

DILIsymServices

ST A SIMULATIONS PLUS COMPANY

Please note: this presentation, including questions from the audience, is being recorded

DILIsym Review Session 27:

IVIVE in DILIsym Using GastroPlus/ADMET Predictor

November 8, 2018 Kyunghee Yang, Christina Battista

* DILIsym[®], NAFLDsym[®], and MITOsym[®] are registered trademarks and SimPops[™] and SimCohorts[™] are trademarks of DILIsym[®] Services Inc. for computer modeling software and for consulting services.

CONFIDENTIAL

DILIsym Review Session Agenda

- Introduction
- IVIVE in DILIsym using ADMET Predictor
- IVIVE in DILIsym using GastroPlus
- A case study: IVIVE using GastroPlus & DILIsym to predict liver safety of investigational drugs

2

DILIsym is a Quantitative Systems Toxicology Platform That Predicts *In Vivo* Liver Safety Using *In Vitro*/Preclinical Data

- What is IVIVE?
 - Represents "In Vitro-In Vivo Extrapolation"
 - Method of applying the results from *in vitro* experiments to predict *in vivo* outcomes
 - Reduces animal studies and improve predictivity of human outcomes
 - IVIVE can range from very simple, static equations, all the way to sophisticated dynamic models that combine PBPK and systems pharmacology/toxicology models
- IVIVE in DILIsym
 - PBPK sub-model predicts *in vivo* systemic/hepatic exposure of drugs/metabolites using *in vitro* data
 - Integrates predicted exposure and *in vitro* mechanistic toxicity data to predict *in vivo* liver safety of drugs/metabolites
 - Training videos available at <u>www.DILIsymHelp.com</u> to outline IVIVE process for toxicity data

Saying "I do" to the QSAR / PBPK / QST marriage... - C 0 - 101.079 Age years]: Permeability, Local & systemic Weight [[kg]: solubility vs. pH, Height [G • 3.1636exposure, drug Q = 101.079 V = 4486.87 Plasma Paramete pKa(s), Vnp: 0.0035 distribution, 0 = 25.731 Vphp: 0.00225 logD vs. pH, parent and Vwp: 0.945 Fup, metabolite Adipose 0 • 10.5247

Hct 0.45

Blood Cells Para

Vnbc: 0.0017

Vphbc: 0.0029

Vwbc: 0.603

Cap: 0.5

blood:plasma

ratio, tissue Kps,

CLint, **CLfilt**

Quantitative Structure Activity Relationships (QSAR)

ADMET Predictor^{**}

Physiologically-Based Pharmacokinetics (PBPK)

0 = 10.6772

0 = 3.94528 V = 324.285

C 0 = 17.4631

C 0.11

levels.

patient

variability

GastroPlus[®]

Quantitative Systems Pharmacology/Toxicology (QSP/QST)

S+ A SIMULATIONS PLUS COMPANY

4

DILIsym Utilizes Various Data Types to Inform Decisions

Exposure Data

PBPK Modeling

- Compound Properties
 - Tissue partition coefficients
- Tissue penetration studies
 - Liver to blood ratio
- Pharmacokinetic data
 - Absorption, extra-hepatic clearance, metabolites
- in vitro data
 - Metabolite synthesis, active uptake

In vitro Mechanistic DILI Data

Assays performed to determine <u>quantitative</u> <u>aspects of DILI mechanisms</u>

- Oxidative stress
 - Direct and reactive metabolite-mediated
- Mitochondrial toxicity
 - ETC inhibition
 - Uncoupling
- Bile acid transporter inhibition
 - BSEP, MRP3 and 4, NTCP
- Bilirubin transport/metabolism
 - OATP1B1, OATP1B3, UGT1A1, MRP2, MRP3

Modeling & Simulation

Simulations and Assays inform:

Prediction of DILI risk

DILIsym®

- Participating DILI mechanisms
- Characteristics of patients at risk for DILI
- Drug dosing paradigms
- DILI monitoring strategies

Clinical Data

- Dosing Protocols, fasting/fed state, meal times
- Anthropometric data
 - Body weight, age, ethnicity
- Pharmacokinetic data
 - Absorption, extra-hepatic clearance, metabolites

DILIsymServices

DILIsym Utilizes Various Data Types to Inform Decisions

Exposure Data

Metabolite synthesis, active uptake

In vitro Mechanistic DILI Data

Assays performed to determine <u>quantitative</u> <u>aspects of DILI mechanisms</u>

Oxidative stress

 ADMET Predictor, lite-mediate tochondrial toxicity
 EMembranePlus

Ewiempranepi

Uncoupling

- Bile acid transporter inhibition - BSEP, MRP3 and 4, NTCP
- Bilirubir ADMET Predictor
 - OATP1B1, OATP1B3, UGT1A1, MRP2, MRP3

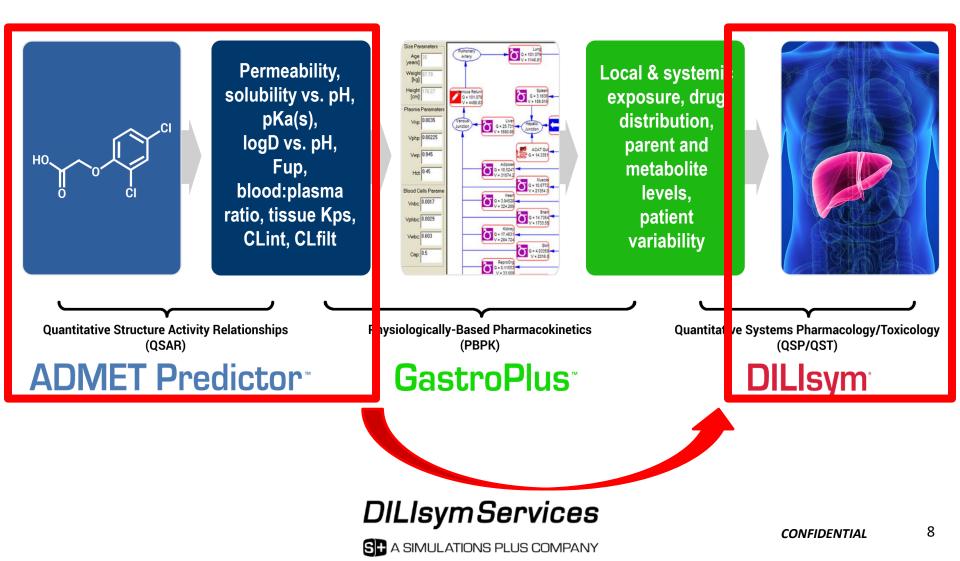
Simulations and Assays inform:

- Prediction of DILI risk
- Participating DILI mechanisms
- Characteristics of patients at risk for DILI
- Drug dosing paradigms
- DILI monitoring strategies

Clinical Data

- Dosing Protocols, fasting/fed state, meal times
- Anthropometric data
 - Body weight, age, ethnicity
- Pharmacokinetic data
 - Absorption, extra-hepatic clearance, metabolites

DILIsymServices


DILIsym Review Session Agenda

- Introduction
- IVIVE in DILIsym using ADMET Predictor
- IVIVE in DILIsym using GastroPlus
- A case study: IVIVE using GastroPlus & DILIsym to predict liver safety of an investigational drug

