

DILIsymServices

ST A SIMULATIONS PLUS COMPANY

Please note: this presentation, including questions from the audience, is being recorded

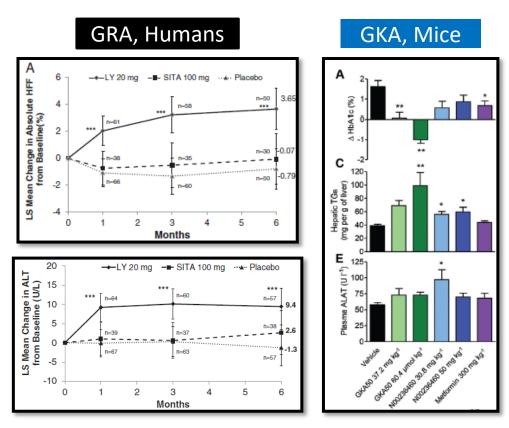
DILIsym Review Session 24:

Lipotoxicity in DILlsym

July 19, 2018 Scott Q Siler

* DILIsym[®], NAFLDsym[®], and MITOsym[®] are registered trademarks and SimPops[™] and SimCohorts[™] are trademarks of DILIsym[®] Services Inc. for computer modeling software and for consulting services.

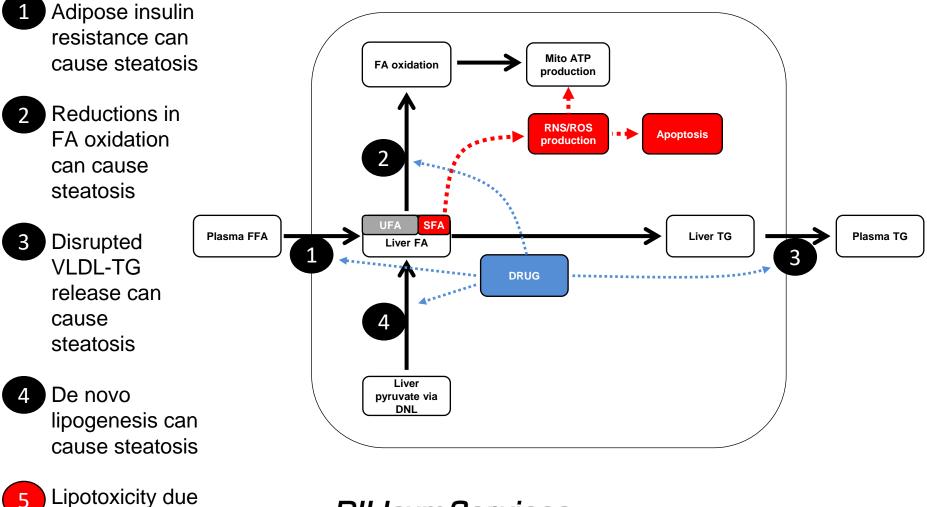
CONFIDENTIAL


DILIsym Review Session Agenda

- Brief lipotoxicity overview
- Representation of lipotoxicity in DILIsym
- Adjusting DILIsym parameters to simulate lipotoxicity
- Predicted toxicity risk of elevated DNL due to lipotoxicity

Lipotoxicity Suspected to Be Responsible for Liver Signals for Several Compounds

- VLDL-TG release inhibitors
 - Juxtapid
 - Kynamro
- Glucagon receptor antagonists (GRA)
 - LY2409021
- Glucokinase activators (GKA)
 - GKA50
 - Piragliatin
- Fatty acid oxidation inhibitors
 - Etomoxir


Guzman 2017

De Ceuninck 2013

Clinical and Preclinical Data

DILlsymServices

Steatosis and Lipotoxicity Can Result From Drug-Induced Dysregulation of Lipid Partitioning in Liver

DILIsymServices

to SFA

SH A SIMULATIONS PLUS COMPANY

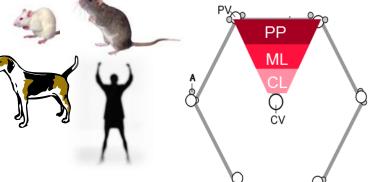
ROS Increases with Exposure to Increasing Amounts of Saturated Fatty Acids

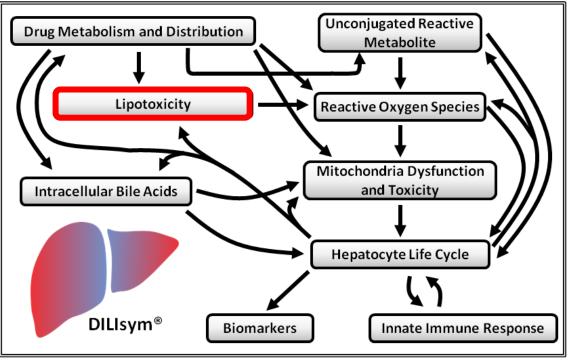
SH A SIMULATIONS PLUS COMPANY

- Aggregated results from multiple experiments show that ROS levels are increased in cells cultured with increasing amounts of palmitate
 - Palmitate is most abundant saturated fatty acid (SFA)
 - Gray box indicates normal range of hepatocyte palmitate concentration
 - Results from HepG2, H4IIEC3, primary HC
 - Exposure times from 6-24 h
 - Range of ROS increase for a given level of palmitate

