

DILIsymServices

ST A SIMULATIONS PLUS COMPANY

DILIsym User Training – Importance of Integration of DILI Mechanisms within DILIsym

DILIsym Development Team

* DILIsym[®], NAFLDsym[®], and MITOsym[®] are registered trademarks and SimPops[™] and SimCohorts[™] are trademarks of DILIsym[®] Services Inc. for computer modeling software and for consulting services.

CONFIDENTIAL

Goals for This Training Session

Participants should understand the following general concepts:

- How to approach mechanistic DILIsym projects from a workflow perspective
- How to analyze and present DILIsym results
 - Frequency, magnitude, timing of ALT elevations
 - Different mechanisms
 - Regulatory experience
- The importance of integrating all mechanisms in DILIsym together for accurate predictions

Overview of the DILIsym Workflow and Mechanism Integration Training Session

- How to approach mechanistic DILIsym projects from a workflow perspective
- The importance of integrating all mechanisms in DILIsym together for accurate predictions background information
- The importance of integrating all mechanisms in DILIsym together for accurate predictions hands-on example

SH A SIMULATIONS PLUS COMPANY

Common Goals for Mechanistic DILIsym Projects

- To assess the risk of hepatotoxicity with drug candidate, including how the risks (or lack thereof) compare against marketed drug
- To help provide biological plausibility for any genetic or non-genetic biomarkers that emerge from the master research plan and to identify key hepatotoxicity risk factors that may be specific to the patient population
- To determine if the *in vitro* data and simulations support the hypothesis that an observed liver injury episode during clinical studies was unrelated to the Compound
- Determine the mechanisms responsible for liver enzyme elevations in serum of healthy volunteers and patients in Phase I and IIa clinical trials with Compound, focusing on the following possible mechanisms:
 - Mitochondria toxicity
 - Oxidative stress (potentially from a reactive metabolite)
 - Bile acid toxicity

For Mechanistic Projects, DILIsym Utilizes Various Data Types to Inform Decisions

Exposure Data

PBPK Modeling

- Compound Properties
 - Tissue partition coefficients
- Tissue penetration studies
 - Liver to blood ratio
- Pharmacokinetic data
 - Absorption, extra-hepatic clearance, metabolites
- in vitro data
 - Metabolite synthesis, active uptake

In vitro Mechanistic DILI Data

Assays performed to determine <u>quantitative</u> <u>aspects of DILI mechanisms</u>

- Oxidative stress
 - Direct and reactive metabolite-mediated
- Mitochondrial toxicity
 - ETC inhibition
 - Uncoupling
- Bile acid transporter inhibition
 - BSEP, MRP3 and 4, NTCP
- Bilirubin transport/metabolism
 - OATP1B1, OATP1B3, UGT1A1, MRP2, MRP3

Simulations and Assays inform:

- Prediction of DILI risk
- Participating DILI mechanisms
- Characteristics of patients at risk for DILI
- Drug dosing paradigms
- DILI monitoring strategies

Clinical Data

- Dosing Protocols, meal times if necessary
- Anthropometric data
 - Body weight, age, ethnicity
- Pharmacokinetic data
 - Absorption, extra-hepatic clearance, metabolites

DILIsymServices

General Workflow for Collection of In Vitro Data

In vitro Mechanistic DILI Data

Assays performed to determine quantitative aspects of DILI mechanisms

Oxidative stress

- Direct and reactive metabolite-mediated
 - metabolite-mediated
- Mitochondrial toxicity
 - ETC inhibition
 - Uncoupling
- Bile acid transporter inhibition
 - BSEP, MRP3 and 4, NTCP
- Bilirubin transport/metabolism
 - OATP1B1, OATP1B3, UGT1A1, MRP2, MRP3

General Workflow for Use of Bile Acid Transporter Data

SF A SIMULATIONS PLUS COMPANY

General Workflow for Use of Mitochondrial Function Data

§ see training presentations/videos on identification of parameter values for mitochondrial dysfunction

DILIsymServices

General Workflow for Use of Oxidative Stress Data

§ see training presentations/videos on identification of parameter values for oxidative stress

DILIsymServices

SH A SIMULATIONS PLUS COMPANY

General Workflow for Toxicity Simulations

ST A SIMULATIONS PLUS COMPANY

Evaluation of SimCohorts Results

SimCohorts	Protocol	Protocol Investigation Mechanisms On Mechanisms Off		Mechanisms Off	ALT >3x ULN	Hy's Law cases
Multido	1x (12 wks)	Baseline toxicity	Parent: ROS, ETCi Metabolite: ROS, ETCi	None	0	0
Multi16	2x (12 wks)	Baseline toxicity	Parent: ROS, ETCi Metabolite: ROS, ETCi	None	9	2
						uggests high ency of ALT

- Multi16 includes
 - 13 individuals sensitive to each of the 3 mechanisms of toxicity, plus the combination of BA accumulation and mitochondrial dysfunction
 - Baseline human
 - Two insensitive individuals
- Results provide early hints of liver injury
 - 0/16 with no ALT elevations >3x ULN sets expectation that SimPops results are likely clean
 - 1+/16 with ALT elevations >3x ULN sets expectation for liver signals in SimPops
 - 1+/16 Hy's law cases sets expectation for severe injury in the SimPops
 - Time reports (not shown) can be used to estimate duration for SimPops runs; if long, consider executing sensitivity analyses in SimCohorts