7

ADMET Predictor Can Predict Input Parameters for DILIsym PBPK Sub-Model From Structure

- Physicochemical properties
 - Acidic/basic pKa

Make sure to select relevant					
subgroup (e.g., Compound W, X, Y)					
DILIsym Parameter Customization					
Group	Subgroup				
Drug Compo	und W PBPK				
Variable	Value	Units			
Compound W molecular weight	1.0000e-03	3 a/mol	This paramet		
Compound W acid base switch		1 switch	This paramet		
Compound W pKa 1 or pKa base (for zwitter ion)	() dimensionless	This paramet		
Compound W pKa 2 or pKa acid (for zwitter ion)	() dimensionless	This paramet		
Compound W renal clearance	(0 mL/hour/kg^0.75	This paramet		
k(diss) - Compound W	12	2 1/hour	This paramet		
k(ge) - Compound W	12	2 1/hour	This paramet		
k(ab) - Compound W	ŧ	5 1/hour	This paramet		
Compound W absorption from gut Vmax	() 1/hour	This paramet		
Compound W absorption from gut Km	1.0000e+10) mg	This paramet		
Compound W rate of elimination in feces	() 1/hour	This paramet		
k(ab,IP dose) - Compound W	12	2 1/hour	This paramet		
k(IV) - Compound W	60) 1/hour	This paramet		
•	III				
Convert	Compare (mat)	Compare (xls)			
	compare (mar)				
Panel View	Save w/ Custom	Cancel Changes	Save		

DILIsymServices

SH A SIMULATIONS PLUS COMPANY

9

- Physicochemical properties
 - Acidic/basic pKa
- Absorption
 - Saturable and linear models

Group Sub	group	_
Drug Compound W	/ PBPK 🔻	
Variable	Value	Units
Compound W pKa 2 or pKa acid (for zwitter ion)	0 dimension	
Compound W renal clearance	0 mL/hour/k	
k(diss) - Compound W	12 1/hour	This par
k(ge) - Compound W	12 1/hour	This par
k(ab) - Compound W	5 1/hour	This par
Compound W absorption from gut Vmax	0 1/hour	This par
Compound W absorption from gut Km	1.0000e+10 mg	This par
Compound W rate of elimination in feces	0 1/hour	This par
k(ab,IP dose) - Compound W	12 1/hour	This par
k(IV) - Compound W	60 1/hour	This par
Compound W fraction unbound in enterocytes (for meta	1 dimensior	nless This par
Compound W gut efflux Vmax	0 ug/hour/k	g^0.75 This par
Compound W gut efflux Km	1.0000e+10 ug/mL	This par
•	111	
Convert	pare (mat) Co	ompare (xls)
Panel View Save	w/ Custom Car	ncel Changes

DILIsymServices

- Physicochemical properties
 - Acidic/basic pKa
- Absorption
 - Saturable and linear models
- Distribution
 - Linear and non-linear plasma protein binding
 - Blood to plasma partition coefficient
 - Permeability (if permeability-limited model is selected)
 - Tissue partition coefficients
 - Transporter-mediated uptake model for liver
 - Liver partition coefficient and volume of distribution for metabolites

Drug		group			
	Compound W	/ PBP	K 🔹		
	Variable	Va	alue	Units	
Compo	ound W blood to plasma		1 dim	ensionless	This param
Compo	ound W tissue distribution model		1 swit	ch	This paran
Compo	ound W gut to blood		1 dim	ensionless	This param
Compo	ound W liver to blood		1 dim	ensionless	This param
Compo	ound W active liver uptake Vmax		0 ug/ł	our/kg^0.75	This param
Compo	ound W active liver uptake Km	1.0)000e+10 ug/r	nL	This paran
Compo	ound W delay time constant (uptake induction)		0 1/hc	our	This param
Compo	ound W uptake induction Vmax		0 1/hc	our	This param
Compo	ound W uptake induction Km	1.0000e+10 ug/mL			This param
Compound W uptake induction Hill			0 dimensionless		
Compound W active liver basolateral efflux Vmax			0 ug/ł	iour/kg^0.75	This param
Compound W active liver basolateral efflux Km)000e+10 ug/r	nL	This param
Compound W switch for calculation of tissue passive CL			1 swit	ch	This param
Â	1.			1 I AN 75	T 1 ·
	Variable		Value	Units	
	Compound W liver passive clearance			1 mL/hr/kg^0.75	This
	Compound W apparent passive permeability		1.0000e-0)6 cm/sec	This
	Compound W liver electrogenic transport rate			0 ug/hr/kg^0.75/V	This
Compound W valence of ionic species				1 dimensionless	This
	Compound W muscle to blood			1 dimensionless	This
	Compound W other tissue to blood			1 dimensionless	This
	Compound W fraction unbound plasma			1 dimensionless	This
	Compound W fraction unbound correlation switch			0 dimensionless	This
	Compound W fu correlation 2nd-order coefficient			0 dimensionless	This
Compound W fu correlation 1st-order coefficient				0 dimensionless	This
Compound W fu correlation constant				0 dimensionless	This
0	Compound W fu liver switch			0 dimensionless	This
0	Compound W fu liver defined by the user			0 dimensionless	This
	4		4 0000		T 1 1

DILIsymServices

- Physicochemical properties
 - Acidic/basic pKa
- Absorption
 - Saturable and linear models
- Distribution
 - Linear and non-linear plasma protein binding
 - Blood to plasma partition coefficient
 - Permeability (if permeability-limited model is selected)
 - Tissue partition coefficients
 - Transporter-mediated uptake model for liver
 - Liver partition coefficient and volume of distribution for metabolites
- Metabolism
 - Michaelis-Menten kinetics from parent to stable metabolites in liver and gut
 - RM reactions with GSH and protein in liver

Metabolism parameters are in the "metabolite" subgroup					
DILIsym Parameter Customization					
Group	Subgroup				
Drug CompW	MetA PBPK				
Variable	Valu	e Units			
Compound W metabolite A renal clearance	corriony	0 mL/hour/kg^0.75	This pa		
Compound W motobolite A volume of distribution per w	reight	0 mL/kg			
Km(Compound W metabolite A)	1.000	0e+09 umol/L	This pa		
Vmax(Compound W metabolite A)		0 nmol/hour/kg^0.75	This pa		
Compound W delay time constant (metabolite A induc	tion)	0 1/hour			
Compound W metabolite A induction Vmax		0 1/hour			
Compound W metabolite A induction Km	1.000	00e+10 ug/mL	This pa		
Compound W metabolite A induction Hill		0 dimensionless	This pa		
CL to PP activity Compound W metabolite A		1 dimensionless	This pa		
ML to PP activity Compound W metabolite A		1 dimensionless	This pa		
PP to PP activity Compound W/ motabolite A	1 dimensionless	This pa			
Vmax for intestinal formation of Compound W metabol		0 nmol/hour/kg^0.75	This pa		
Km for intestinal formation of Compound W metabolite	A 1.000	00e+10 umol/L	This pa		
Convert	Compare (mat)	Compare (xls)			
Panel View S	Save w/ Custom	Cancel Changes	Sav		