Preclinical Data

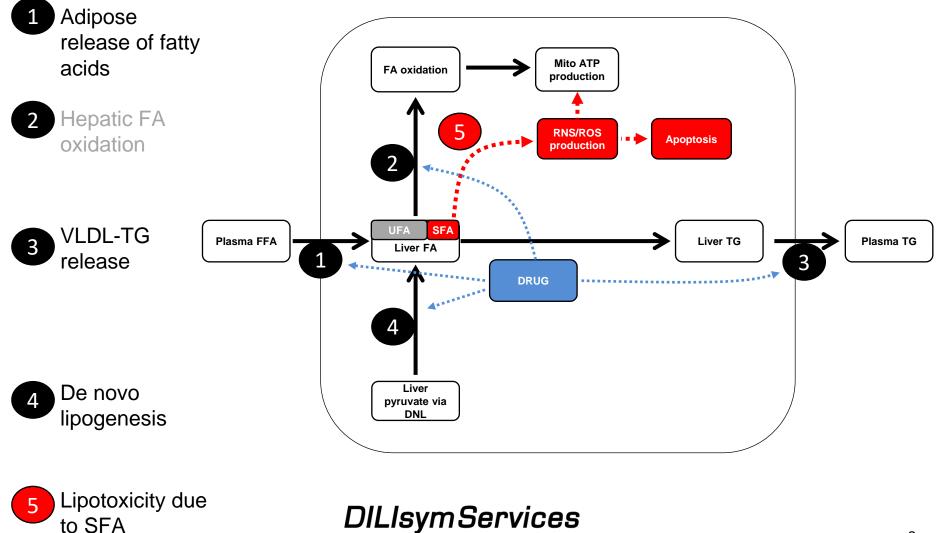
DILIsym Review Session Agenda


- Brief lipotoxicity overview
- Representation of lipotoxicity in DILIsym
- Adjusting DILIsym parameters to simulate lipotoxicity
- Predicted toxicity risk of elevated DNL due to lipotoxicity

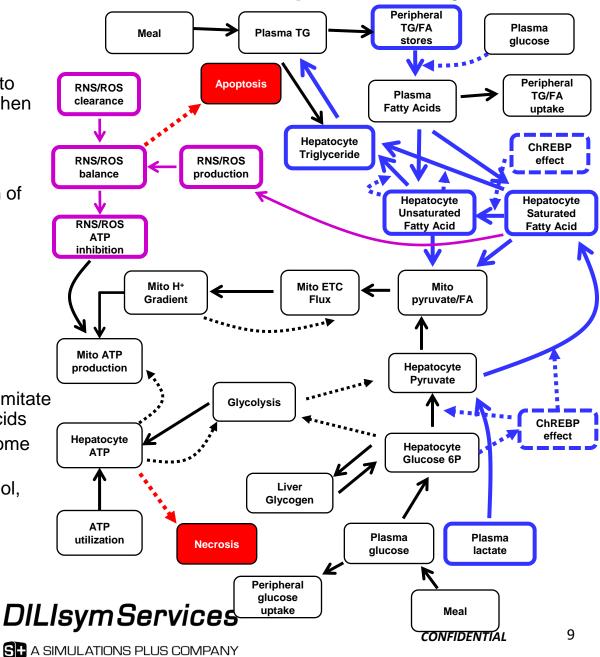


Multiple species: human, rat, mouse, and dog

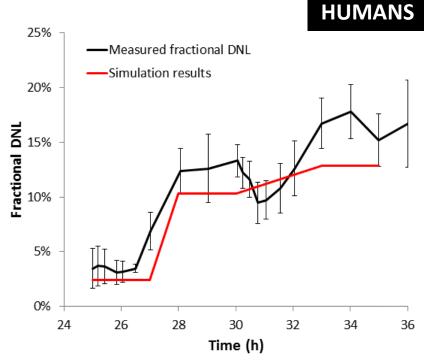
- Population variability
- The three primary acinar zones of liver represented
- Essential cellular processes represented to multiple scales in interacting sub-models
 - Pharmacokinetics
 - Dosing (IP, IV, Oral)
 - Transporter Inhibition
 - Drug metabolism
 - GSH depletion
 - Injury progression
 - Mitochondrial dysfunction, toxicity, DNA depletion
 - Bile acid mediated toxicity
 - Steatosis and lipotoxicity
 - Cellular energy balance
 - Hepatocyte apoptosis and necrosis, and proliferation
 - Macrophage, LSEC life cycles
 - Immune mediators
 - Caloric intake
 - Biomarkers


