compound W RM 2 protein adducts  |                    |                 |                 |                 |                 |                     |           |                      |                  |                  |               |   |
| Compound X                       |                    |                 |                 |                 |                 |                     |           |                      | 100              | (11)             |               | ÷ |



HE HAMNER INSTITUTES



### Activating the Bile Acid Model using Mechanistic Interventions

| 📣 Dru                                                                                            | ıg Parameter Values-Parameters_h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 🗆 × |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                  | <u>d</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ۲     |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Mechanism selection<br>Drug toxicity parameters<br>Mechanistic interventions<br>Compound W PBPK<br>Comp W Metabolite A PBPK<br>Comp W Metabolite B PBPK<br>Compound W RM 1 PBPK<br>Compound W RM 2 PBPK<br>Compound X PBPK<br>Compound X PBPK<br>Comp X Metabolite A PBPK<br>Comp X Metabolite B PBPK<br>Compound X RM 1 PBPK<br>Compound X RM 2 PBPK<br>Compound X RM 2 PBPK<br>Compound X RM 2 PBPK<br>Compound Y PK<br>Bile acid transporter inhibition constants<br>CDCA transporter inhibition constants<br>Species identification                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Ī                                                                                                | <u>د المحمد الم</u> | •     |
|                                                                                                  | Mechanistic interventions<br>Compound W PBPK<br>Comp W Metabolite A PBPK<br>Comp W Metabolite B PBPK<br>Compound W RM 1 PBPK<br>Compound W RM 2 PBPK<br>Compound X PBPK<br>Comp X Metabolite A PBPK<br>Comp X Metabolite B PBPK<br>Compound X RM 1 PBPK<br>Compound X RM 1 PBPK<br>Compound X RM 2 PBPK<br>Compound Y PK<br>Bile acid transporter inhibition constants<br>CDCA transporter inhibition constants<br>Noncompetitive inhibition constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •     |

| Parameter               | Value | Units        |
|-------------------------|-------|--------------|
| Anti_TNF_time_stop      | 0     | hour         |
| Anti_TNF_effect_level   | 0     | dimensionles |
| Anti_HGF_switch         | 0     | dimensionles |
| Anti_HGF_time_start     | 0     | hour         |
| Anti_HGF_time_stop      | 0     | hour         |
| Anti_HGF_effect_level   | 0     | dimensionles |
| start_time_HGF_infusion | 0     | hour         |
| stop_time_HGF_infusion  | 0     | hour         |
| HGF_infusion_rate       | 0     | ng/hour      |
| BA_model_switch         | ( 1   | dimensionles |
| •                       |       |              |

- The bile acid portion of the model is normally switched off in order to preserve computational time
- The bile acid model **must** be turned on in order to properly represent transporter inhibitors





## Implementation of Bile Acid Toxicity – Inhibition Constants (1 of 3)

| nug Parameter Values-Parameters_B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 🗆 🗵 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ъ.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Mechanism selection<br>Drug toxicity parameters<br>Mechanistic interventions<br>Compound W PBPK<br>Comp W Metabolite A PBPK<br>Comp W Metabolite B PBPK<br>Compound W RM 1 PBPK<br>Compound W RM 2 PBPK<br>Compound X PBPK<br>Comp X Metabolite A PBPK<br>Comp X Metabolite B PBPK<br>Compound X RM 1 PBPK<br>Compound X RM 1 PBPK<br>Compound X RM 2 PBPK<br>Compound X RM 2 PBPK<br>Compound Y PK<br>Bile acid transporter inhibition constants<br>CDCA transporter inhibition constants<br>Species identification |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |

| Parameter                           | Value      | Units                |
|-------------------------------------|------------|----------------------|
| (i_NTCP_CompX_MetB                  | 1.0000e+10 | mg/mL 🔄              |
| ki_NTCP_CompX_RM1adducts            | 1.0000e+10 | mol/mL               |
| <pre>Ki_NTCP_CompX_RM2adducts</pre> | 1.0000e+10 | mol/mL               |
| Ki_NTCP_CompY                       | 1.0000e+10 |                      |
| Ki_BSEP_CompW                       | 0.0033     | mg/mL                |
| Ki_BSEP_CompW_MetA                  | 1.0000e+10 | n <del>ighti</del> L |
| Ki_BSEP_CompW_MetB                  | 1.0000e+10 | mg/mL                |
| Ki_BSEP_CompW_RM1                   | 1.0000e+10 | mol/mL               |
| Ki_BSEP_CompW_RM1adducts            | 1.0000e+10 | mol/mL               |
| Ki_BSEP_CompW_RM2                   | 1.0000e+10 | mol/mL               |
| Ki_BSEP_CompW_RM2adducts            | 1.0000e+10 | moVmL                |
| VI POED COMPY                       | 1.0000-±10 | malmi                |

- For competitive inhibitors (telmisartan canalicular, bosentan uptake in human)
- Note units in input column
  - For telmisartan, 16.2  $\mu$ M = 8.33x10<sup>-3</sup> mg/mL
  - For human bosentan uptake, 19  $\mu$ M = 9.67x10<sup>-3</sup> mg/mL





