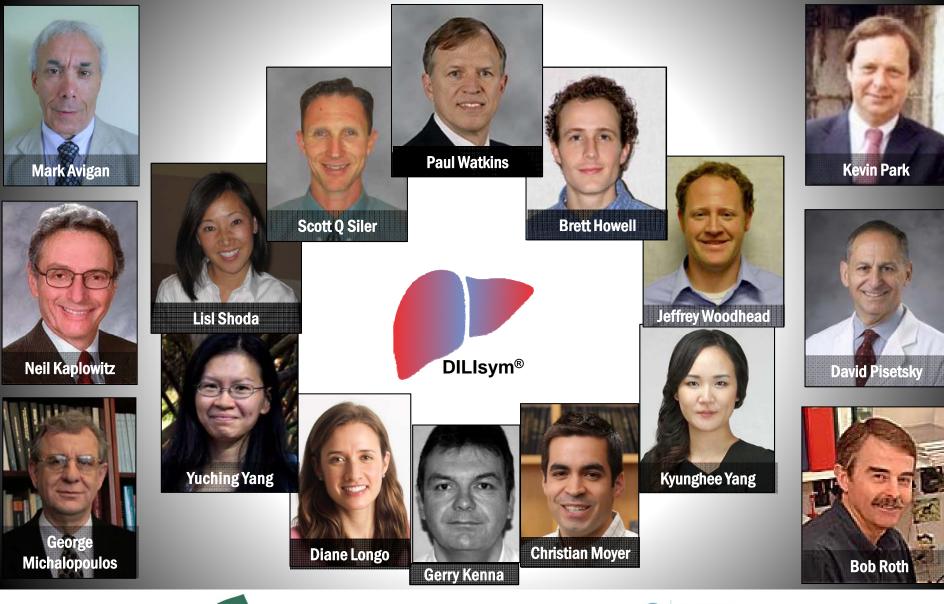

WebEx Tools for Interacting with Presenters Will Be in Use During this Meeting

- <u>Recording meeting for</u> <u>future reference</u>
- Large number of meeting participants requires system for orderly interaction
 - Will use WebEx tools
- To make a comment and/or ask a question during the presentation period:
 - Submit in text by using the Chat window (purple outline) and addressing message to 'Questions Here'
- More in-depth Q&A period planned for end of meeting

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

DILIsym[®] v3A User Training

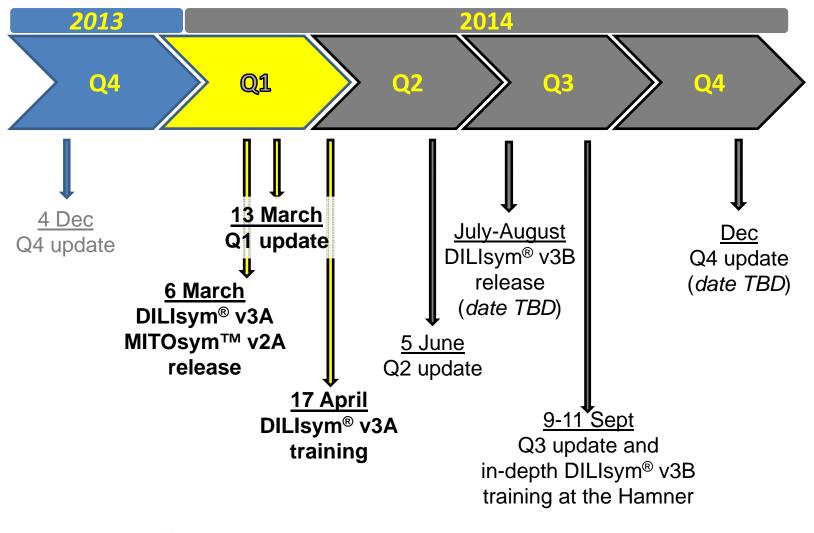

April 17, 2014

Speakers: Brett A. Howell, Scott Q. Siler

Contact: <u>bhowell@thehamner.org</u>, <u>silerconsulting@comcast.net</u>

Please note: this presentation, including questions from the audience, is being recorded Please send questions to the DILIsym[®] team through the individual listed as "Questions Here" (chat) so we can read them aloud and answer them, time permitting