Lipotoxicity Mechanism Is an, Included in DILIsym

DILIsymServices


Lipid Dynamics and Lipotoxicity Representation in DILIsym Based on Clinical Data

SH A SIMULATIONS PLUS COMPANY

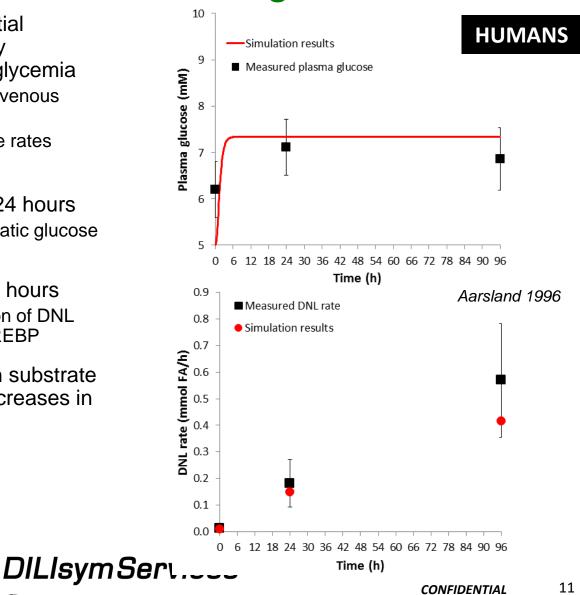

Mitochondria Sub-Model: Lipotoxicity

- De novo lipogenesis (DNL)
 - Plasma lactate provides mass to support DNL in fasting state (when there is zero glucose uptake)
 - Pyruvate from glucose uptake supports DNL in fed state
 - ChREBP increases expression of enzymes for DNL, glycolysis, desaturation
- Adipose FA release
 - Dependent upon fat mass
- Liver VLDL-TG release
 - Dependent upon liver TG
- Liver FA include SFA and UFA
 - Primary output from DNL is palmitate and stearate, saturated fatty acids
 - Desaturation also generates some oleate and palmitoleate
 - SFA represents ~45% of FA pool, although there is variability
- SFA increases ROS production
 - Increases in SFA can disturb mitochondria function

Good Agreement between Measured and Simulated Fasting and Post-Prandial DNL

- Timlin 2005 reported post-prandial increases in fractional DNL in healthy volunteers
 - Quantitatively significant fate for glucose taken up by liver after meals in normal feeding conditions
 - Fractional DNL = fraction of fatty acids in VLDL that have been newly synthesized
 - Used isotopic tracers to estimate rates
- Relatively low fractional DNL in overnight fasted state under normal conditions
 - Somewhat higher in patients with type 2 diabetes, NAFLD, and hypertriglyceridemia
- Plasticity of DNL pathway in response to feeding conditions and pharmaceutical intervention
 - Can substantially increase DNL
 - Potentially affect pathophysiology and/or hepatotoxicity

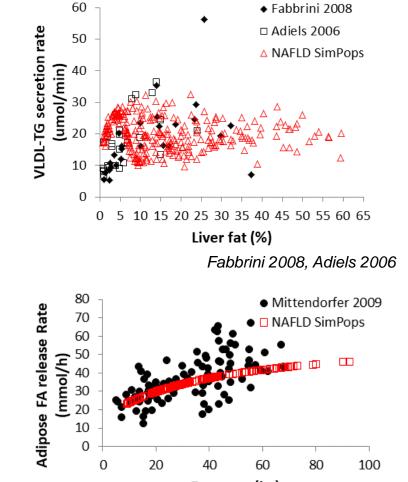
Timlin 2005


Clinical Data and Simulation Results

DILlsymServices

DILIsym Consistent with DNL Rates from Extreme Overfeeding Studies

SH A SIMULATIONS PLUS COMPANY


- Aarsland 1996 reported substantial increases in DNL rates in healthy volunteers with sustained hyperglycemia
 - High carbohydrate meals + intravenous glucose
 - Used isotopic tracers to estimate rates
 - Extremely lipogenic conditions
- DNL increased markedly within 24 hours
 - Represents incorporation of hepatic glucose uptake into DNL pathway
- Additional DNL increase after 24 hours
 - Represents increased expression of DNL and glycolysis enzymes via ChREBP
- DILIsym simulations include both substrate and enzyme induction-related increases in DNL

Clinical Data and Simulation Results

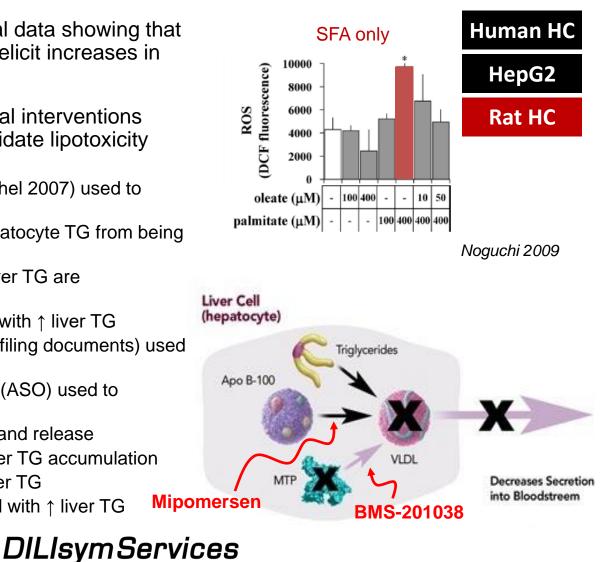
NAFLD SimPops Include A Range of VLDL-TG and Adipose FA Release Rates Consistent with Clinical Data