## Implementation of Bile Acid Toxicity – Inhibition Constants (2 of 3)

|                                                    | Parameter                                               | Value Units       |
|----------------------------------------------------|---------------------------------------------------------|-------------------|
| echanism selection 📃                               | CDCAamide_uptake_ki_Compx_<br>CDCAamide_uptake_Ki_CompY | 1.0000e+10/movmL  |
| ug toxicity parameters                             |                                                         |                   |
| echanistic interventions                           | CDCA_canal_Ki_CompW                                     | 0.0083 mg/mL      |
| mpound W PBPK<br>mp W Metabolite A PBPK            | CDCA_canal_Ki_CompW_MetA                                | 1.0890e+10 mg/mL  |
| mp W Metabolite B PBPK                             | CDCA_canal_Ki_CompW_MetB                                | 1.0000e+10 mg/mL  |
| mpound W RM 1 PBPK                                 | CDCA_canal_Ki_CompW_RM1                                 | 1.0000e+10 mol/mL |
| mpound W RM 2 PBPK                                 | CDCA_canal_Ki_CompW_RM1a                                | 1.0000e+10 mol/mL |
| mpound X PBPK                                      | CDCA canal Ki CompW RM2                                 | 1.0000e+10 mol/mL |
| mp X Metabolite A PBPK<br>mp X Metabolite B PBPK   | CDCA canal Ki CompW RM2a                                | 1.0000e+10 mol/mL |
| npound X RM 1 PBPK                                 | CDCA canal Ki CompX                                     | 1.0000e+10 ma/mL  |
| npound X RM 2 PBPK                                 | CDCA_canal_Ki_CompX_MetA                                | 1.0000e+10 mg/mL  |
| npound Y PK<br>acid transporter inhibition constan | CDCA_canal_Ki_CompX_MetB                                | 1.0000e+10 mg/mL  |
| transporter inhibition constants                   | CDCA canal Ki CompX RM1                                 | 1.0000e+10 mol/mL |
| CA transporter inhibition constants'               | CDCA_canal_Ki_CompX_RM1ac                               | 1.0000e+10 mol/ml |
| competitive inhibition constants                   | CDCA canal Ki CompX RM2                                 | 1.0000e+10 mol/mL |
| cies identification                                | CDCA canal Ki CompX RM2ac                               | 1.0000e+10 mol/mL |
|                                                    | CDCA_canal_Ki_CompY                                     | 1.0000e+10 m/mL   |
|                                                    | CDCAamide_canal_Ki_CompW                                | 0.0083 majmL      |
|                                                    | CDCAamide_canal_Ki_ComnW                                | 11089a (48 ma/m)  |
|                                                    |                                                         | ply               |

- For competitive inhibitors (telmisartan canalicular, bosentan uptake in human)
- Because we do not know the Ki values for each individual bile acid species, we must give each the same inhibition constant
- This must be done for the three LCA species as well as the two CDCA species





### Implementation of Bile Acid Toxicity – Inhibition Constants (3 of 3)

| Mechanism selection                                                            | Parameter                        | Value Units              |  |
|--------------------------------------------------------------------------------|----------------------------------|--------------------------|--|
| Drug toxicity parameters                                                       | KI_NONCOMP_BSEP_COMPVV_WERA      | 1.0000e+10/mg/mL         |  |
| Mechanistic interventions<br>Compound W PBPK                                   | Ki_noncomp_BSEP_CompW_MetB       | 1.0000e+10  <i>mg/mL</i> |  |
| omp W Metabolite A PBPK                                                        | Ki_noncomp_BSEP_CompW_RM1        | 1.0000e+10 moVmL         |  |
| comp W Metabolite B PBPK                                                       | Ki noncomp_BSEP_CompW_RM1adducts | 1.0000e+10 mol/mL        |  |
| ompound W RM 1 PBPK<br>ompound W RM 2 PBPK                                     |                                  | 1.0000e+10 mol/mL        |  |
| ompound X PBPK                                                                 | Ki_noncomp_BSEP_CompW_RM2        |                          |  |
| omp X Metabolite A PBPK                                                        | Ki_noncomp_BSEP_CompW_RM2adducts | 1.8000e+10 moVmL         |  |
| omp X Metabolite B PBPK<br>ompound X RM 1 PBPK                                 | Ki_noncomp_BSEP_CompX            | 0.0068 mg/mL             |  |
| ompound X RM 2 PBPK                                                            | Ki_noncomp_BSEP_CompX_MetA       | 0.0046 mg/m2             |  |
| ompound Y PK                                                                   |                                  |                          |  |
| ile acid transporter inhibition constan<br>CA transporter inhibition constants | Ki_noncomp_BSEP_CompX_MetB       | 1.0000e+10 mg/mL         |  |
| DCA transporter inhibition constants*                                          | Ki_noncomp_BSEP_CompX_RM1        | 1.0000e+10 mol/mL        |  |
| oncompetitive inhibition constants                                             | Ki_noncomp_BSEP_CompX_RM1adducts | 1.0000e+10 mol/mL        |  |
| pecies identification                                                          | Ki_noncomp_BSEP_CompX_RM2        | 1.0000e+10 mol/mL        |  |
|                                                                                | Ki noncomp BSEP CompX RM2adducts | 1.0000e+10 mol/mL        |  |
|                                                                                |                                  |                          |  |
|                                                                                |                                  | 1.0000e+10 mol/mL        |  |