The DILI-sim Team and the SAB


THE HAMNER INSTITUTES tor HEALTH SCIENCES

3

2014 DILI-sim Initiative Key Dates

The DILIsym.com Website

• <u>www.DILIsym.com</u>:

- Stand-alone webpage, linked to the Hamner Institutes webpage, that provides information and file access
- Online forum for virtual discussions through threads and post between member companies, the modeling team, and the SAB
 - Password protected
 - Allows for model access via the web
 - General scientific discussions
 - DILI-sim Initiative related discussions (operations)
 - DILIsym[®] model design discussions
 - DILIsym[®] technical/practical discussions related to use
 - Additional means for tech support for model users
- DILIsym[®] files and documentation are available via a password protected site
- DILI-sim members register for an account to access files and forum discussions
 - Click 'Register' at the top right-hand corner of the homepage

DILIsym[®] v3A Training Session Goals

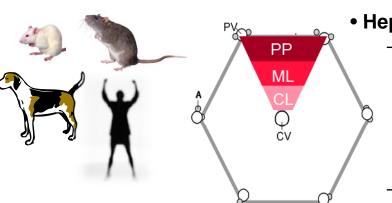
- This training session will provide users with knowledge of updates and additions to DILIsym[®] as of the v3A release
- This training session should be a supplement to previously recorded training sessions
 - DILIsym[®] versions 1A through 2C training sessions
 - All sessions accessible at www.DILlsym.com
- This training session is not an in-depth exploration of the application of the model, but application questions are welcome at the end of the session

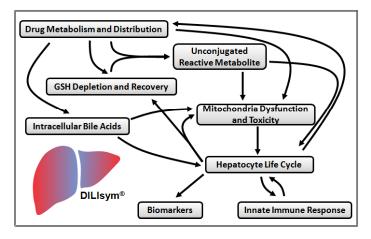
DILIsym® v3A User Training Agenda

The Items Below will be Discussed with Slides and Live MATLAB Demo

Overview of DILIsym[®] v3A and MATLAB directory structure

- Mechanistic representation of bile acid-mediated hepatocellular necrosis via bile acid induced mitochondrial dysfunction
- New population samples (SimPops[™]) included combining the effects of bile acids and direct mitochondrial dysfunction
- New feature for automatic system pre-simulation equilibration for the mitochondrial dysfunction and bile acid representations due to oscillatory behaviors
- PBPK framework expansion in v3A
- Graphical user interface enhancements
- Code format parameter file changes





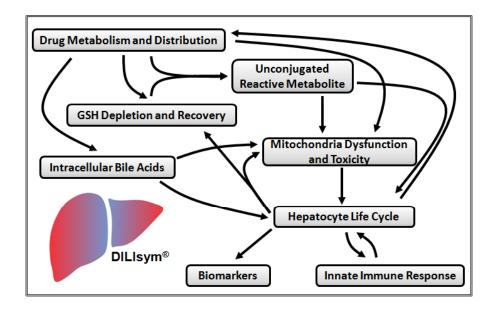
DILIsym[®] v3A Overview

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented
- Essential cellular processes represented to multiple scales in interacting sub-models
 - Pharmacokinetics
 - Dosing (IP, IV, Oral)
 - Transporter Inhibition
 - Drug metabolism
 - GSH depletion
 - Injury progression
 - Mitochondrial dysfunction, toxicity
 - Bile acid mediated toxicity
 - Cellular energy balance
 - Hepatocyte life cycle
 - Macrophage, LSEC life cycles
 - Immune mediators
 - Caloric intake
 - Biomarkers