- Simulated patients have wide range of VLDL-TG release that is consistent with clinical data
 - Generally greater VLDL-TG release rates with higher degrees of steatosis
- Adipose fatty acid release rates dependent upon fat mass in clinical and simulated patients
 - Consistent with Mittendorfer 2009 clinical data

Fat mass (kg)

Mittendorfer 2009

Clinical Data and Simulation Results



CONFIDENTIAL 12

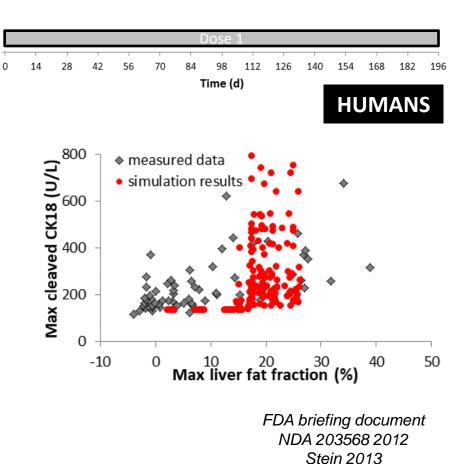
Approach for Modeling Lipotoxicity within DILIsym

SH A SIMULATIONS PLUS COMPANY


- Utilized hepatocyte experimental data showing that saturated fatty acids (SFA) can elicit increases in reactive oxygen species (ROS)
- Clinical data from pharmaceutical interventions used to further optimize and validate lipotoxicity sub-model
 - BMS-201038 clinical data (Cuchel 2007) used to optimize SFA-ROS relationship
 - MTP inhibitor restricts hepatocyte TG from being packaged into VLDL
 - ↓ VLDL synthesis and ↑ liver TG are consequence
 - \uparrow ALT reported coincident with \uparrow liver TG
 - Mipomersen clinical data (FDA filing documents) used as validation
 - Antisense oligonucleotide (ASO) used to ↓apoB100 synthesis
 - Restricts VLDL assembly and release
 - \downarrow VLDL synthesis and \downarrow liver TG accumulation
 - ↑ ALT coincident with ↑ liver TG
 - ↑ cleaved CK18 correlated with ↑ liver TG

Preclinical Data

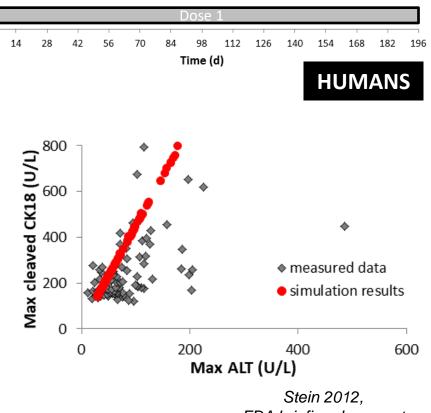
Juxtapid MTP Inhibitor Established **Quantitative Lipotoxicity Relationship**


- Juxtapid is a microsomal transfer protein (MTP) inhibitor that is available to treat homozygous familial hypercholesterolemia
 - Safety concerns highlighted by key trial with dose escalation protocol; doses were increased every 4 weeks: n=6 patients
- Liver TG increased in all patients, substantially in some
 - Due to inability to package and secrete VLDL
- ALT increased coincident with liver TG
 - Indicative of lipotoxicity
- Simulation results consistent with measured data
 - Three simulations performed to capture range of liver TG accumulation
 - Accompanying ALT increases within range observed for n=6 FH patients
 - Lipotoxicity due to increases in SFA and resultant changes in ROS
 - By design—optimization phase
 - SFA-ROS quantitative relationship decreased relative to summarized *in vitro* data

Clinical Data and Simulation Results

Kynamro-Induced Increases In Apoptosis Included in DILIsym

- Kynamro (Mipomersen) is an apoB100 ASO that is available to treat homozygous familial hypercholesterolemia (Stein 2013)
 - Safety concerns raised from clinical trial data
 - Example trial: consistent dosing over 26 weeks
- High fraction of patients had increased liver TG
 - Median increase was 5%--clinical steatosis
 - Liver TG increased in >60% of patients
- Cleaved CK18 reported to increase
 - Indicative of lipotoxicity-induced apoptosis
 - Correlation between steatosis and cleaved CK18
 - ALT increases also observed in a number of patients
- Simulation results consistent with measured data
 - Multiple simulations performed to capture range of liver TG accumulation with small (n=36)
 - SimCohorts used to capture variability in ROSinduced apoptosis
 - Simulated cleaved CK18 increases within range observed for FH patients
 - Lipotoxicity due to increased ROS via increased SFA

