

DILlsym[®] User Training – DILlsym[®] v5A Updates Overview

July 2016

DILIsym® Development Team

CONFIDENTIAL

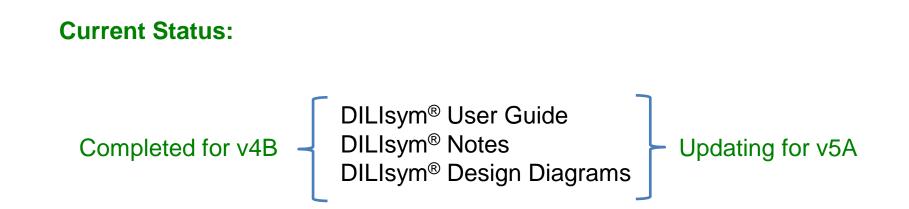
*DILIsym[®] and MITOsym[®] are registered trademarks, and SimPops[™] is a trademark of DILIsym[®] Services Inc. for computer modeling software and for consulting services.

Goal for This Training Session

Participants should understand the following general concepts:

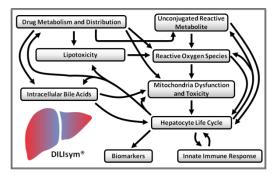
- The most notable updates included in DILIsym[®] v5A as compared to v4B
- Some practical considerations for utilizing DILIsym[®] v5A as compared to v4B

MATLAB 2015a is Recommended for DILIsym[®] v5A Simulations


- MATLAB made internal changes as of MATLAB 2015b that cause variables declared within a parent function and accessed from a nested function to use much more memory and therefore take much longer to access
 - Related to Just in Time (JIT) compiler feature
- MathWorks has assured DILIsym Services that they are working on possible solutions for MATLAB for Spring of 2017
- In the meantime, the DILIsym Services team recommends using DILIsym[®] v5A on <u>MATLAB 2015a</u> until MATLAB resolves the problem
- DILIsym[®] v5A will run properly on MATLAB 2016a, but simulation time is increased (speed is decreased) in some cases

DILIsym[®] Documentation is Moving to the Web

Stage 1: Conversion of current DILIsym[®] documentation to web-based site


Goal for completion: By Q3 of 2016, the documentation files currently distributed within DILIsym[®] will be available within a new, web-based documentation system.

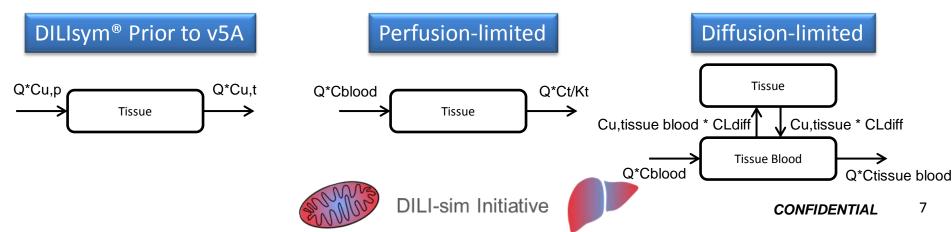
Highlights of DILIsym[®] v5A (Released Summer 2016)

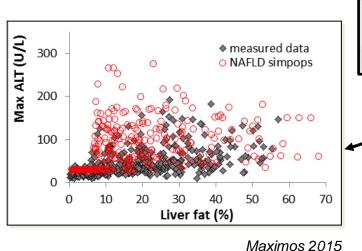
- Several new validation compounds included with varying clinical presentations
 - <u>TAK875</u> (Takeda) represented in humans, rats, and dogs (dog representation primarily used for DILIsym[®] development purposes)
 - Additional data collection on-going to better define parameter values
 - <u>MK0536</u> (Merck) represented in humans and rats
 - Additional data collection on-going to better define parameter values
 - <u>CKA</u> (AstraZeneca) represented in humans and rats
 - <u>AMG853</u> (Amgen) represented in humans and rats (backup candidate to AMG009)