- For noncompetitive inhibitors (bosentan canalicular, bosentan uptake in rat)
  - Again, note unit conversion
  - For rat bosentan uptake, 0.28  $\mu$ M = 1.51x10<sup>-4</sup> mg/mL



Institute for Drug Safety Sciences



**CONFIDENTIAL** 107

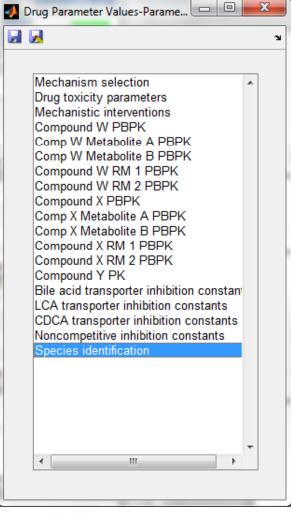
### Implementing Parameter Values for Compound W/X PBPK (1 of 2)

| DILIsym v2B             | DILIsym v2B                             | 🛛 🛃 Drug Parameter Values-Parame 🗖 🖻 💻 🏹                                                           |  |
|-------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------|--|
| File View Results About | File View Results About                 |                                                                                                    |  |
| O N                     |                                         | <b>⊿</b> ⊿ °                                                                                       |  |
| SimSingle Setup File    | SimSingle Setup File                    |                                                                                                    |  |
| Sei                     |                                         | Mechanism selection  Drug toxicity parameters                                                      |  |
| SimSingle Input Options | SimSingle Input Options                 | Mechanistic interventions<br>Compound W PBPK                                                       |  |
| Simulation Time         | Simulation Time                         | Comp W Metabolite A PBPK<br>Comp W Metabolite B PBPK                                               |  |
| Species Parameters      | Species Parameters                      | Compound W RM 1 PBPK<br>Compound W RM 2 PBPK<br>Compound X PBPK                                    |  |
| Drug Parameters Se      | Drug Parameters Parameters_Blank_v2B    | Comp X Metabolite A PBPK<br>Comp X Metabolite B PBPK                                               |  |
| Caloric Intakese        | Caloric Intake                          | Compound X RM 1 PBPK<br>Compound X RM 2 PBPK                                                       |  |
| Compound W DosingSe     | Compound W Dosing                       | Compound Y PK<br>Bile acid transporter inhibition constant<br>LCA transporter inhibition constants |  |
| Compound X Dosing       | Compound X Dosing                       | CDCA transporter inhibition constants<br>Noncompetitive inhibition constants                       |  |
| Compound Y DosingSe     | Compound Y Dosing                       | Species identification                                                                             |  |
| Solver OptionsSe        | Solver Options                          |                                                                                                    |  |
| Simulate Run Ru         | Simulate Run Run in Parallel Data Compa | ri +                                                                                               |  |
| Output Export to Excel  | Output Export to Excel Plot Output Ta   |                                                                                                    |  |

# Implementing Parameter Values for Compound W/X PBPK (2 of 2)

| Parameter             | Value Units       |
|-----------------------|-------------------|
| Comp_W_bil_cl         | 0 mL/hour/kg^0.75 |
| Comp W B P            | 1 dimensionless   |
| Comp_W_fr_recir       | 0 dimensionless   |
| Comp W fu G           | 1 dimensionless   |
| Comp_W_fu_L           | 1 dimensionless   |
| Comp_W_fu_M           | 1 dimensionless   |
| Comp_W_fu_O           | 1 dimensionless   |
| Comp_W_fu_P           | 1 dimensionless   |
| Fu_correlation_Comp_W | 0 dimensionless   |
| Comp_W_fu_corr_2      | 0 dimensionless   |
| Comp_W_fu_corr_1      | 0 dimensionless   |
| Comp_W_fu_corr_0      | 0 dimensionless   |
| Comp_W_G_B            | 1 dimensionless   |
| Comp_W_L_B            | 1 dimensionless   |
| Comp_W_mg_mol         | 1 mol/mg          |
| Comp_W_mol_mg         | 1 mg/mol          |
| Comp_W_M_B            | 1 dimensionless   |
| Comp_W_O_B            | 1 dimensionless   |
| Comp_W_renal_cl       | 0 mL/hour/kg^0.75 |
| kab_Comp_W_oral       | 5 1/hour          |
| kab_conj_Comp_W       | 0 1/hour          |
| kab_Comp_W_IP         | 12 1/hour         |
| kdiss_Comp_W          | 12 1/hour         |
| kge_Comp_W            | 12 1/hour         |
| kIV_Comp_W            | 60 1/hour         |
| Vmax_Comp_W_ab        | 0 1/hour          |
| Km_Comp_W_ab          | 1.0000e+10 mg     |
| k_out_gut_Comp_W      | 0 1/hour          |
| Comp_W_Vmax_L_B       | 0 1/hour          |
| Comp_W_Km_L_B         | 1.0000e+10 mg/mL  |
| Comp_W_perm           | 0 1/hour          |