Compartment-based modeling

- >500 state variables
- 'Form to function' connection
- Ordinary differential equations
- Code or GUI functionality

Institute for Drug Safety Sciences


Hepatotoxicity exemplars

- Reactive metabolite mediated
 - Acetaminophen
 - Methapyrilene
 - Furosemide
 - Aflatoxin B1
 - Carbon tetrachloride
- Mitochondrial dysfunction
 - Etomoxir
 - Buprenorphine
 - Tolcapone
 - CP-724714
- Bile acid transporter inhibition
 - Glibenclamide
 - CP-724714
 - Bosentan
 - Telmisartan
 - Tolcapone
 - Troglitazone
- Single, multiple dose protocols
- Single, combination drug protocols

Highlights of DILIsym[®] v3A

- Added option of mechanistic representation of bile acid-mediated hepatocellular necrosis via bile acid induced mitochondrial dysfunction
- Expanded and refined the representation of innate immune contributions to injury and recovery
 - Mediator production structure altered
 - Innate immune parameter values for mouse, rat, dog, and human updated
- Introduced new structure for preequilibration of state variables prior to simulations
- Expanded capabilities of GUI interface
- Expanded PBPK framework

- Introduced additional exemplar compounds for exposure-related toxicity
 - Tolcapone
 - Telmisartan
 - Bosentan
 - Carbon tetrachloride
- Additional SimPops[™], capturing impact of variability in key pathways

Institute for Drug Safety Sciences

Expanded Capabilities and Changes for DILIsym[®] v3A

- PBPK framework expanded for additional drug metabolism schemes
 - Secondary metabolite generation now possible
 - Suicide inhibition now possible
 - Drug metabolism enzyme induction added
 - Free drug concentration representation also adjusted
- Innate immune representation expanded and enhanced
 - Mediator production structure altered
 - Innate immune parameter values for mouse, rat, dog, and human updated
- Added option of mechanistic representation of bile acid-mediated hepatocellular necrosis via bile acid induced mitochondrial dysfunction
- Added new feature for automatic system pre-simulation equilibration for the mitochondrial dysfunction and bile acid representations due to oscillatory behaviors
- New population samples (SimPops[™]) included combining the effects of bile acids and direct mitochondrial dysfunction
 - NASH-like patients with severely compromised mitochondrial function are also included
- New drug/chemical representations for:
 - Telmisartan
 - Carbon tetrachloride
 - Bosentan
 - Tolcapone
- Numerous graphical user interface (GUI) enhancements, including:
 - Parameter names and descriptions are now visible from within the GUI
 - New plotting feature allowing comparisons to data within GUI plot window
 - New Data comparisons feature allowing storage of population sample (SimPops) simulations, and comparisons to measured data
- Expanded Zotero reference database (contact us for real-time access)

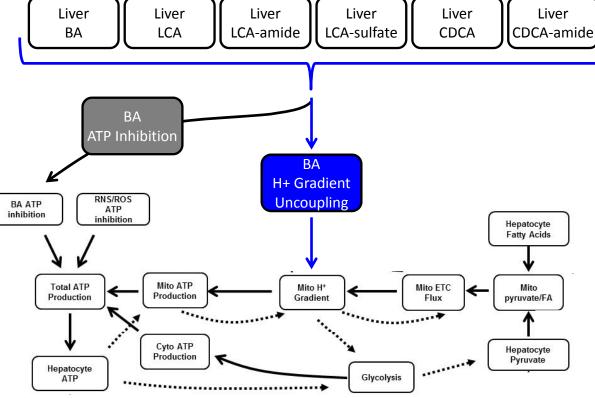
Institute for Drug Safety Sciences

The Items Below will be Discussed with Slides and Live MATLAB Demo

Overview of DILIsym[®] v3A and MATLAB directory structure

Mechanistic representation of bile acid-mediated hepatocellular necrosis
 via bile acid induced mitochondrial dysfunction