- Mitochondrial DNA depletion mechanism added with FIAU as exemplar compound
 - Mitochondrial biogenesis equations also added as mode of adaptation for exploration
- Non-alcoholic fatty liver disease (NAFLD) SimPops[™] added
- Mechanistic representation of bilirubin transport and metabolism added
 - Indinavir and CKA serve as exemplar compounds

Expanded Capabilities and Features of DILIsym® v5A

- PBPK representation updates:
 - v5A includes classic, flow-limited organ uptake of drugs (protein binding restriction removed), with option for transporter mediated uptake into liver
 - Inverse molecular weight entry requirement removed from PBPK sub-models and MW units altered to g/mol
 - Several additional PBPK updates: see subsequent slide and July 2016 DILIsym[®] Review session for details
- New graphical user interface (GUI) tools added to allow users to:
 - Convert old parameter sets from v4B to be compatible with v5A
 - Systematically compare parameter sets for value differences in various formats (.mat and Excel)
- Mitochondrial electron transport chain (ETC) inhibition mechanism updated to include new third parameterization spot (ETC inhibition 3) with saturable capability
 - Also updated for MITOsym[®] v3A
- Several new human SimCohorts[™] added for v4A_1 and v5A_1 (NAFLD) SimPops[™]
- All transporter inputs are now in units of uM instead of mg/mL
- MATLAB profile viewer no longer used during simulations to improve simulation speed (simulation times printed to the MATLAB command window)
- 'startup.m' function renamed to 'startDILIsym.m' to avoid MATLAB system file issues
- Compound W and X IV infusion protocols updated with more options
- Expanded Zotero reference database (contact us for real-time access)
- Various bug fixes and enhancements to improve performance, speed, and userfriendliness




PBPK Sub-model Updates in DILIsym[®] v5A

- Tissue distribution was updated, as of DILIsym[®] v5A, to represent classic, perfusion rate-limited kinetics, unless user selects active (transporter-mediated) liver uptake
 - Prior to v5A, rate of tissue distribution was limited by protein binding rather than blood flow
 - As of v5A, perfusion rate-limited tissue distribution has been employed to be consistent with the widely-accepted concept; conversion factors were added to make the current exemplar parameters compatible
- Hepatic transport processes are now based on the unbound plasma (for uptake) and liver concentration (for biliary excretion)
 - Saturable biliary excretion included using the Michaelis-Menten equation
- Intestinal metabolism and transport added for Compound W and X
- Hepatic inlet concentration (the weighted average of portal vein concentration and hepatic artery concentration) was added and is now used for OATP inhibition in the bilirubin sub-model
- The user is now able to input experimentally measured/user-defined fu_L (fraction unbound liver), in addition to allowing the static calculations to calculate the value of fu_L, if desired
 - Fractions unbound for other organs are now automatically calculated in static calculations (partition coefficients drive distribution)
- Further details discussed at the DILIsym® review session in July of 2016

Pathophysiologic Variability Represented in NAFLD (v5A_1) SimPops™

- SimPops[™] are population samples with variability in NAFLD pathophysiology
- Multiple parameters were varied to produce 275 diverse simulated patients with steatosis +/- lipotoxicity
- SimPops[™] compared with reported clinical data where available
- Variability in NAFLD pathophysiology responsible for varied DILI responses

Variables Used to Construct the NAFLD SimPops™

Body weight

Adipose FA release

De novo lipogenesis

RNS-ROS clearance

Mitochondria function

VLDL-TG secretion rates

Bile acid transporter expression

Plasma glucose

Hepatic glucose uptake

Plasma TG clearance

Apoptotic sensitivity to RNS-ROS

Necrotic sensitivity to ATP reductions

Hepatocyte regeneration

Clinical Data and Simulation Results

DILIsym[®] v5A Includes New SimCohorts[™] from the Human v4A_1 SimPops[™]

- SimCohorts[™] were generated for screening purposes
 - Smaller groups consisting of subsets of simulated individuals from existing SimPops[™]
 - Computationally less-expensive for testing multiple hypotheses prior to full SimPops[™]