- For proprietary compounds, this would need to be filled out using data from earlier
- For bosentan and telmisartan, the values have been filled in for you


| Parameter        | Value      | Units  |         |
|------------------|------------|--------|---------|
| kdiss_Comp_W     | 12         | 1/hour | <b></b> |
| kge_Comp_W       | 12         | 1/hour |         |
| kIV_Comp_W       | 60         | 1/hour |         |
| Vmax_Comp_W_ab   | 0          | 1/hour |         |
| Km_Comp_W_ab     | 1.0000e+10 | mg     |         |
| k_out_gut_Comp_W | 0          | 1/hour |         |
| Comp_W_Vmax_L_B  | 80         | 1/hour |         |
| Comp_W_Km_L_B    | 0.0010     | mg/mL  |         |
| Comp W_perm      | 168        | 1/hour | -       |
|                  |            |        |         |

Institute for Drug Safety Sciences

# Implement Appropriate Species Selection for Simulations

- DILI simulations may be run for mice, rats, dogs, or humans
- Species is specified by number
  - **1** mice
  - **2** rats
  - **3** dogs
  - **4** humans

| Parameter | Value | Units |  |
|-----------|-------|-------|--|
| pecies    | 4     | n/a   |  |
|           |       |       |  |
|           |       |       |  |
|           |       |       |  |
|           |       |       |  |
|           |       |       |  |



THE UNIVERSITY

at CHAPEL HILL

of NORTH CAROLINA

# Initial SimSingle<sup>™</sup> Set-Up

- Objective is to predict toxicity for:
  - Multiple dosing in humans
  - Standard rat protocol
- Set-up design
  - Long duration for multiple doses
- Create time files for both rat
   and human

| File View Results About |              |                               | لا                 |       |
|-------------------------|--------------|-------------------------------|--------------------|-------|
| SimSingle Setup File    |              |                               |                    | -     |
|                         |              | Select 💌                      |                    |       |
| SimSingle Input Options |              |                               |                    |       |
| Simulation Time         | 1_week_Defa  | ault 💌                        | Customize          |       |
| Species Parameters      | Parameters_h | numan_specific_v2B_bili_v2    | Customize          |       |
| Drug Parameters         | Parameters_h | numan_CompW_direct_necrosis 💌 | Customize          |       |
| Caloric Intake          | Caloric_inta | 💋 Simulation Time Parameter   | rs-human_long_sim* |       |
| Compound W Dosing       | Compound_    | Parameter                     | Value              | Units |
| 0 IVD :                 |              | Time Step                     | 0.5000 hours       | j     |
| Compound X Dosing       | Compound_    | Simulation Time               | 900 hours          | )     |
| Compound Y Dosing       | Compound_    |                               |                    |       |
| Solver Options          | Select_Hun   |                               |                    |       |
| Simulate                |              |                               |                    |       |
| Run                     |              |                               |                    |       |
|                         |              |                               |                    |       |





# Setting Up the Bile Acid Model to Equilibrate Properly

- Bile acid model must be run for a period of time without drug dosing so bile acids can reach their initial concentrations
- Human model reaches stable bile acid concentrations in 240 hours
- Rat model requires 480 hours to reach equilibrium

| l 🛃<br>Oral Bolus              | Dosing |                 |
|--------------------------------|--------|-----------------|
| Parameter                      | Value  | Units           |
| duration_oral_Comp_W_bolus     | 0.0500 | hours           |
| start_oral_Comp_W_bolus_dose 🤇 | 240    | hours           |
| period_oral_Comp_W_bolus_dos   | 24     | hours           |
| oral_Comp_W_bolus_dose_1       | 50     | mg              |
| total_oral_Comp_W_bolus_dose   | 30     | dimensionless   |
| start_oral_Comp_W_bolus_dose   | 48     | hours           |
| period_oral_Comp_W_bolus_dos   | 24     | hours           |
| oral_Comp_W_bolus_dose_2       | 0      | mg              |
| total_oral_Comp_W_bolus_dose   | 0      | dimensionless   |
| start_oral_Comp_W_bolus_dose   | 96     | hours           |
| period_oral_Comp_W_bolus_dot   | 24     | hours           |
| oral_Comp_W_bolus_dose_3       | 0      | mg              |
| total oral Comp W bolus dose   | 0      | dimensionless . |