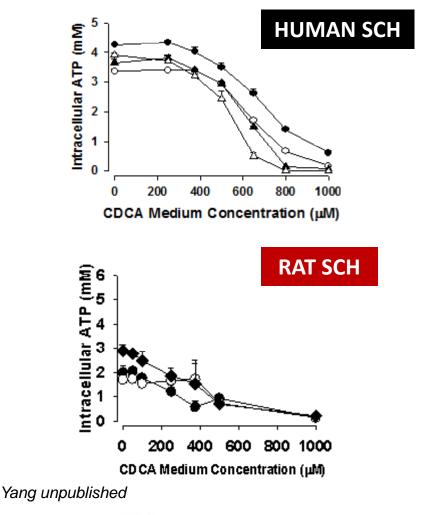
- New population samples (SimPops[™]) included combining the effects of bile acids and direct mitochondrial dysfunction
- New feature for automatic system pre-simulation equilibration for the mitochondrial dysfunction and bile acid representations due to oscillatory behaviors
- PBPK framework expansion in v3A
- Graphical user interface enhancements
- Code format parameter file changes



11

Liver Bile Acids Elicit ATP Reductions in More Mechanistic Manner in DILIsym[®] v3A

- Liver bile acids cause reductions in mitochondria proton gradient in v3A
 BA H+ Gradient Uncoupling
- Parameter optimization based on Yang et al. hepatocyte studies (*submitted*)
 - Measured ATP and cell death following exposure to different levels of bile acids
 - Supported by DILI-sim Initiative
- Prior representation still available as an option
 Direct effect on ATP synthesis
- BA H+ Gradient Uncoupling is better option if combined with other mitochondria mechanisms
 - Includes integration of mitochondria feedback signals
 - BA ATP Inhibition useful when it is the only mechanism


Institute for Drug Safety Sciences

12

Summary of Findings from Sandwich Culture Hepatocyte Bile Acid Toxicity Studies

- Human SCH were more resistant to LCA-mediated toxicity compared to rat SCH based on the intracellular LCA concentrations
- CDCA induced medium-concentration dependent ATP loss and toxicity in rat and human SCH. Toxicity was correlated with hepatic unconjugated CDCA in rat SCH
 - Various bile acid species have been reported to initiate MPT, decrease mitochondria proton gradient, and decrease OCR[‡]
- Both BA H+ Gradient Uncoupling and BA ATP Inhibition options are optimized based on these data

[‡] Denk 2012, Sokol 2005, Botla 1995, Rolo 2003, Rolo 2004, Utanohara 2005, Yerushalmi 2001, Nadanaciva unpublished