SimCohorts™ ID	Population Sample Size	Description
Human_ROS_apop_mito_BA_v4A_1_SensBAMITO	4	Individuals with high sensitivity to combined bile acid transport inhibition and mitochondrial dysfunction
Human_ROS_apop_mito_BA_v4A_1_SensMulti	4	Sensitive individuals in the areas of oxidative stress, mitochondrial dysfunction, BA transport inhibition, and combined BA inhibition and mitochondrial dysfunction
Human_ROS_apop_mito_BA_v4A_1_Multi16	16	SimCohorts [™] with the baseline human and 13 individuals with high sensitivity and 2 individuals with low sensitivity in the areas of oxidative stress, mitochondrial dysfunction, BA transport inhibition, and combined BA inhibition and mitochondrial dysfunction
Human_ROS_apop_mito_BA_v4A_1_FIAU_15	15	Individuals with body weight approximately 80 kg and initial respiratory reserve scalar between 2.2 and 6.02

DILIsym[®] v5A Includes NAFLD SimCohorts[™] from the Newly Included v5A_1 NAFLD SimPops[™]

- SimCohorts[™] generated from new NAFLD SimPops[™]
 - Smaller groups consisting of subsets of individuals in the full (n=275) NAFLD SimPops[™] included in DILIsym[®] v5A

SimCohorts™ ID	Population Sample Size	Description
Human_NAFLD_ROS_apop_mito_BA_v5A_1_RS16, _RS36, _RS100, RS_138a, RS_137b	16, 36, 100, 138, 137	Random sample of individuals from full SimPops™
Human_NAFLD_ROS_apop_mito_BA_v5A_1_low_ALT	99	Individuals with baseline plasma ALT < 50 U/L
Human_NAFLD_ROS_apop_mito_BA_v5A_1_high_ALT	176	Individuals with baseline plasma ALT \geq 50 U/L
Human_NAFLD_ROS_apop_mito_BA_v5A_1_low_BMI	231	Individuals with BMI < 40
Human_NAFLD_ROS_apop_mito_BA_v5A_1_high_BMI	44	Individuals with BMI \geq 40
Human_NAFLD_ROS_apop_mito_BA_v5A_1_low_FPG	221	Individuals with fasting plasma glucose < 7 mM
Human_NAFLD_ROS_apop_mito_BA_v5A_1_high_FPG	54	Individuals with fasting plasma glucose 7 mM

More Complicated Mitochondrial Data is Reproducible with the DILIsym[®] Update

- Data from recent project demonstrates modest, saturable inhibition at low concentrations, with more marked effects at higher concentrations
 - May represent differential inhibition of multiple ETC complexes (e.g., complex I and II)

Sims (original equations)

In vitro data

- Original equations only reproduce a single nonsaturable effect
- New equations allow reproduction of both • behaviors – ETC inhibition 3

to effect leve

1.2

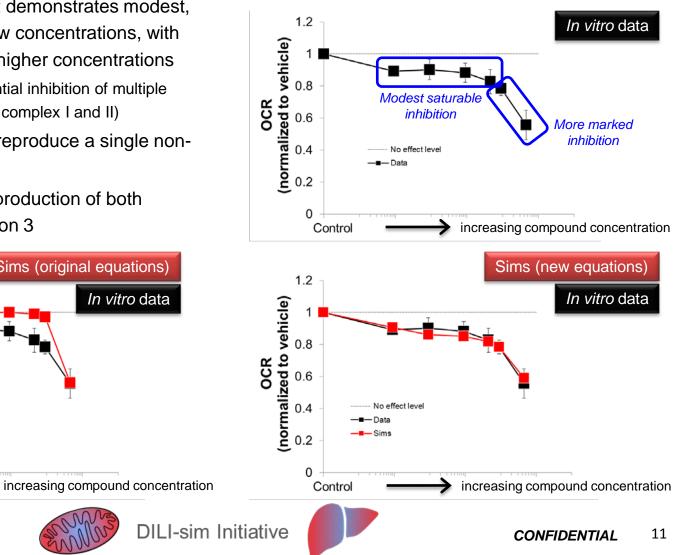
0.8

0.6

0.4

0.2

0


Preclinical Data and

Simulation Results

Control

normalized to vehicle)

OCR