DILIsymServices

- Physicochemical properties
 - Acidic/basic pKa
- Absorption
 - Saturable and linear models
- Distribution
 - Linear and non-linear plasma protein binding
 - Blood to plasma partition coefficient
 - Permeability (if permeability-limited model is selected)
 - Tissue partition coefficients
 - Transporter-mediated uptake model for liver
 - Liver partition coefficient and volume of distribution for metabolites
- Metabolism
 - Michaelis-Menten kinetics from parent to stable metabolites in liver and gut
 - RM reactions with GSH and protein in liver
- Excretion
 - Biliary excretion (K_m and V_{max}) and renal clearance of parent and main metabolites
 - Intestinal efflux
 - Clearance of protein adducts

Grou	р	Subg	group		
Drug	•	Compound W	PBPK -]	
	Variable		Value	Units	
Compound W biliary	excretion Vmax		0 u		This
Compound W biliary	excretion Km		1.0000e+10 u	ıg/mL	This
Compound W fraction			0 d	dimensionless	This
Compound W blood			1 d	dimensionless	This
Compound W tissue	•		1 s	switch	This
Compound W gut to			10	dimensionless	This
Compound W lives to				limonoionloco	This
	Variable		Value	Units	
	pKa 2 or pKa acid (for zw			dimensionless	This p
Compound W renal clearance			0	mL/hour/kg^0.75	This p
k(diss) - Compound W			12	1/hour	This p
k(ge) - Compound W			12	1/hour	This p
k(ab) - Compound W			5	1/hour	This p
Compound W absorption from gut Vmax			0	1/hour	This p
Compound W absorption from gut Km			1.0000e+10	mg	This p
Compound W rate of elimination in feces			-	1/hour	This p
k(ab,IP dose) - Compound W				1/hour	This p
k(IV) - Compo				1/hour	This p
	fraction unbound in entero	ocytes (for meta		dimensionless	This p
	gut efflux Vmax			ug/hour/kg^0.75	This p
Compound W	gut emux KM		1.0000e+10	ug/mL	This p
Conve	ert	Cor	mpare (mat)	Compare (xls)	
Panel V			/e w/ Custom	Cancel Changes	

DILIsymServices

ADMET Predictor Predicts ADME-Tox Properties from Structure

Subclute Actuate Addition Addition <tha< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th></tha<>															1
$ \frac{1}{1} + 1$	eet Controls 🛛 🔫 🕂 🗙		Structure	Identifier	*Risks*	*PCB*	ADMET_Risk ADMET_Cod	e S+Acidic_pKa	S+Mixed_pKa	S+Basic_pKa	DiffCoef	MlogP	<u>S+logP</u>	S+logD Ic	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ROWHGT PINCOL	1		69210-44-2	>	5	2.500 RotB; Peff; 2	9 10.86; 6.03	None	None	0.660	2.382	3.516	2.208	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2	ОН	52303-93-2	•		0.000	4.83	None	None	1.287	0.590	1.317	-1.060	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	roperty>	3		108586-70-5	•		0.000	6.63	None	0.07	0.689	1.457	2.433	1.595	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.00	4	HOCON	140947-39-3	\$		1.558 Peff; ti	2.51	None	None	0.804	1.020	2.404	-1.182	
6 Image: second sec		5	HOUTH	75919-69-6	•		0.000	10.50; 2.72	None	None	0.917	0.491	1.621	0.522	
7		6		74051-53-9	•		0.026 2C9	10.49; 4.74	None	-0.11	0.829	1.168	1.597	0.416	
		7	о=9-он	97404-11-0	•		0.272 Peff	9.37; 0.65	None	None	1.037	0.238	-0.596	-2.849	
		8		113849-22-2				; 10.24; 5.53	None	1.49	0.579	3.396	4.285	2.477	

DILIsymServices

ADMET Predictor Can Predict Input Parameters for DILIsym PBPK Sub-Model From Structure

Hum fup%

RBP

G+ Prediction

- Physicochemical properties
 - Acidic/basic pKa
 S_Acidic/Mixed/Basic_pKa
- Absorption
 - Saturable and linear models
- Distribution
 - Linear and non-linear plasma protein binding
 - Blood to plasma partition coefficient

 - Tissue partition coefficients
 - Transporter-mediated uptake model for liver
 - Liver partition coefficient and volume of distribution for metabolites <=
- Metabolism
 - Michaelis-Menten kinetics from parent to stable metabolites in liver and gut
 - RM reactions with GSH and protein in liver
- Excretion
 - Biliary excretion (K_m and V_{max}) and renal clearance of parent and main ADMET Predictor may metabolites
 be used to predict
 - Intestinal efflux
 - Clearance of protein adducts

DILIsymServices

G+ Prediction

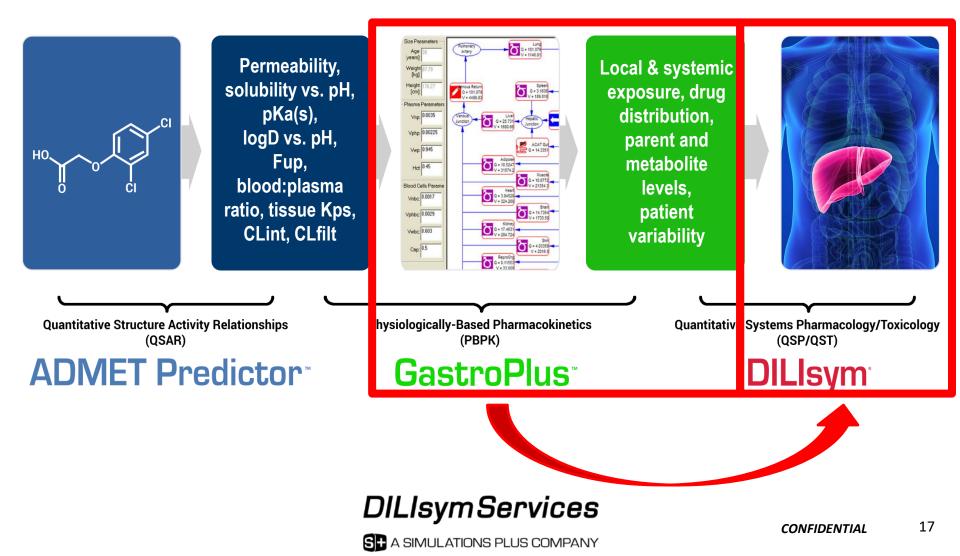
ST A SIMULATIONS PLUS COMPANY

15

CYP1A2/2C9/2C19/2D6/3A4

Km/Vmax CYP HLM CLint

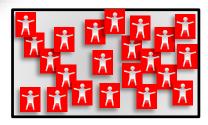
DILISym toxicity inputs


in the future

DILIsym Review Session Agenda

- Introduction
- IVIVE in DILIsym using ADMET Predictor
- IVIVE in DILIsym using GastroPlus
- A case study: IVIVE using GastroPlus & DILIsym to predict liver safety of an investigational drug

Exposure Profiles Generated From GastroPlus Can Be Directly Used in DILIsym



GastroPlus 9.6 Allows for Efficient Use of GastroPlus PBPK Models in Combination with DILIsym SimPops