# **Drug Dosing for Bile Acid Simulations**

| Oral Bolus                   | Dosing |                 |
|------------------------------|--------|-----------------|
|                              |        |                 |
| Parameter                    | Value  | Units           |
| duration_oral_Comp_W_bolus   | 0.0500 | hours 🔺         |
| start_oral_Comp_W_bolus_dose | 240    | hours           |
| period_oral_Comp_W_bolus_dos | 24     | hours           |
| oral_Comp_W_bolus_dose_1     | 50     | mg              |
| total_oral_Comp_W_bolus_dose | 30     | dimensionless   |
| start_oral_Comp_W_bolus_dose | 48     | hours           |
| period_oral_Comp_W_bolus_dos | 24     | hours           |
| oral_Comp_W_bolus_dose_2     | 0      | mg              |
| otal_oral_Comp_W_bolus_dose  | 0      | dimensionless   |
| start_oral_Comp_W_bolus_dose | 96     | hours           |
| period_oral_Comp_W_bolus_dos | 24     | hours           |
| oral_Comp_W_bolus_dose_3     | 0      | mg              |
| total_oral_Comp_W_bolus_dose | 0      | dimensionless 🖵 |

Compound X Dosing Parameter Values-human\_bosentan\_dosing\*

🛃 🛃

#### Oral Bolus Dosing

| Parameter                     | Value  | Units           |
|-------------------------------|--------|-----------------|
| duration_oral_Comp_X_bolus    | 0.0500 | hours           |
| start_oral_Comp_X_bolus_dose_ | 240    | hours           |
| period_oral_Comp_X_bolus_dos  | 12     | hours           |
| oral_Comp_X_bolus_dose_1      | 500    | mg              |
| total_oral_Comp_X_bolus_dose_ | 60     | dimensionless   |
| start_oral_Comp_X_bolus_dose_ | 48     | hours           |
| period_oral_Comp_X_bolus_dos  | 24     | hours           |
| oral_Comp_X_bolus_dose_2      | 0      | mg              |
| total_oral_Comp_X_bolus_dose_ | 0      | dimensionless   |
| start_oral_Comp_X_bolus_dose_ | 96     | hours           |
| period_oral_Comp_X_bolus_dos  | 24     | hours           |
| oral_Comp_X_bolus_dose_3      | 0      | mg              |
| total_oral_Comp_X_bolus_dose_ | 0      | dimensionless . |
| •                             |        |                 |

- Set up simulations to run at maximum clinical dose
  - Telmisartan: 50 mg QD
  - Bosentan: 500 mg BID



Institute for Drug Safety Sciences



## **Caloric Intake for Bile Acid Simulations**

|           |                                 | DILIsym v2C - 2013 Q3 Tra           | ining       | - 🗆 🗙     |
|-----------|---------------------------------|-------------------------------------|-------------|-----------|
| File View | Results About                   |                                     |             | 3         |
| 🖂 🔀 Q     |                                 |                                     |             |           |
|           | e Setup File<br>e Input Options | Select                              | ¥           |           |
| Simula    | ation Time                      | Select                              | ~           | Customize |
| Species   | Parameters                      | Select                              | ¥           | Customize |
| Drug P    | arameters                       | Select                              | *           | Customize |
| Calo      | oric Intake                     | Caloric_intake_parameters_human_v2C | <b>v</b>    | Customize |
| Compou    | nd W Dosing                     | Select                              | ¥           | Customize |
| Compou    | und X Dosing                    | Select                              | *           | Customize |
| Compou    | und Y Dosing                    | Select                              | ~           | Customize |
| Solve     | er Options                      | Select                              | ¥           | Customize |
| Simulate  |                                 |                                     |             |           |
|           | Run                             | Run in Parallel                     | Data Compar | ison      |
| Output    | Export to Exce                  | l Plot                              | Output Tak  | ble       |

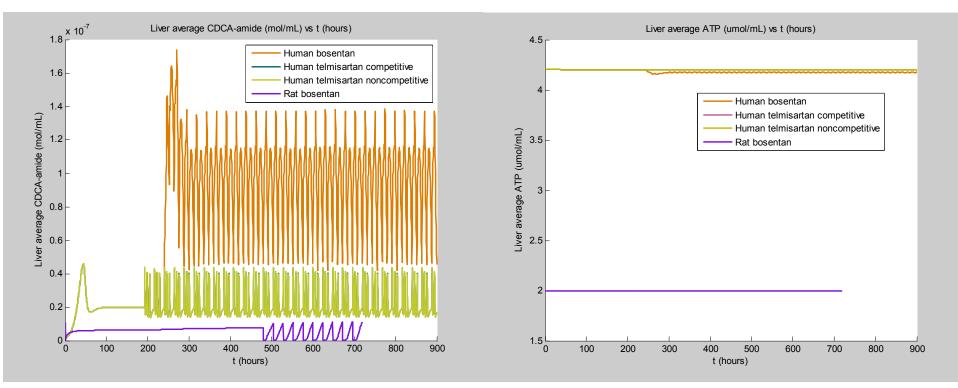
| Parameter            | Value   | Units         |
|----------------------|---------|---------------|
| aloric_intake        | Default | kcal/day      |
| racCHO               | 0.5500  | dimensionless |
| racTG                | 0.3000  | dimensionless |
| _meal_start          | 192     | hovr          |
| neal_duration        | 0.2500  | hour          |
| neal_1_on_off_switch | 1       | dimensionless |
| neal_1_start_time    |         | hour          |
| neal_2_on_off_switch | 1       | dimensionless |
| neal_2_start_time    | 6       | hour          |
| neal_3_on_off_switch | 1       | dimensionless |
| neal_3_start_time    | 12      | hour          |
| neal_4_on_off_switch | 0       | dimensionless |
| neal 4 start time    | 0       | hour          |