Preclinical Data

Institute for Drug Safety Sciences

Three Parameters Required to Activate BA H+ Gradient Uncoupling

*		DILIsym v3A		🚺 Drug Param	eter Values-P	🗆 🖄									
File View Results About						ug toxicity par	ameters-Par	rameters_Hum		×					
🖬 🛃 🗘							-99		_		_				_
SimSingle Setup File				Mechanism							🛃 Mechanistic inter	ventions-P	arameters_H	Hu –	×
-		0 - la -t	~		y parameters ; interventions		Parameter		Value	Units					
Simulation Time 24hr_Default Species Parameters Parameters_Human_Specific_v3A		×	Compound W PBPK			RNS_ROS_prod_const		5000 mL/mol/hour							
					etabolite A PBP	· _	lirect_necrosis			nsionless	Parameter Mac depletion switch		Value	Unit D dimension	
				Comp W Metabolite B PBPK Compound W RM 1 PBPK Compound W RM 2 PBPK			Vmax_direct_necrosis Km direct necrosis		1 dimensionless 1.0000e-06 dimensionless		Mac_depletion_switch		2 hour		
		24hr_Default V				_	ATP util Vmax		6 1/hour		Mac depletion time stop		50 hour		
		Parameters Human Specific v3A	¥		und X PBPK (Metabolite A PBPK		ATP util Km		1.5000e-07 mol/mL		Mac depletion fraction		0.9500 dimensionless		less
				Comp X Metabolite B PBPK Compound X RM 1 PBPK Compound X RM 2 PBPK Compound Y PK			ATP_util_Hill MitoS_ETC_Inhib		1.6000 dimensionless 3.5000e-08 mol/mL				0 dimensionless 0 hour		less
Drug Parameters		Parameters_Human_Tolcapone_v3A	v			MitoS									
						MitoS	MitoS_ATP_Inhib		1 mol/mL		Anti_HMGB1_time_stop		168 hour		
Caloric Intake Caloric_intake_parameters_		Caloric_intake_parameters_human_v3A	¥	Bile acid transporter inhibition cor		on con MitoS	MitoS_FA_Ox_Inhib		1 mol/mL		Anti_HMGB1_effect_level		0.0500 dimensionless		less
Compound V	pound V Mechanism selection-Parameters_Human_Tolcapone_v3A – □ ×										ess				
Compound >															
		Species		uction ATP utilization	Direct necrosi		P_dvate ox inhib				th inhib Mito uncoupler 1			at	255
Compound Y	Compoun														888
· ·		d W metabolite A													
Solver Op		d W metabolite B d W reactive metabolite 1													ess
		d W RM 1 protein adducts													
Simulate		d W reactive metabolite 2													
		d W RM 2 protein adducts													
Output	Compoun	1													ess
E	Compoun	d X metabolite A													
	Compoun	d X metabolite B													
	Compoun	d X reactive metabolite 1													
		d X RM 1 protein adducts													
		d X reactive metabolite 2												_	
	Compoun	d X RM 2 protein adducts												/	
	Compoun	u r													
				Amply				Cancel							
			Apply			Calicei									
															-

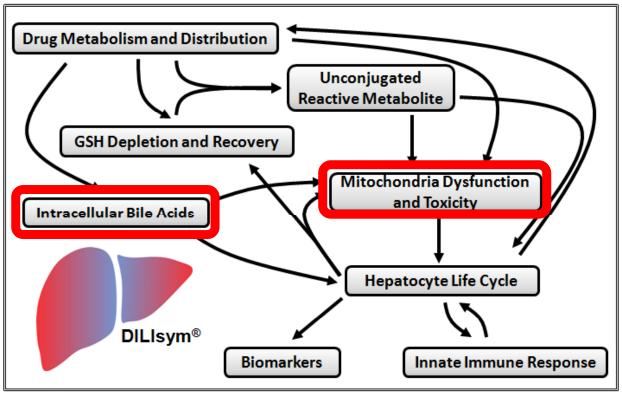
Institute for Drug Safety Sciences

14

The Items Below will be Discussed with Slides and Live MATLAB Demo

- Overview of DILIsym[®] v3A and MATLAB directory structure
- Mechanistic representation of bile acid-mediated hepatocellular necrosis via bile acid induced mitochondrial dysfunction
- New population samples (SimPops[™]) included combining the effects of bile acids and direct mitochondrial dysfunction
- New feature for automatic system pre-simulation equilibration for the mitochondrial dysfunction and bile acid representations due to oscillatory behaviors
- PBPK framework expansion in v3A
- Graphical user interface enhancements
- Code format parameter file changes