- GastroPlus users build PBPK models within GastroPlus
- The "DILIsym" simulation mode in v9.6 allows users to select a mapping of GastroPlus outputs to DILIsym PK inputs
- All DILIsym SimPops and SimCohorts are embedded within GastroPlus so user can select option of their choice
- Exported DILIsym Specified Data Excel template is seamlessly compatible with DILIsym and contain PK outputs for <u>the right number of</u> <u>body-weight matched</u> rats, dogs, mice or humans
- This makes the manual creation of a Specified Data template unnecessary

DILIsym[®] SimPops

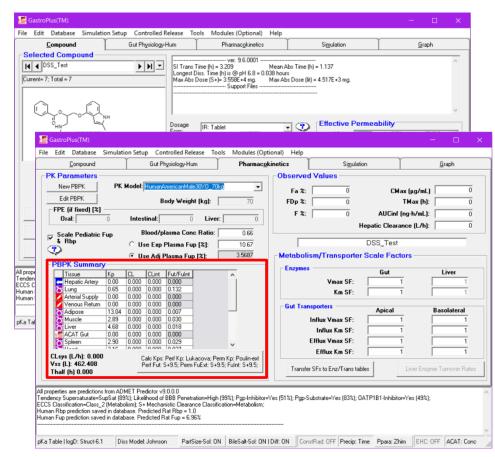
ADMET Predictor Can Predict Many Inputs in GastroPlus Drug Database

- With the ADMET Predictor Module, a user can automatically create a new GastroPlus drug database that contains estimates for:
 - pKa(s)
 - Human effective permeability
 - Diffusion coefficient in water
 - Human (or rat) plasma protein binding
 - Human volume of distribution
 - Human (or rat) blood:plasma concentration ratio
 - CYP metabolism kinetics
 - Log D vs. pH profile
 - Aqueous/biorelevant solubility vs. pH profile