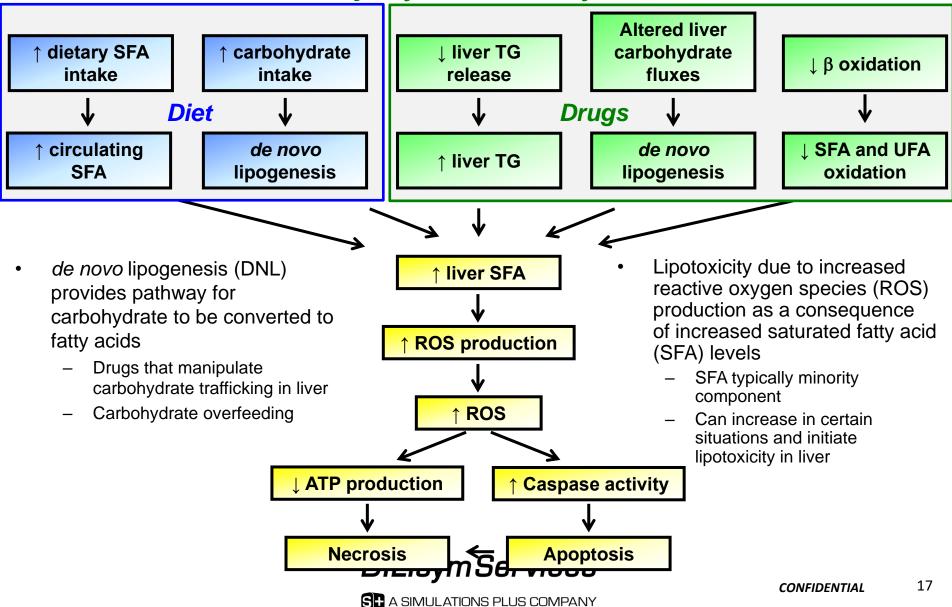


Clinical Data and Simulation Results

DILlsymServices

Kynamro-Induced Increases In ALT Included in DILIsym

- Kynamro (Mipomersen) is an apoB100 ASO that is available to treat homozygous familial hypercholesterolemia (Stein 2013)
 - Safety concerns raised from clinical trial data
 - Example trial: consistent dosing over 26 weeks
- High fraction of patients had increased liver TG
 - Median increase was 5%--clinical steatosis
 - Liver TG increased in >60% of patients
- Cleaved CK18 reported to increase
 - Indicative of lipotoxicity-induced apoptosis
 - Correlation between steatosis and cleaved CK18
 - ALT increases also observed in a number of patients
- Simulation results consistent with measured data
 - Multiple simulations performed to capture range of liver TG accumulation with small (n=36)
 - SimCohorts used to capture variability in ROS-induced apoptosis
 - Simulated ALT and cleaved CK18 increases within range observed for FH patients
 - Lipotoxicity due to increased ROS via increased SFA
 - These simulation results help to optimize apoptosis, and secondary necrosis representation within DILIsym

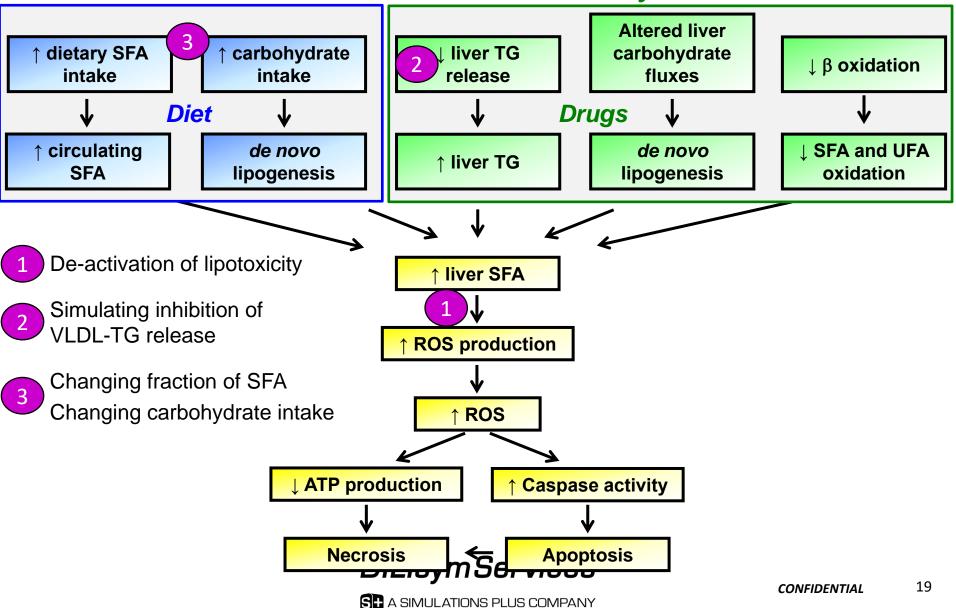


Stein 2012, FDA briefing document NDA 203568 2012

Clinical Data and Simulation Results

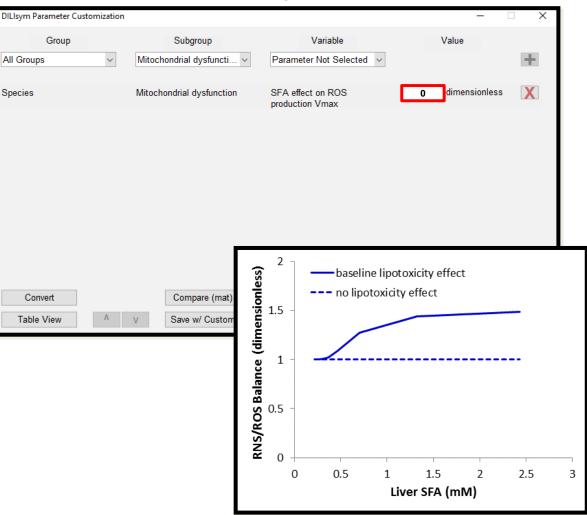
DILlsymServices

How Lipid Accumulation Is Connected to Injury in DILIsym



DILIsym Review Session Agenda

- Brief lipotoxicity overview
- Representation of lipotoxicity in DILIsym
- Adjusting DILIsym parameters to simulate lipotoxicity
- Predicted toxicity risk of elevated DNL due to lipotoxicity