 Set up caloric intake so that meals are taken at same time as drug





# Exploring Simulation Results Using the Output Table


| -                                                       |                | DILIsym v2C - 2013 Q3 Training                  |                |                | ×            |                            |           |                                 |                    |                   |
|---------------------------------------------------------|----------------|-------------------------------------------------|----------------|----------------|--------------|----------------------------|-----------|---------------------------------|--------------------|-------------------|
| File View                                               | Results About  |                                                 |                |                |              | 3 Output Table             |           |                                 |                    |                   |
| Ø 🛃 🖸                                                   |                |                                                 |                | Outpu          | t List Optio | ns                         |           |                                 |                    | ¥۲.               |
| SimSingle                                               | Setup File     |                                                 |                |                |              | Output Variable            | Metric    | Valu                            | e                  | Units             |
|                                                         |                | Human_telmisartan_competitive                   | v /            | 1              | PP ATP       |                            | Minimum   | •                               | -<br>4.2000 umol/m |                   |
|                                                         |                |                                                 |                | 2              |              |                            | -         | -                               |                    |                   |
| SimSingle                                               | Input Options  |                                                 |                | 3              |              |                            | -         | -                               |                    |                   |
| Simula                                                  | tion Time      | Level to a transfer to a                        | v Cu           | 4              |              |                            | •         | <u> </u>                        |                    | _                 |
| Sirridia                                                | alon nine      | human_long_sim_Training                         | v Cu           | 5              | -            |                            | <b>▼</b>  | ▼<br>▼                          |                    |                   |
| Species I                                               | Parameters     | Parameters_human_specific_v2C                   | ✓ Cu:          | 7              | -            |                            | •         |                                 |                    |                   |
| opecies                                                 | urumeters      | Parameters_numan_specific_v2c                   | • 00           | 8              |              |                            | •         | •                               |                    |                   |
| Drug Pr                                                 | arameters      | Parameters_human_telmisartan_Training_Compl     | . v Cu         | 9              |              |                            | -         |                                 |                    |                   |
| Diugia                                                  | arameters      | Parameters_numan_termisartan_naming_compr.      | . • Ou         | 10             |              |                            |           |                                 |                    |                   |
| Caloric Intake Caloric_intake_parameters_human_v2C v Cu |                | 11                                              |                |                |              |                            |           |                                 |                    |                   |
|                                                         |                |                                                 |                |                |              |                            |           |                                 |                    |                   |
| Compour                                                 | nd W Dosing    | human_telmisartan_dosing_Training               | ✓ Cu           | -              |              |                            |           |                                 |                    |                   |
|                                                         | Ū.             |                                                 |                |                |              |                            |           | ,                               |                    |                   |
| Compou                                                  | nd X Dosing    | Compound_X_dosing_blank_v2C                     | ✓ Cu:          |                |              |                            | Calculat  | te                              |                    |                   |
|                                                         |                |                                                 |                |                |              |                            |           |                                 |                    |                   |
| Compou                                                  | nd Y Dosing    | Compound_Y_dosing_blank_v2C                     | ✓ Cus          | tomize         |              |                            |           |                                 |                    |                   |
| · ·                                                     | 5              |                                                 |                |                | _            | <ul> <li>Output</li> </ul> | t table   | can be                          | used               | to                |
| Solver                                                  | r Options      | Default_Solver_Options                          | ✓ Cus          | tomize         |              | •                          |           |                                 |                    |                   |
|                                                         |                |                                                 |                |                | _            | explor                     | e basic   | : simula                        | ation              |                   |
| Simulate                                                |                |                                                 |                |                |              | •                          |           |                                 |                    | -                 |
|                                                         | Run            | Run in Parallel D                               | ata Comparison |                |              | result                     | s for sin | igie sin                        | iuialio            | 11                |
|                                                         | Kun            |                                                 | ata companson  |                |              | _ Ma                       | x, min, a | vorade                          | ato                |                   |
| Output                                                  |                |                                                 |                |                |              | - 1018                     | л, пшт, а | verage,                         |                    |                   |
|                                                         | Export to Exce | el Plot                                         | Output Table   | )              |              |                            |           |                                 |                    |                   |
|                                                         |                |                                                 |                |                |              |                            |           |                                 |                    |                   |
|                                                         |                | THE<br>HAMNER INSTITUTES<br>FOR HEALTH SCIENCES | Institute      | e for          | Drug         | Safety Scienc              | es 🗊      | HE UNIVERSITY<br>North Carolina | CONFID             | <b>ENTIAL</b> 115 |
|                                                         |                | FOR HEALTH SCIENCES                             | Diug           | Surety Selence |              | CHAPEL HILL                |           |                                 |                    |                   |