Compound Name Use Predicted Physico-Chemical Properties Formulation Parameters Mwt (g/mol) Use Predicted Dose (mg) Use Predicted Pharmacokinetics & Physiology Dw (cm ² /s x 10 ² 5) Use Predicted Dose (mg) Use Predicted Pharmacokinetics & Physiology Mwt (g/mol) Use Predicted Dose (mg) Use Predicted Pharmacokinetics & Physiology Aq Sol (mg/mL) Use Predicted Part Radus (um) Use Predicted Pharmacokinetics & Physiology Pharmacokinetics & Physiology FasSiF (mg/mL) Use Predicted Part Radus (um) Use Predicted Pharmacokinetics & Physiology Pharmacokinetics & Physiology FasSiF (mg/mL) Use Predicted Particle SD (um) Use Predicted Pharmacokinetics & Physiology Pumare Physiological - Fasted Pup (3) Use Predicted Pup (3) Use Predi	8				
Select experimental properties predicted by ADME TPredictor. GastroPlus had detected possible inputs for data that are not bency predicted by ADME TPredictor and already made a selection. The inputs that were selected by GastroPlus are marked in red. Please check if three are not bency predicted values, corresponding pH values with the filed with predictions as well. Notes: If value in selected column is missing for outside allowed range) for some compounds pH values with the filed with predicted or default value. If values for solubility or log2 are registed values, corresponding pH values with the filed with predictions as well. Notes: Physico-Chemical Properties Dev (cm ² /2 s x 10°3) Use Predicted with a filed with gredicted or default value. If values for log3 Use Predicted or pH for log0 Use Predicted or pH for log0 Use Predicted or period with a set (um) Use Predicted or period with use Predicted or period with a set (um) Use Predicted or period with a set (um) Use Predicted or period with use Predicted or period with a set (um) Use Predicted or period with with the effected or period with the effected or period with the effected or period with the effected or period with with the effected or peri	properties for	formulation conditions	compounds, along with the fu,p and B:P		
Select experimental properties to be loaded into database instead (or in addition) of properties predicted by ADME TPredictor. BastroPlus had detected possible inputs if these are ordered and nee additional corrections if deteid. If value in selected column is missing (or outside allowed range) for some compounds it, it will be automatically filled in with predicted or default value. If values for solubility or log0 are replayed with predicted values, corresponding pH values with the filled with predicted or default value. If values for solubility or log0 are replayed with predicted values, corresponding pH values with the filled with predicted or default value. If values for solubility or log0 are replayed with predicted values, corresponding pH values with the filled with predicted or default value. If values for solubility or log0 are replayed with predicted values, corresponding pH values with the filled with predicted values, corresponding pH values with the filled with predicted values, corresponding pH values with the filled with predicted values, corresponding pH values with the filled with predicted values, corresponding pH values with the filled with predicted values, corresponding pH values with the filled with predicted values, corresponding pH values with the filled with predicted values, corresponding pH values with the filled with predicted values, corresponding pH values with the Predicted value, for with					
for data that are not being predicted by ADMETPredictor and already made a selection. The inputs that were selected by GastroPlus are marked in red. Please check if these are concections if desired. Notes: If value is selected column is insisting (or outside allowed range) for some compounds, it will be automatically filed in with predicted or default value. If values for with predicted values, corresponding pH values will be filed with predictions as well. Intenderoy Supersaturate Intenderoy Supersaturate If value is selected column is insisting (or outside allowed range) for some compounds, it will be automatically filed in with predicted or default value. If values for with predicted values, corresponding pH values will be filed with predictions as well. Intenderoy Supersaturate Intenderoy Supersaturate Physico-Chemical Properties Formulation Parameters Pharmacokinetics & Physiology Intenderoy Supersaturate Intenderoy Supersaturate Dose (mg) Use Predicted Dose (mg) Use Predicted Intus Intus Date (m/2/s x 10°5) Use Predicted Dose (mg) Use Predicted Intus Particle Bins Use Predicted Particle Bins Intus Intus Intus Particle Bins Use Predicted Particle Bins Intus Intus Intus Intus Particle Bins Use Predicted Particle Bins Intus I	🧱 Import Structure Properties		- 🗆 X		
Mwt (g/mol) Use Predicted V Dw (cm*2/s x 10*5) Use Predicted V logD Use Predicted V logD Use Predicted V logD Use Predicted V pH for logD Use Predicted V pH for Ag Sol Use Predicted V pH for Ag Sol Use Predicted V Patticle SD (um) Use Predicted V FaSSIF (mg/mL) Use Predicted V Solubility Factor Use Predicted V Peff (cm/s x 10*4) Use Predicted V Molecular Radius (A) Use Predicted V Peff Source	for data that are not being predicted by ADMETPredict if these are correct and make additional corrections if d If value in selected column is missing (or outside allowe solubility or logD are replaced with predicted values, co	or and already made a selection. The inputs that were se esired. d range) for some compoun Is, it will be automatically fille irresponding pH values will be filled with predictions as w	elected by GastroPlus are marked in red. Please check ad in with predicted or default value. If values for vell.		
Dw (cm ² /2/s x 10 ² /5) Use Predicted v logD Use Predicted v logD Use Predicted v pH for logD Use Predicted v Aq Sol (mg/mL) Use Predicted v Particle SD (um) Use Predicted v Particle SD (um) Use Predicted v PassEF (mg/mL) Use Predicted v Passe Predicted v Fa (%) Use Predicted v Value Use Predicted v Fb (%) Use Predicted v Wass Predicted (%) Fb (%) Use Predicted v Peff (cm/s x 10 ² 4) Use Predicted v Peff (cm/s x 10 ² 4) Use Predicted v Molecular Pascellular Permeability	Physico-Chemical Properties ——	Formulation Parameters	Pharmacokinetics & Physiology		
Dw (cm ² /s x 10 ² /s) Use Predicted v logD Use Predicted v logD Use Predicted v pH for logD Use Predicted v Aq Sol (mg/mL) Use Predicted v Paticle SD (um) Use Predicted v FaSSIF (mg/mL) Use Predicted v Fa(%) Use Predicted v Fb(%) Use Predi	Mwt (g/mol) Use Predicted	Dosage Form IB: Tablet	PK Model Compartmental		
log0 Use Predicted Intusion Time (h) (defaulb 1 hr Intusion Time (h) (defaulb 1 hr Intusion Time (h) Fup (%) Use Predicted Intusion Time (h) (defaulb 1 hr Intusion Time (h) Intusion Time (h) (defaulb 1 hr Intusion Time (h) Intusion Time (h) (defaulb 1 hr Intusion Time (h) Intusion Time (h) (defaulb 1 hr Intusion Time (h) Intusion Time (h) (defaulb 1 hr Intusion Time (h) Intusion Time (h) (defaulb 1 hr Intusion Time (h) (defaulb 1 hr Intusion Time (h) (defaulb 1 hr Intusion Time (h) Intusion Time (h) (defaulb 1 hr Intusion			,		
pH for logD Use Predicted Image: Comparison of the predicted Aq Sol (mg/mL) Use Predicted Image: Comparison of the predic					
Aq Sol (mg/mL) Use Predicted Implies P		,	Fup (%) Use Predicted		
pH for Aq Sol Use Predicted y FaSSGF (mg/mL) Use Predicted y Particle SD (um) Use Predicted y Particle SD (um) Use Predicted y Particle SD (um) Use Predicted y Particle SD (um) Use Predicted y Perficited y Perficited y Interf Tens (J/m^2) Use Predicted Solubility Factor Use Predicted y Perficited Peff (cm/s x 10^4) Use Predicted Y Perficited Y Molecular Radius (A) Use Predicted y Molecular Radius (A) Use Predicted Y Turn ON Paracellular Permeability Pcomea (cm/s) Use Predicted Peff Source Use Predicted Y Molecular Radius (A) Use Predicted Y Pcomea (cm/s) Use Predicted <			Rbp Use Predicted Vc (L/kg) Use Predicted		
pH for Aq Sol Use Predicted v FaSSGF (mg/mL) Use Predicted v FaSSIF (mg/mL) Use Predicted v FaSSIF (mg/mL) Use Predicted v Interf Tens (J/m ²) Use Predicted v Solubility Factor Use Predicted v Fb (2) Use Predicted v Molecular Radius (A) Use Predicted v AUC (ng-h/mL) Use Predicted v AUC (ng-h/mL) Use Predicted v AUC (ng-h/mL) Use Predicted v Foraw and Display Draw and Hide D > Not Draw	,	Part Radius (um) Use Predicted			
FaSSGF (mg/mL) Use Predicted Image: Current control of the contro	pH for Aq Sol Use Predicted	Particle SD (um) Use Predicted			
FaSSIF (mg/mL) Use Predicted Image: Sister (mg/mL)	FaSSGF (mg/mL) Use Predicted	Particle Bins Use Predicted -			
FeSSIF (mg/mL) Use Predicted Interf Tens (J/m ² 2) Use Predicted Image: Solubility Factor Image: Solubility Factor Use Predicted Image: Solubility Factor Image: Solubility Factor Image: Solubility Factor Use Predicted Image: Solubility Factor	FaSSIF (mg/mL) Use Predicted	,			
Interf Tens (J/m ²) Use Predicted Image: Fa (%) Image: Fa (%) Use Predicted Image: Fa (%) Image:	,	Observed Properties	Value Units Enzyme		
Solubility Factor Use Predicted Image: Solubility Factor	,	Fa (%) Use Predicted	Vmax Use Predicted (3A4-HLM, others-rCYP) 💌 nmol/min/nmol CYP 🚽 Use Predicted 🛫		
Peff (cm/s x 10 ² 4) Use Predicted Image: CL_NONE Image: CL_NONE Peff Source Use Predicted Image: CL_NONE Image: CL_NONE Peff Source Use Predicted Image: CL_NONE Image: CL_NONE Molecular Radius (A) Use Predicted Image: CL_NONE Image: CL_NONE Image: CL_NONE Image: CL_NONE Image: CL_NOE Image: CL_NOE Image: CL_NOE Image: CL_NOE Image: CL_NOE Image: CL_NOE </td <td>,</td> <td>,</td> <td>Km Use Predicted (3A4-HLM, others+rCYP) 🗨 umol/L</td>	,	,	Km Use Predicted (3A4-HLM, others+rCYP) 🗨 umol/L		
Peff Source Use Predicted Imax (ug/mL) Use Predicted Imax (ug/mL) Imax (ug/mL) <t< td=""><td>,</td><td>,</td><td>CL NONE ML/min/nmol CYP</td></t<>	,	,	CL NONE ML/min/nmol CYP		
Molecular Radius (A) Use Predicted Imax (h) Use Predicted Imax (h) Use Predicted Imax (h)		,			
AUC (ng-h/mL) Use Predicted AUC (ng-h/mL) Use Predicted C Draw and Display C Draw and Hide C Do Not Draw OK Cance			In vitro Fu (%) Input is UNBOUND		
Pcornea (cm/s) Use Predicted	Molecular Hadius (A) Use Predicted	, , , , , , , , , , , , , , , , , , , ,			
	Turn ON Paracellular Permeability	AUC (ng-h/mL) Use Predicted	Structure		
	Pcornea (cm/s) Use Predicted		Oraw and Display C Draw and Hide C D Not Draw OK OK Cancel		
logHLC (atm-m^3/mol) Use Predicted	logHLC (atm-m^3/mol) Use Predicted	Set 'No Batch Updates' for these records			
	,				
			Y		

Define how clearance will be estimated for compounds. Include renal clearance? Use Vmax and Km for CYP enzymes of Clint?

Slide adapted from Simulations Plus GastroPlus training


SH A SIMULATIONS PLUS COMPANY

DILlsym

20

User Can Refine Inputs or Use Pure Prediction to Determine Partition Coefficients

- Using the import structure with the ADMET Predictor Module will autopopulate many of the input parameters
 - If user has any further measurements for physiochemical properties (pKa, B:P, fu,p, etc), they can adjust them manually
 - No adjustments are necessary for an initial simulation
- Switching to the PK tab and selecting the PBPK model, the user can predict tissue partition coefficients
 - Number of different models available to calculate; Lukacova is generally the most trusted

GastroPlus Includes Ability to Export Excel File to be Directly Read into DILIsym

- Simulation can be run to generate ٠ necessary concentrations to be used in DILIsym
 - Selecting DILIsym allows users to choose the corresponding SimPops or SimCohorts within DILIsym GUI
- User can select which compound scaffold to use
 - Metabolites can also be specified
- Generates Excel file with relevant . concentrations:
 - Blood concentration
 - Zonal liver concentration
 - Zonal sinusoidal blood concentration
 - Gut blood concentration