Modifying Lipotoxicity Parameters in DILIsym

Parameters to Use to Ensure Lipotoxicity Is Activated in DILIsym

- Lipotoxicity is active with default human parameters in DILIsym
 - May want to perform simulations in absence of effect
 - Not active in dog, rat, mouse
- SFA effect on ROS production
 Vmax = 0 to deactivate
 lipotoxicity effect
 - Located in 'Species Parameters'
 - Located in 'mitochondrial dysfunction' parameter sub-set
 - Baseline value for humans is 0.0138
 - Set to 0 for dog, rat, mouse

DILIsymServices

Simulating the Inhibition of VLDL-TG Release with DILIsym

Drug

Drug

Drug

Drug

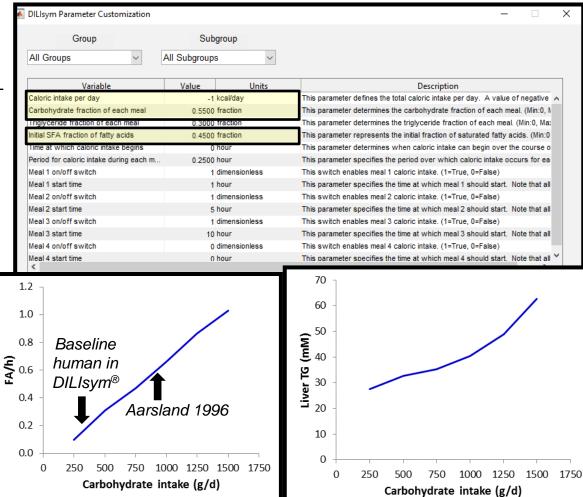
Drug


Drug

Drug

Drug

- Can simulated reductions in VLDL-TG release with DILlsym
 - The details of the pharmacology are not represented
 - Magnitude of reduction can be set at specific time points
- Multiple parameters allow for simulating VLDL-TG inhibition
 - Located in 'Drug Parameters'
 - Located in 'mechanistic interventions' parameter sub-set
 - Switch to enable VLDL inhibition = 1
 - Magnitude of VLDL release inhibition = 1- inhibition
 - Start time for VLDL release inhibition = start time
 - Duration of VLDL release inhibition = period of inhibition
 - Can simulate 4 inhibition levels during a single simulation
- Data Comparison experiment provides use example
 - Cuchel 2007 TG mid
 - Cuchel 2007


Clinical Data and Simulation Results

DILIsymServices

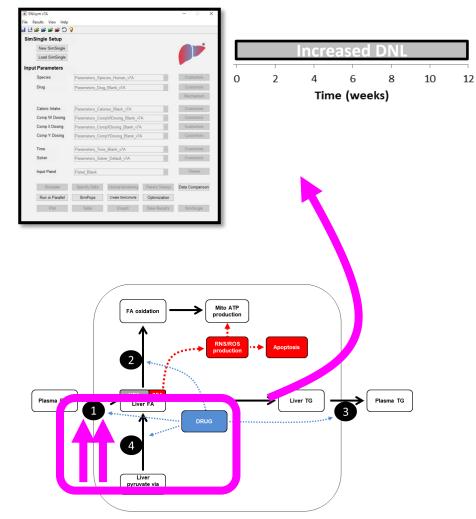
Simulating Dietary Changes Relevant to Lipotoxicity in DILIsym

- Changes to diet can impact accumulation of liver lipids and subsequent lipotoxicity in DILIsym
 - Carbohydrate intake can increase DNL
 - SFA intake can alter sensitivity to lipotoxicity
 - DNL only active in humans in v4A
- Use 'Caloric Intake' parameter set to adjust dietary intake
 - 'Caloric intake per day' to adjust total calories
 - 'Carbohydrate fraction of each meal' to adjust the fraction of carbohydrate
 - 'Initial SFA fraction of fatty acids' to adjust the fraction of SFA
- DNL is dependent upon carbohydrate intake
 - Can cause significant increases in liver TG

DILIsymServices

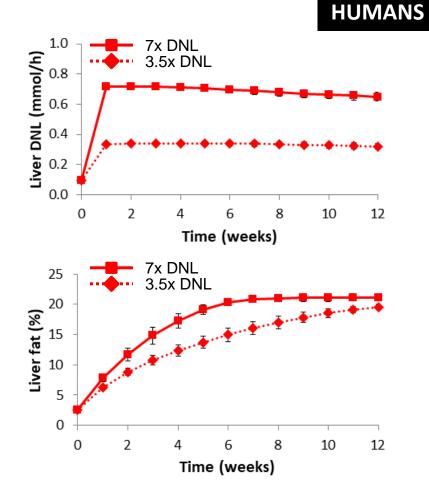
iver DNL24 h Average (mmol-

Simulation Results


DILIsym Review Session Agenda

- Brief lipotoxicity overview
- Representation of lipotoxicity in DILIsym
- Adjusting DILIsym parameters to simulate lipotoxicity
- Predicted toxicity risk of elevated DNL due to lipotoxicity