# Running Different SimSingles<sup>™</sup> in Parallel

| 3                       | DILIsym v2C - 2013 Q3 Training – 🗆 💌            | Options Results                                |
|-------------------------|-------------------------------------------------|------------------------------------------------|
| File View Results About | r.                                              | SimSingles SimPops Parameter Sweep             |
| 0                       |                                                 | SimSingle File Run                             |
|                         |                                                 | 1 Select All                                   |
| SimSingle Setup File    |                                                 | 2 Human_bosentan<br>3 Human telmisartan co  ☑  |
|                         | Human_telmisartan_competitive                   | 3 Human_telmisartan_co                         |
|                         |                                                 | 5 Rat bosentan                                 |
| SimSingle Input Options |                                                 |                                                |
| Simulation Time         | human_long_sim_Training v Customize             |                                                |
| Species Parameters      | Parameters_human_specific_v2C v Customize       |                                                |
| Drug Parameters         | Parameters_human_telmisartan_Training_Compl     |                                                |
| Caloric Intake          | Caloric_intake_parameters_human_v2C v Customize |                                                |
| Compound W Dosing       | human_telmisartan_dosing_Training v Customize   |                                                |
| Compound X Dosing       | Compound_X_dosing_blank_v2C v Customize         |                                                |
| Compound Y Dosing       | Compound_Y_dosing_blank_v2C v Customize         |                                                |
| Solver Options          | Default_Solver_Options   Customize              | Run Plot                                       |
| Simulate                |                                                 | <ul> <li>Can compare the results of</li> </ul> |
| Run                     | Run in Parallel Data Comparison                 | each simulation by running                     |
| Output                  |                                                 |                                                |
| Export to Exc           | el Plot Output Table                            | them in parallel together                      |
|                         | HANNER INSTITUTES Institute for Drug            | Safety Sciences                                |

**NTIAL** 116

# SimSingle<sup>™</sup> Results Summary



- SimSingle<sup>™</sup> results show no toxicity in average individual
  - Average individual does not generally show bile acid-induced toxicity
  - There are some slight elevations of bile acids in the human bosentan baseline
- Will need SimPops<sup>™</sup> to investigate if these elevations could cause problems in the general population

Simulation Results





### Load SimPops<sup>™</sup> results

| 📣 R   | un D  | ILIsym  | v2B Simul   | ations in | Paralle | el 🛛    |   |          |            | _ 🗆 🗵 |
|-------|-------|---------|-------------|-----------|---------|---------|---|----------|------------|-------|
| Optic | ons [ | Results |             |           |         |         |   |          |            | R     |
|       |       | ✓ Save  | SimSingle R | esults    |         |         |   |          |            |       |
|       | Sin   | Load    | SimSingle R | esults    |         | Sweep   |   |          |            | _     |
|       |       | 🗸 Save  | SimPops Re  | sults     |         | SimPops |   | - 4      | ; Size (n) |       |
|       | 1     | Load    | SimPops Re  | sults     |         | •       |   | ·        | 0          |       |
|       | 2     | ✓ Save  | Parameter   | Sweep Res | sults   | e       |   | ·        | 0          |       |
|       | 3     | Load    | Parameter : | 5weep Res | sults   | e       | 1 | <u>.</u> | 0          |       |
|       | 4     | Rat_b   | osentan     |           | Non     | 9       |   | r        | 0          |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
| 1     |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         | - |          | 1          |       |
|       |       | F       | Run         |           |         | Plot    |   | Outpu    | ut Table   |       |
|       |       |         |             |           |         |         |   |          |            |       |
|       |       |         |             |           |         |         |   |          |            |       |

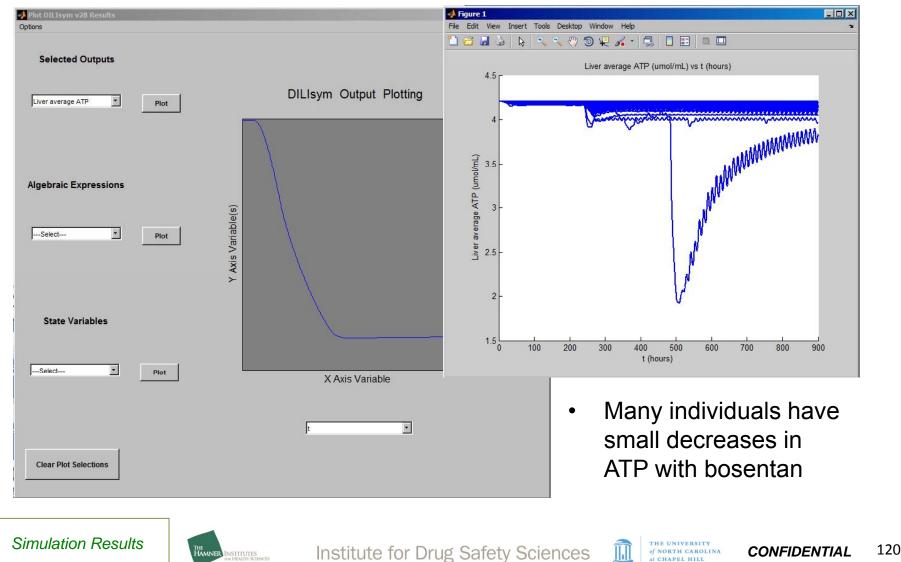
- SimPops<sup>™</sup> for human bosentan, rat bosentan, and human telmisartan have been run
  - Time to run would be prohibitive (~2 days)
  - Files are too large to fit on thumb drives; I will show results here
- Bosentan results include enzyme induction equations that are not in v2B
  - Will be included in v3A