New Mitochondria and Bile Acids SimPops™ Introduced in DILIsym[®] v3A


SimPops™	Species/ Strain	Population Sample Size	Number of Parameters Varied	Applicable Hepatotoxicity Mechanisms
Mouse_ROS_v2A_1	Mice	400	10	Reactive oxygen species
Mouse_mito_v3A_5_exploration_only	Mice	200	5	Mitochondria
Rat_ROS_v2A_2	Rats	400	9	Reactive oxygen species
Rat_mito_v3A_4_exploration_only	Rats	200	5	Mitochondria
Rat_bile_acid_v2B_5	Rats	191	11	Bile Acids
Dog_ROS_v2A_3	Dogs	338	12	Reactive oxygen species
Dog_mito_v3A_3_exploration_only	Dogs	200	6	Mitochondria
Human_ROS_v2A_4	Humans	458	9	Reactive oxygen species
Human_bile_acid_v2A_5	Humans	331	10	Bile acids
Human_mito_v3A_1_exploration_only	Humans	150	2	Mitochondria
Human_mito_v3A_2_exploration_only	Humans	176	6	Mitochondria
Human_mito_BA_v3A_6_exploration_only	Humans	229	15	Mitochondria and bile acids

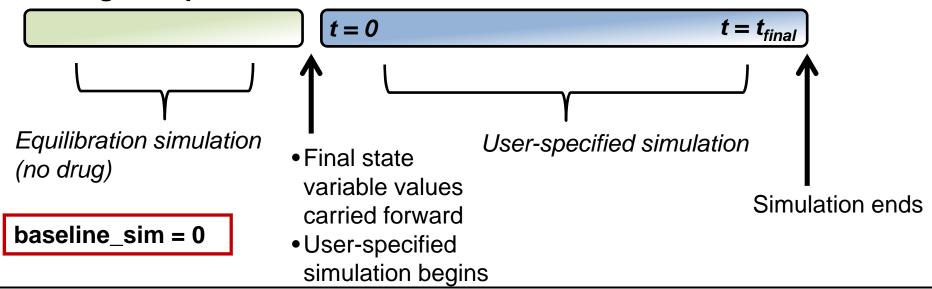
New Exploratory SimPops[™] in DILIsym[®] v3A (v3A_6, N – 229) can be Used for Mitochondrial Dysfunction and/or Bile Acid Disruption

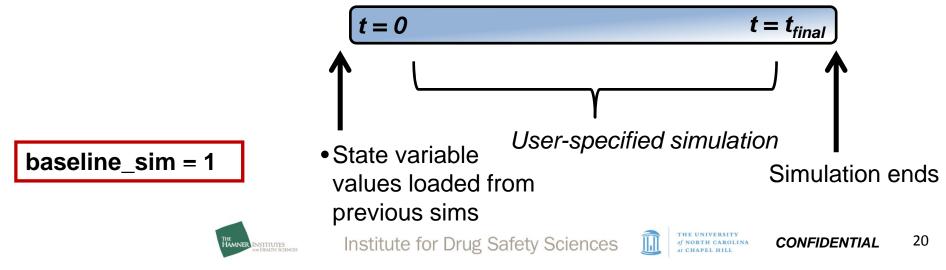
- Useful for mitochondrial dysfunction simulations
- Useful for bile acid homeostasis disruption simulations
- Useful (and designed for) combinations of bile acid homeostasis disruption and mitochondrial dysfunction
- As with other mitochondrial dysfunction SimPops[™], the population sample has not been validated with endpoint patient data due to lack of available data