SÐA	SIMULATIONS PLUS COMPANY
-----	--------------------------

GastroPlus(TM):	Valsartan.mdb (C:\Us	ers\cbatt\Desktop\EPA T.	.\Examples\Gastr\Valsa\)		– 🗆 X
File Edit Databas	e Simulation Setup	Controlled Release To	ools Modules (Optional) He	p	
Compoun	d	Gut Physiology-Hum	Pharmacokinetics	Simulation	<u>G</u> raph
Simulation Mo Single Sim Batch Sim	de C Population C DILIsym	n Simulator C PSA	DSS_Test		
Stop	,	Start		A	
Single Simula	tion Input				
	🖉 DILlsym Sin	nPops Simulation	Colon		- 🗆 X
Single Simul	Population	I			
	Select Popul	ation (SimPops)		Health Status	
	Human_ROS_	apop_mito_BA_v4A_1		✓ Healthy	•
	Select Cohor	t (SimCohorts)		Population / Eth	nicity
	Human_ROS_	apop_mito_BA_v4A_1	_Multi16	 American 	•
AU A	Sample Size: Includes the b individuals an	aseline human and 15 d 2 individuals with low	5 individuals from the Huma v sensitivity in the areas of	n_ROS_apop_mito_BA_v4/ oxidative stress, mitochondri and mitochondrial dysfunction	al dysfunction, bile acid
Tendency Supersatu ECCS Classification=(Human Rbp predictio	Use Selecte	d Individuals 🗌			
Human Fup prediction	Input Individ	ual Indexes:			
pKa Table logD: Stri	1:16				
	Results				
	Select DILI	sym Input Templat	e Assign Compou	inds	
	C Comp Y		Parent	DSS_Test	-
	C Comp X		Met A	NONE	_
	Comp W	1	Met B	NONE	•

RM1 Adduct

RM2 Adduct

NONE

NONE

<u>0</u>K

Cancel

Compound Can Be Set Up Quickly and Easily within DILIsym

- User only needs to specify data (Excel generated by GastroPlus) and input a few additional drug parameters for toxicity predictions in DILIsym:
 - Molecular weight
 - Toxicity mechanism parameters (see Training Videos at <u>www.DILlsymHelp.com</u>)

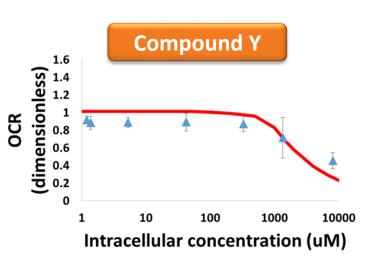
DILIsym v7A				- 0	×
e Results View Help					
🗏 🚔 🚔 🚔 🔵 💡	2				
SimSingle Setup				6	
New SimSingle	DSS_Test				
Load SimSingle					
nput Parameters					
Species	Parameters_Spec	cies_Human_v7A	\sim	Customize	
Drug	Parameters_Drug	_DSS_Test	\sim	Customized	
				Mechanism	
Caloric Intake	Parameters_Calo	ries_Human_v7A	~	Customize	
Comp W Dosing	Parameters_Com	pWDosing_Blank_v7/	۹ ~	Customize	
Comp X Dosing	Parameters_Com	pXDosing_Blank_v7A	~	Customize	
Comp Y Dosing	Parameters_Com	pYDosing_Blank_v7A	~	Customize	
Time	Parameters_Time	_Blank_v7A	~	Customize	
Solver	Parameters_Solve	er_Default_v7A	~	Customize	
Input Panel	Panel_Blank		~	Viewer	
Simulate	Specify Data	Clinical Monitoring	Param Sweep	Data Compariso	n
Run in Parallel	SimPops	Create SimCohorts	Optimization		
Plot	Table	Export	Save Results	SimSingle	

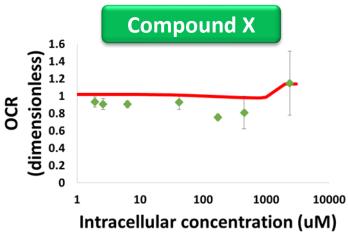
DILIsym Review Session Agenda

- Introduction
- IVIVE in DILIsym using ADMET Predictor
- IVIVE in DILIsym using GastroPlus
- A case study: IVIVE using GastroPlus & DILIsym to predict liver safety of an investigational drug

Example Project Goal – Assess Compound X and Compound Y

- The primary goal of this simulation work within the DILIsym software was to:
 - quantitatively and mechanistically assess the liver toxicity potential of Compound X and Compound Y combining clinical and mechanistic *in vitro* data with DILIsym and GastroPlus software simulations of previous or prospective clinical dosing paradigms.



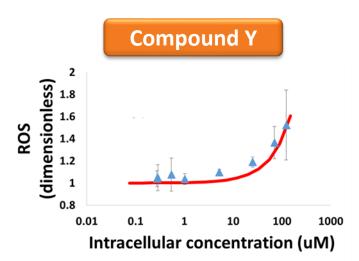

Mitochondrial Toxicity Parameters Determined for Compound Y and Compound X

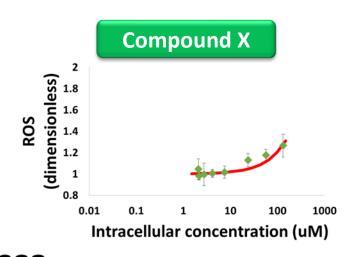
- Parameter values were fit to mitochondrial data for Compound Y and Compound X
 - Electron transport chain inhibition for Compound Y
 - Both electron transport chain inhibition and uncoupling for Compound X
 - 24 hour data used
- MITOsym and DILIsym used to parameterize both compounds

DILIsym Parameter	Compound Y Value	Compound X Value	Units
Coefficient for ETC inhibition 1	38,000	Not used	μΜ
Coefficient for ETC Inhibition 3	0.1	4,200	μΜ
Max inhibitory effect for ETC inhibition 3	0.2	0.4 (max effect)	dimensionless
Uncoupler 1 effect Km	No effect	15,000	μΜ
Uncoupler 1 effect Vmax	No effect	22	dimensionless
Uncoupler 1 effect Hill	No effect	4	dimensionless

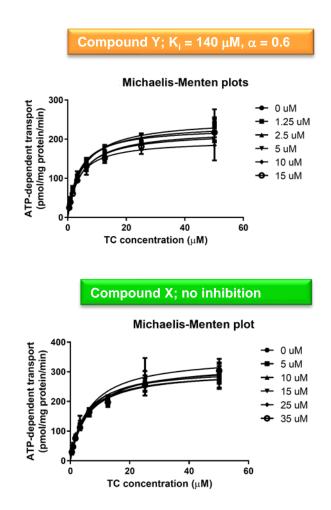


Preclinical Data and Simulation Results


DILIsymServices


Oxidative Stress Parameters Determined for Compound Y and Compound X

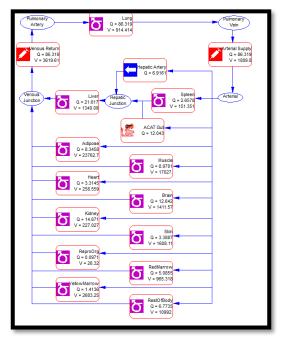
- Parameter values were fit to 24-hour ROS data for Compound Y and Compound X
- DILIsym representation of *in vitro* environment used to parameterize both compounds
- Saturable model explored but did not lead to better fit