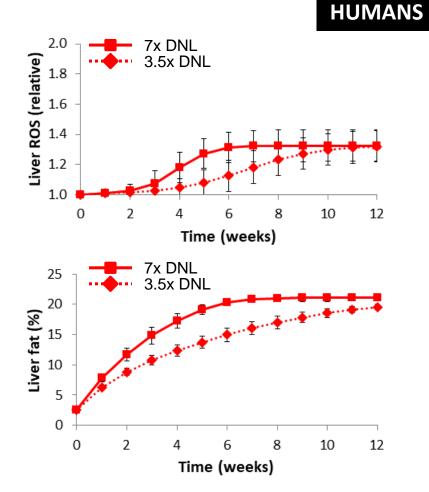
Predicting the Impact of DNL on Liver Lipids and Lipotoxicity with DILIsym


- Performed simulations with DILIsym to predict the hepatotoxic risk due to *de novo* lipogenesis (DNL)
 - Potential risk for some drugs developed to treat metabolic diseases
- Simulated 7x or 3.5x increase in DNL over 12 weeks
 - 7x is apparent maximal DNL rate
 - DNL stimulus provided by continuous overfeeding
 - Comparable to alterations in carbohydrate fluxes with some metabolic disease compounds
 - Maintained plasma FFA at basal values
 - N=36 SimCohorts
 (Human_ROS_apop_mito_BA_v4A_1_RS36)

DILIsymServices

Substantial Increases in DNL Predicted to Elicit Increases in Liver Fat

- Simulated 7x or 3.5x Increase in DNL for 12 weeks
 - N=36 SimCohorts
- Substantial predicted increases in liver fat
 - All simulated patients were predicted to develop steatosis with increased DNL
 - Delayed presentation with lower DNL stimulus
- Liver triglyceride levels regulated by inputs from both DNL and uptake of plasma FFA
 - No change in FFA in these simulations

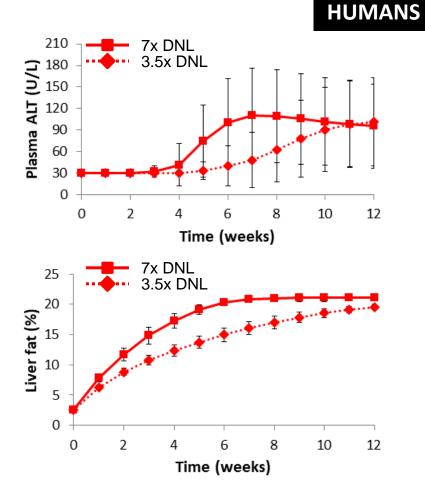


Simulation Results

DILISYMSERVICES SE A SIMULATIONS PLUS COMPANY

Increased Liver Fat due to DNL Stimulus Drives Liver ROS Production

- Simulated 7x or 3.5x Increase in DNL for 12 weeks
 - N=36 SimCohorts
- Substantial predicted increases in liver fat
 - All simulated patients were predicted to develop steatosis with increased DNL
 - Delayed presentation with lower DNL stimulus
- Oxidative stress developed in all simulated patients
 - Lipotoxicity
 - Increased liver saturated fatty acids (not shown) motivated ROS production
 - Delayed presentation with lower DNL stimulus

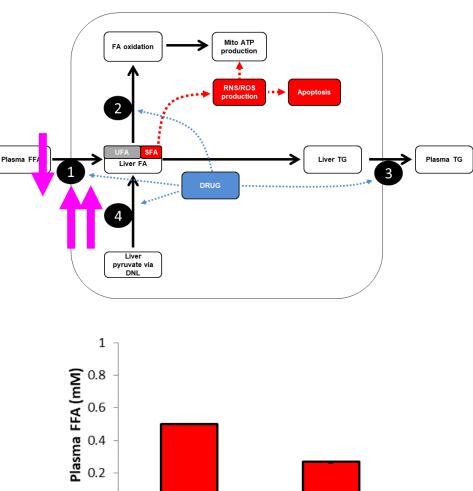


Simulation Results

DILlsymServices

Predicted ALT Increases Due To Increased DNL, Liver Fat, and Lipotoxicity

- Simulated 7x or 3.5x Increase in DNL for 12 weeks
 - N=36 SimCohorts
- Substantial predicted increases in liver fat
 - All simulated patients were predicted to develop steatosis with increased DNL
 - Delayed presentation with lower DNL stimulus
- Plasma ALT predicted to increase in all simulated patients
 - Due to liver lipotoxicity
 - Variability due to diversity in response to liver ROS within SimCohorts
 - Delayed presentation with lower DNL stimulus