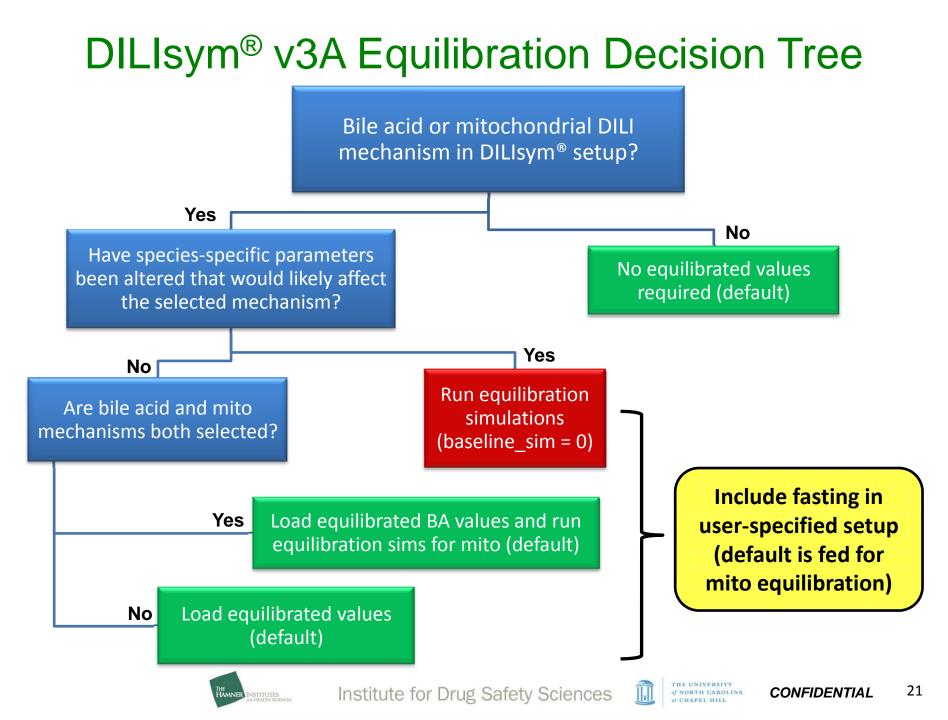
The Items Below will be Discussed with Slides and Live MATLAB Demo

- Overview of DILIsym[®] v3A and MATLAB directory structure
- Mechanistic representation of bile acid-mediated hepatocellular necrosis via bile acid induced mitochondrial dysfunction
- New population samples (SimPops[™]) included combining the effects of bile acids and direct mitochondrial dysfunction
- New feature for automatic system pre-simulation equilibration for the mitochondrial dysfunction and bile acid representations due to oscillatory behaviors
- PBPK framework expansion in v3A
- Graphical user interface enhancements
- Code format parameter file changes

Automated Equilibration Simulations Have been Incorporated into DILIsym[®] as of v3A


- What are equilibration capabilities?
 - Equilibration is the process of running a simulation within DILIsym[®] (typically without drug) prior to running the simulation specified by the user (a 'pre-simulation')
- What is accomplished with equilibration?
 - Equilibration allows DILIsym[®] outputs (state variables and algebraic expressions) to reach new steady state values that are different than the initial starting values, due to the oscillatory nature of many aspects of DILIsym[®], including meals, and due to the difficulty in calculating the correct steady state values for every output *a priori* with a large equation set
 - Loading stored steady state values is also an option in v3A
- What types of applications is equilibration recommended for?
 - Bile acid homeostasis simulations
 - Mitochondrial dysfunction simulations




A Chronological View of Equilibration in DILIsym®

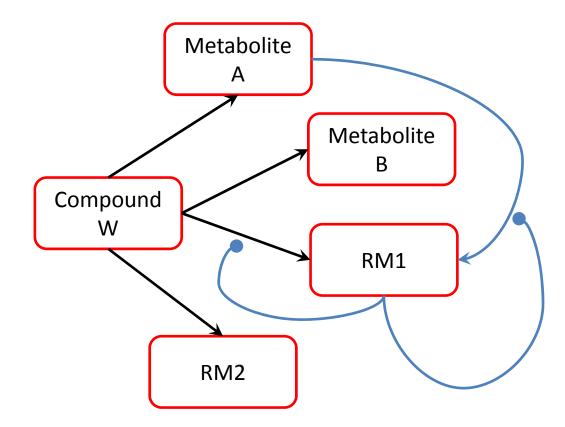
Running an equilibration simulation

Loading equilibrated initial conditions (default)