Compound Y Weakly Inhibits BSEP; Compound X Does Not

- Compound Y is a weak but noncompetitive/uncompetitive inhibitor of BSEP
- Compound X does not inhibit BSEP
 - No changes to V_{max} or K_m of transporters observed over course of assay

DILlsymServices


DILISym Toxicity Parameters for Compound Y and X

Mechanism	Parameter	Unit	DILIsym Para	meter Value*
Mechanism	Farameter	Omt	Compound Y	Compound X
	Coefficient for ETC inhibition 1	μΜ	38,000	Not used
	Coefficient for ETC Inhibition 3	μΜ	0.1	4,200
Mitochondrial	Max inhibitory effect for ETC inhibition 3	dimensionless	0.2	0.4
Dysfunction	Uncoupler 1 effect Km	μΜ	No effect	15,000
	Uncoupler 1 effect Vmax	dimensionless	No effect	22
	Uncoupler 1 effect Hill	dimensionless	No effect	4
Oxidative Stress	RNS/ROS production rate constant 1	mL/nmol/hr	3.4 x 10 ⁻⁴	1.7 x 10 ⁻⁴
	BSEP inhibition constant	μΜ	140	No inhibition
Bile Acid	BSEP inhibition alpha value	dimensionless	0.6	No inhibition
Transporter Inhibition	NTCP inhibition constant	μΜ	No inhibition	No inhibition
	MRP4 inhibition constant	μΜ	40	75

*Values shown in the table for DILIsym input parameters should not be interpreted in isolation with respect to clinical implications, but rather, should be combined with exposure in DILIsym to produce simulations that have predictive and insightful value **DILISYM Services**

GastroPlus PBPK Model Used to Predict Liver Exposure of Compound Y and Compound X

- Data on Compound Y and Compound X pharmacokinetics not available in the literature
 - No plasma time courses available; no *in vitro* or animal studies available either
 - Data on T_{max} , Compound Y $f_{u,plasma}$ available
 - In vitro data on liver distribution available from intracellular data collected for this project
- Structure of each compound available online
 - QSAR modeling using ADMET Predictor and GastroPlus provided the best possible estimate of Compound Y and Compound X distribution and pharmacokinetics

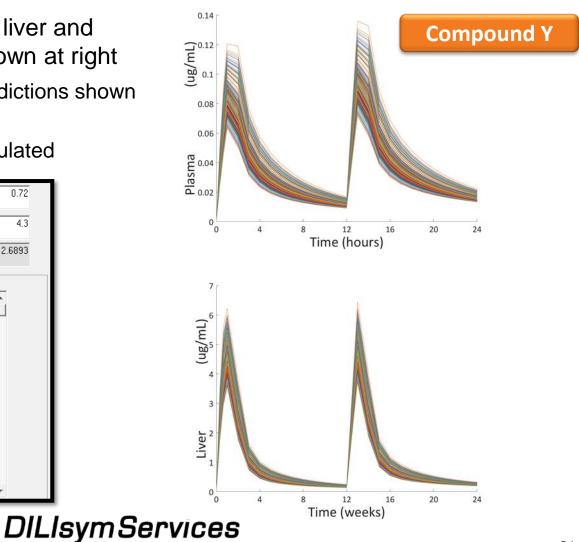
- Plasma time course was estimated in GastroPlus and translated into DILIsym using "specified data" option
 - Liver:plasma partition coefficient was calculated from the cell:media ratio in the *in vitro* data and used as input into GastroPlus; the remainder of the parameters were calculated by ADMET Predictor

LlsymServices

A SIMULATIONS PLUS COMPANY

• Both compounds distribute significantly into the liver

Compound X

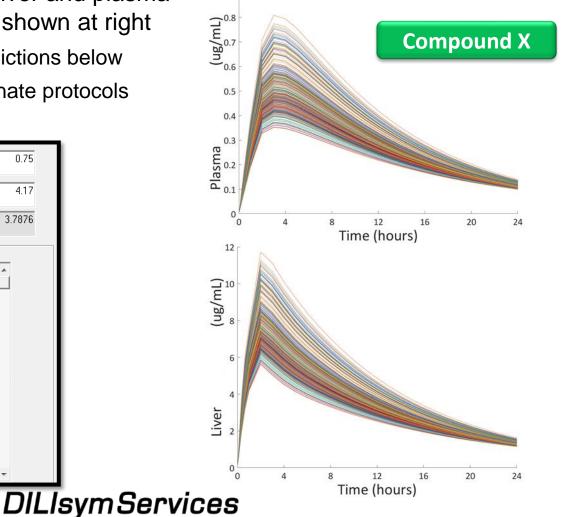

Compound Y

- Compound Y average cell:media was 18; Compound X average cell:media was 9

Compound Y PBPK Representation Calculated at Clinical Dose

- GastroPlus predictions for liver and plasma at clinical dose shown at right
 - PBPK model specific predictions shown below
 - Dose escalation was simulated

- Scale Pedi		Blood	/plasr	na Conc	Ratio: 0.72
Fup & Rbp	ે દ ભ દ	ੇ Use Exp Plasma Fup [%]: © Use Adj Plasma Fup [%]:			
PBPK Sum	mary —				
Tissue	Кр	CL	CLint	Fut/FuInt	*
🗲 Hepatic Arter	y 0.00	0.000	0.000	0.000	
🖰 Lung	0.51	0.000	0.000	0.053	
🛛 🗾 Arterial Suppl	y 0.00	0.000	0.000	0.000	
🛛 🗾 Venous Retu		0.000	0.000	0.000	
T Adipose	5.33	0.000	0.000	0.005	
🖰 Muscle	1.66	0.000	0.000	0.016	
Tiver	18.30	0.000	0.000	0.001	
1 📶 ACAT Gut	0.00	0.000	0.000	0.000	
🖰 Spleen	1.69	0.000	0.000	0.016	
Teart 🔁	1.89	0.000	0.000	0.014	
🖰 Brain	4.24	0.000	0.000	0.006	
🛅 Kidney	1.69	0.318	0.000	0.016	
🛅 Skin	2.17	0.000	0.000	0.012	
TeproOrg	1.70	0.000	0.000	0.016	
🛅 RedMarrow	4.70	0.000	0.000	0.006	
TellowMarrov	v 5.33	0.000	0.000	0.005	
RestOfBody	1.71	0.000	0.000	0.016	


Simulation Results

Compound X PBPK Representation Calculated at Clinical Dose

0.9

- GastroPlus predictions for liver and plasma at clinical dose for 25 days shown at right
 - PBPK model specific predictions below
 - Dose escalation and alternate protocols were also simulated