# Exploring SimPops<sup>™</sup> Using the Output Table

| Sim Sir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ngles SimPop<br>SimSingle File | SimPops File | SimPops Size (n) | -                   |                            |        |        |       |               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|------------------|---------------------|----------------------------|--------|--------|-------|---------------|--|
| 1 Hum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nan bosentan                   | None         | ▼ 0              | 📣 DIL               | Isym v2B Output Table      |        |        |       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nan telmisartan co             |              | ▼ 0              | Output List Options |                            |        |        |       |               |  |
| and the second se | nan telmisartan co             |              | <b>–</b> 0       |                     |                            |        |        |       |               |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nan_telmisartan_no             |              | • 0              |                     | Output Variable            |        | Metric | Value | Units         |  |
| and the second se | nan telmisartan no             |              | • 0              | 1                   | Number of deaths           | •      | *      |       | 0 Individuals |  |
| 6 Hum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nan_telmisartan_no             | None         | • 0              | 2                   | ALT over 3x baseline       |        | -      |       | 2 Individuals |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nan_telmisartan_no             |              | ▼ 0              | 3                   | Bilirubin over 2x baseline |        | •      |       | 1 Individuals |  |
| 8 Hum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nan_telmisartan_no             | None         | • 0              | 4                   | Hy"s Law cases             |        |        |       | 1 Individuals |  |
| 9 Hum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nan_telmisartan_no             | None         | • 0              | 5                   |                            |        | × 1    |       |               |  |
| 10 Hum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nan_telmisartan_no             | None         | • 0              | 6                   |                            |        |        |       |               |  |
| 11 Hum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nan_telmisartan_no             | None         | - 0              | 7                   |                            |        | •      |       |               |  |
| 12 Rat_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _bosentan                      | None         | ▼ 0<br>▼ 0       | 8                   |                            | •      |        |       |               |  |
| 13 Rat_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _bosentan_long                 | None         | <b>▼</b> 0       | 9                   |                            | •      | •      |       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              |                  | 10                  |                            |        |        |       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              |                  | 10                  | -                          | •<br>• |        |       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              |                  | 11                  |                            |        | Ma     |       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              |                  |                     |                            |        |        |       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              |                  |                     |                            |        |        |       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              |                  |                     |                            |        |        |       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              |                  |                     |                            |        |        |       |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              |                  |                     |                            |        | Calcu  | ulate |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              |                  |                     |                            |        | -      | -     |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |              |                  |                     |                            |        |        |       |               |  |


- Bosentan SimPops<sup>™</sup> shows 2 individuals with elevated ALT
- Potential cause for worry; deeper investigation of the results is needed




Institute for Drug Safety Sciences



# Exploring SimPops<sup>™</sup> Using the Plotting Function (1/2)



# Exploring SimPops<sup>™</sup> Using the Plotting Function (2/2)



 ATP does not decline at all in telmisartan SimPops<sup>™</sup>







# Application Example 2: Analysis of Modeling Results

#### Issue

- Two drugs (bosentan and telmisartan) have been flagged by *in vitro* assays as BSEP inhibitors
- Clinical DILI is linked to BSEP inhibition
- Rat studies have shown no signs of liver injury

### **Pending Decision**

• Should the Company take extra precautions for potential liver injury during clinical trials?

### Conclusions from DILIsym<sup>®</sup> Modeling

- Bile-acid induced hepatotoxicity may be an issue with bosentan in certain individuals
  - Average individual will be fine; toxicity may appear rare
- Rat models are not predictive of the hepatotoxicity that may be seen with bosentan
  - Serum bile acid measurements can be misleading in this regard
- Telmisartan is likely clear of any bile-acid induced hepatotoxicity





# DILIsym<sup>®</sup> Training Agenda – September 26, 2013

- 8:30 AM Introduction and goals
  - -DILIsym<sup>®</sup> overview and highlights
  - -Model architecture notes
- 8:45 AM Biomarker analysis example
- 9:45 AM Break
- 10:00 AM Biomarker analysis example
- 11:00 AM MITOsym<sup>™</sup> overview and introduction
- 11:30 AM Lunch
- 12:30 PM Bile acid transport inhibitor example
- 1:30 PM Break
- 1:45 PM Bile acid transport inhibitor example
- 2:45 PM Discussion and questions
- 3:00 PM Training concludes
  - -DILI-sim modeling team is available for questions