The Items Below will be Discussed with Slides and Live MATLAB Demo

- Overview of DILIsym[®] v3A and MATLAB directory structure
- Mechanistic representation of bile acid-mediated hepatocellular necrosis via bile acid induced mitochondrial dysfunction
- New population samples (SimPops[™]) included combining the effects of bile acids and direct mitochondrial dysfunction
- New feature for automatic system pre-simulation equilibration for the mitochondrial dysfunction and bile acid representations due to oscillatory behaviors

PBPK framework expansion in v3A


- Graphical user interface enhancements
- Code format parameter file changes

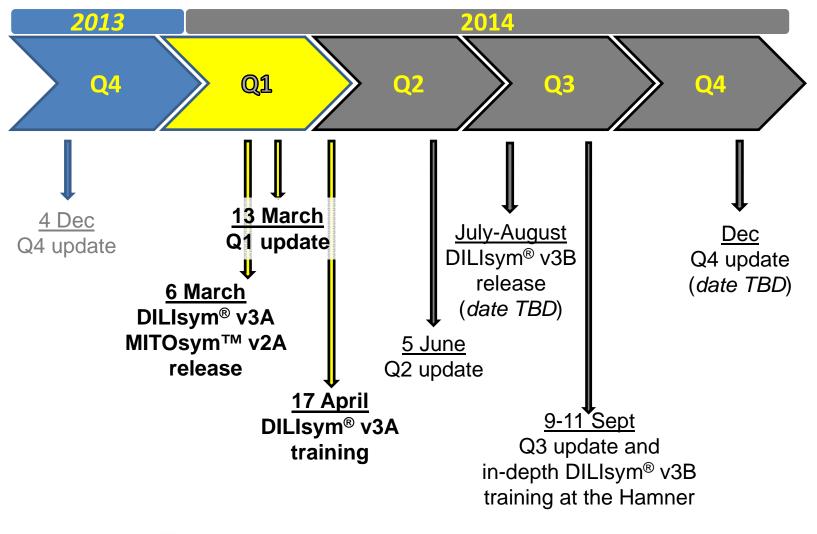
DILIsym[®] Metabolism Structure Changed to Accommodate Lapatinib and CCI₄

- Metabolism of Met A to RM1
- Suicide inhibition of Met A -> RM1
 - Inhibition constant model
- Suicide inhibition of parent -> RM1
 - Empirical model

Using the New Metabolism and Suicide Inhibition Parameters

- Vmax and Km defining metabolism of Metabolite A to RM1 are located in the RM1 PBPK section (applies to Compounds W and X)
 - Vmax_CompW_RM1_from_MetA (mol/h/kg^{0.75})
 - Km_CompW_RM1_from_MetA (mol/mL)
- Suicide inhibition parameters for parent to RM1 reaction are located in the RM1 PBPK section
 - CompW_RM1_inhib_start_time (h)
 - CompW_RM1_inhib_stop_time (h)
 - CompW_RM1_inhib_percent (dimensionless)
- Suicide inhibition parameters for Metabolite A to RM1 reaction also located in the RM1 PBPK section
 - CompW_MetA_RM1_inhib_Vmax (mol/h/kg^{0.75})
 - CompW_MetA_RM1_inhib_Ki (mol/mL)
 - k_enzyme_turnover_CompW (1/h)

The Items Below will be Discussed with Slides and Live MATLAB Demo


- Overview of DILIsym[®] v3A and MATLAB directory structure
- Mechanistic representation of bile acid-mediated hepatocellular necrosis via bile acid induced mitochondrial dysfunction
- New population samples (SimPops[™]) included combining the effects of bile acids and direct mitochondrial dysfunction
- New feature for automatic system pre-simulation equilibration for the mitochondrial dysfunction and bile acid representations due to oscillatory behaviors
- PBPK framework expansion in v3A
 - Graphical user interface enhancements
- Code format parameter file changes

2014 DILI-sim Initiative Key Dates