DILIsymServices

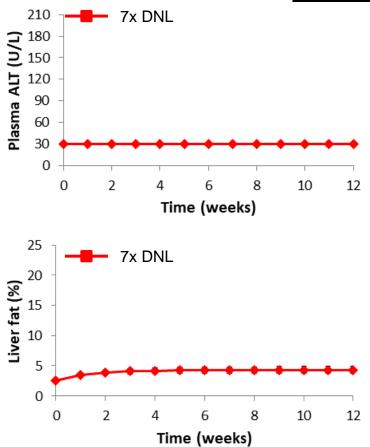
Predicting the Impact of DNL on Liver Lipids and Lipotoxicity with DILIsym

- Performed simulations with DILIsym to predict the hepatotoxic risk due to *de novo* lipogenesis (DNL)
 - Potential risk for some drugs developed to treat metabolic diseases
- Simulated 7x increase in DNL over 12 weeks
 - Apparent maximal DNL rate
 - DNL stimulus provided by continuous overfeeding
 - Comparable to alterations in carbohydrate fluxes with some metabolic disease compounds
 - Plasma FFA reduced
 - Comparable to post-prandial reductions
 - N=36 SimCohorts
 (Human_ROS_apop_mito_BA_v4A_1_RS36)

pre-treatment

0

post-treatment


Simulation Results

SH A SIMULATIONS PLUS COMPANY

DILIsymServices

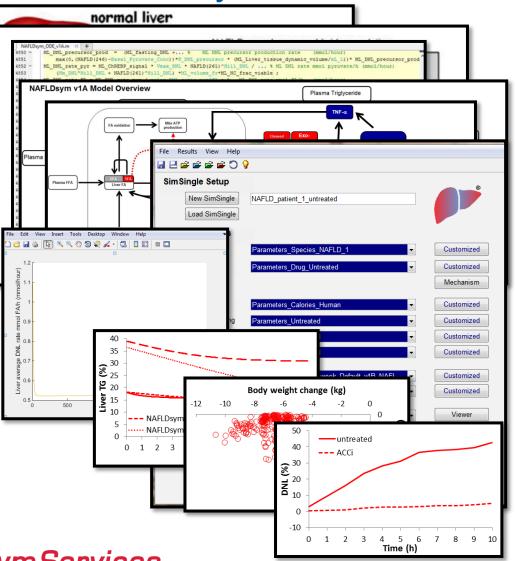
Minimal Increases in Liver Fat and No Lipotoxicity Predicted When FFA Reduced Along with Increased DNL

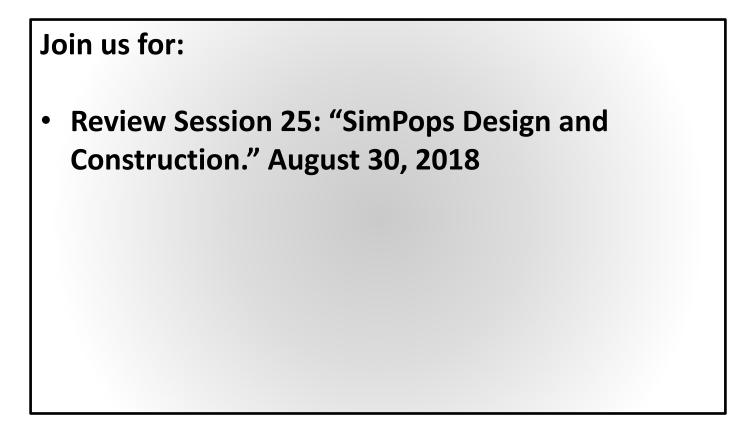
- Simulated 7x Increase in DNL for 12 weeks
 - Also reduced plasma FFA 50%
 - N=36 SimCohorts
- Minimal predicted increases in liver fat
 - All simulated patients were predicted to develop steatosis
- Liver triglyceride levels regulated by inputs from both DNL and uptake of plasma FFA
 - Reductions in plasma FFA largely offset increased input from DNL
 - Interpatient variability in impact of DNL vs.
 FFA in metabolic disease patients
- No increases in plasma ALT predicted
 - Liver lipid levels not elevated enough to elicit liver lipotoxicity

Simulation Results

DILlsymServices

Summary


- DILIsym includes representation of lipotoxicity, enabling prediction of hepatotoxic risk for compounds that alter carbohydrate or lipid metabolic fluxes
- Predicted lipotoxicity due to increased DNL depends on associated changes in plasma FFA


NAFLDsym Is Designed to Support Drug Development with Efficacy Predictions

- NAFLD incidence is growing worldwide with few treatment options
 - Substantial opportunity to improve health for many patients by developing treatments
- NAFLDsym is a QSP model of NAFLD and NASH
 - v1A focuses on key pathways that contribute to steatosis and lipotoxicity; currently in use
 - Currently developing v2A, which will include inflammation and fibrosis sub-models; available Q4 2018
 - Includes >300 diverse simulated patients in SimPops™
 - NAFLDsym utilizes many key aspects of DILIsym[®]
- NAFLDsym can be used to support NAFLD drug development
 - Combines PK, PD, pathophysiology to predict efficacy of novel treatments
 - Flexible framework facilitates addition of new targets as needed
 - Can be used to optimize clinical trial protocols and identify key hypotheses related to mechanistic underpinnings of predicted response to treatment
- NAFLDsym has been used in collaborative research agreement with Pfizer, Gilead and other companies to inform clinical programs

DILIsymServices