Scale Pediatri Fup & Rbp		Blood/plasma Conc Ratio: ic			0.75		
		් Use Exp Plasma Fup [%]: ල Use Adj Plasma Fup [%]:					4.17
PBI	PK Summa			.,. ia.		[].	J
Ē	Tissue	Кр	CL	CLint	Fut/FuInt		*
	Hepatic Artery	0.00	0.000	0.000	0.000		
ы	Lung	0.30	0.000	0.000	0.125		
1	Arterial Supply	0.00	0.000	0.000	0.000		
	Venous Return	0.00	0.000	0.000	0.000		
6	Adipose	1.11	0.000	0.000	0.034		
ы	Muscle	0.48	0.000	0.000	0.079		
ы	Liver	9.34	0.000	0.000	0.004		
150	ACAT Gut	0.00	0.000	0.000	0.000		
Ы	Spleen	0.51	0.000	0.000	0.074		
ы	Heart	0.60	0.000	0.000	0.063		
Ы	Brain	1.10	0.000	0.000	0.034		
ы	Kidney	0.53	0.309	0.000	0.071		
Ы	5kin -	0.75	0.000	0.000	0.050		
Ы	ReproOrg	0.54	0.000	0.000	0.070		
ы	RedMarrow	1.28	0.000	0.000	0.030		
ð.	YellowMarrow	1.11	0.000	0.000	0.034		
Ы	RestOfBody	0.53	0.000	0.000	0.071		
							-

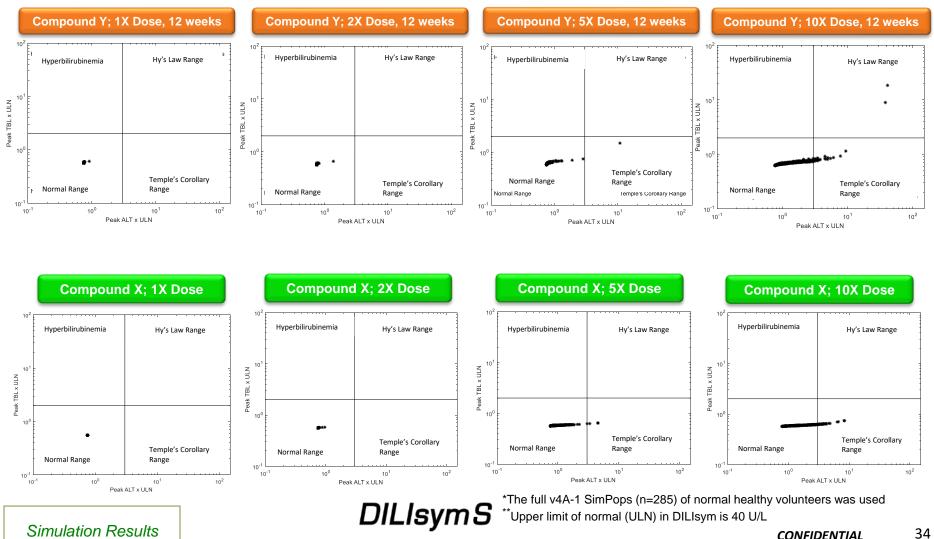
Simulation Results

SimPops Results Show Compound X and Compound Y to be Safe at Clinical Doses; ALT Elevations Occur at Higher Doses for Both Compounds

Compound Y

Compound X

- Neither Compound Y nor Compound X are predicted to cause toxicity at the highest clinical dose
 - Some exposure variability included in these predictions due to GastroPlus population generation
- Both Compound Y and Compound X are predicted to cause mild ALT elevations at supratherapeutic doses
 - No bilirubin elevations or Hy's Law cases occurred in simulations with Compound X
 - 2 Hy's Law cases occurred at 10x clinical dose simulations with Compound Y


	Compound	Dosing Protocol	Simulated* ALT > 3X ULN**
Compound X		1X Dose, 12 weeks	0% (0/285)
	Commonwed V	2X Dose, 12 weeks	0% (0/285)
	Compound Y	5X Dose, 12 weeks	0.3% (1/285)
		10X Dose, 12 weeks	10.2% (29/285)
Compour		1X Dose, 15 days	0% (0/285)
	Compound V	2X Dose, 15 days	0% (0/285)
	Compound X	5X Dose, 15 days	1.1% (3/285)
		10X Dose, 15 days	11.6% (33/285)
-			

*The full v4A-1 SimPops (n=285) of normal healthy volunteers was used **Upper limit of normal (ULN) in DILIsym is 40 U/L

SimPops Results Show Lack of Severe Liver Injury for Both Compound Y and Compound X at Clinical Doses

Focus on Hy's Law Side of eDISH Plot – Comparison of Competitors and Compound X at Clinical Doses (285 Simulated Individuals in All Cases)

0.5X Dose	1X Dose	1X Dose, Regimen 1	1X Dose, Regimen 2	1X Dose, Regimen 3	
Hy's Law Range	Hy's Law Range	Hy's Law Range	Hy's Law Range	Hy's Law Range	1X Dose Hy's Law Range
ł.					
-	*				
Temple's Corollary Range	Temple's Corollary Range	Temple's Corollary Range	** Temple's Corollary Range	✤ Temple's Corollary Range	Temple's Corollary Range
· · · · · · · · · · · · · · · · · · ·					
Compe	etitor A		Competitor B		Compound X

Simulation Results

DILIsymServices

Focus on Hy's Law Side of eDISH Plot – Comparison of Competitor and Compound Y at Predicted Clinical Doses (285 Simulated Individuals in All Cases)

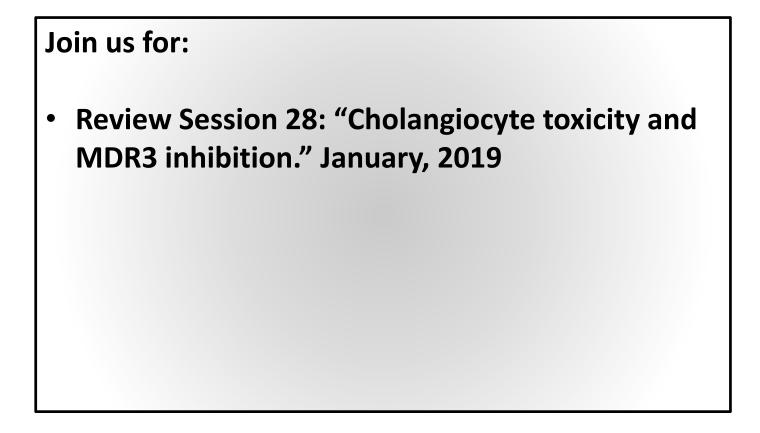
1X Dose	1X Dose	
Hy's Law Range	Hy's Law Range	Clinical trial results
Temple's Corollary Range	Temple's Corollary Range	recently confirmed Compound Y
Competitor C	Compound Y	Predictions

Simulation Results

DILIsymServices

Example Project Summary

- GastroPlus[™] software, along with *in vitro* data, was used to construct PBPK representations to predict liver exposures for both compounds
- DILIsym parameters were successfully calculated from *in vitro* data for both compounds
- SimPops results show Compound X and Compound Y to be safe at projected clinical doses
- ALT elevations predicted within DILIsym at higher doses for both compounds
- SimPops results suggest that neither compound is likely to cause severe liver injury
- Phase IIb / III clinical trial results have subsequently confirmed the predictions for Compound Y



Summary

- DILIsym can utilize the capabilities of ADMET Predictor and GastroPlus to move its place further ahead in the drug development pipeline
 - Can predict exposure in humans at early discovery/development stage
- ADMET Predictor uses QSAR to predict physiochemical and ADME properties which can be input into GastroPlus to predict tissue partition coefficients
- GastroPlus PBPK models easily compatible with DILIsym SimPops and SimCohorts
 - Applies to all species: human, rat, mouse, dog