DILIsymServices

SH A SIMULATIONS PLUS COMPANY

elevations in SimPops

Evaluation of SimCohorts Results

SimCohorts	Protocol	Investigation	Mechanisms On	Mechanisms Off	ALT >3x ULN	Hy's Law cases
	1x (12 wks)	Baseline toxicity	Parent: ROS, ETCi Metabolite: ROS, ETCi	None	0	0
Multide		Baseline toxicity	Parent: ROS, ETCi Metabolite: ROS, ETCi	None	9	2
Multi16	2x (12 wks)	No ETCi toxicity	Parent: ROS Metabolite: ROS	Parent: ETCi Metabolite: ETCi	8	2
		No ROS toxicity	Parent: ETCi Metabolite: ETCi	Parent: ROS Metabolite: ROS	0	0

- Sensitivity analysis for contributing mechanisms
 - Re-run simulations with mechanism of interest turned OFF
 - Change in liver injury indicates contribution by mechanism that is OFF
- Results may point to additional investigations
 - Any uncertainties related to the toxicological parameter values can be investigated to determine robustness of prediction to variation in the *in vitro* assay
 - May consider additional analyses to identify putative biomarkers of response

Evaluation of SimCohorts Results

SimCohorts	Protocol	Investigation	Mechanisms On	Mechanisms Off	ALT >3x ULN	Hy's Law cases
	1x (12 wks)	Baseline toxicity	Parent: ROS, ETCi Metabolite: ROS, ETCi	None	0	0
		Baseline toxicity	Parent: ROS, ETCi Metabolite: ROS, ETCi	None	9	2
Multi16		No ETCi toxicity	Parent: ROS Metabolite: ROS	Parent: ETCi Metabolite: ETCi	8	2
Multi 10	2x (12 wks)	No ROS toxicity	Parent: ETCi Metabolite: ETCi	Parent: ROS Metabolite: ROS	0	0
		No parent toxicity	Metabolite: ROS, ETCi	Parent: ROS, ETCi	4	1
		No metabolite toxicity	Parent: ROS, ETCi	Metabolite: ROS, ETCi	0	0

- Sensitivity analysis for contributing molecular species
 - Re-run simulations with molecular species toxicity mechanisms turned OFF
 - Change in liver injury indicates contribution by the molecular species that is OFF
- Results may point to drug development considerations
 - Internal discussions related to potential toxicity by metabolites

General Workflow for Toxicity Simulations

Evaluation and Presentation of **Predicted Liver Injury**

SH A SIMULATIONS PLUS COMPANY

Evaluation and Presentation of **Contributors to Liver Injury**

Source	Mode of BA inhibition	ALT > 3x ULN (%)	
Observed	-	1-2	
	Noncompetitive	15.4	
SimPops v4A_1 (n=285)	Mixed (α =5)	2.8	
(200)	Competitive	0.4	

L:B ratio

_

1x (default)

1.5x

Source

Observed

Customized SimPops

(n=285)

Combining in vitro data with ٠ compound exposure in DILIsym could produce similar ALT elevations as observed

- Only IC₅₀ data available for BAi
- Results sensitive to mode of • inhibition
 - Both mixed and competitive reproduce the clinical data
- Combining in vitro data with ٠ compound exposure in DILIsym could produce similar ALT elevations as observed
 - No constraints on liver _ concentration
 - Liver concentration strongly ٠ influenced simulated toxicity

Clinical Data & Simulation Results

2x 45 DILIsymServices

SH A SIMULATIONS PLUS COMPANY

ALT > 3x ULN

(%)

9-22

4

21

Simulations for

mode of BA inhibition

Simulations for degeneracy in liver concentrations

DILIsym Regulatory Experience

DILIsym projects designed to support the following types of argument:

New compound exhibits different mechanisms of toxicity than a DILI compound in the same class. Combination of mechanisms and exposure predicts less toxicity by new compound, relative to DILI compound in the same class.

Simulation results increase confidence that observed liver injury will not occur in planned trials. Simulation results increase confidence that observed liver injury was not due to drug. Simulation results guide design of safer protocols for planned trials.

DILIsym projects intended to support regulatory interaction at multiple stages in the drug pipeline:

Overview of the DILIsym Workflow and Mechanism Integration Training Session

- How to approach mechanistic DILIsym projects from a workflow perspective
- The importance of integrating all mechanisms in DILIsym together for accurate predictions background information
- The importance of integrating all mechanisms in DILIsym together for accurate predictions hands-on example

The Interaction Between Various DILI Mechanisms is Critical to Assess

- DILIsym includes multiple mechanisms of DILI
- The combination of mechanisms, often times inconsequential in isolation, has proven absolutely critical to the DILIsym predictions made in many cases
- Bile acid and mitochondrial dysfunction interaction effects have been most notable
- Simulation projects have also shown that bile acids, mitochondrial dysfunction, and oxidative stress are collectively required to predict a DILI response in some cases
- Viewing in vitro results in isolation and drawing conclusions is misleading and NOT recommended
 - Drug exposure also complicates the interpretation

ATP is the Common Link Between ROS/RNS, Bile Acids, and Direct Mitochondrial Toxicity

- Oxidative stress, direct mitochondrial dysfunction, and bile acid effects on mitochondrial function have a common intersection point at ATP Production
- Oxidative stress effects on ATP production do not necessarily always combine with mito/BA effects in a linear way, since ATP production inhibition is nonlinear
- Effects of ATP inhibition, including apoptosis and necrosis, are also nonlinear in nature and include thresholds, making it difficult to predict how two or more effects will combine without running the simulations

SH A SIMULATIONS PLUS COMPANY

Mechanistic Interactions Reveal Interaction Effect between Bile Acids and ETC Inhibitors

- Hepatic bile acids cause reductions in mitochondria proton gradient
 - BA's have been shown to invoke MPT and reduce Δψm (Rolo 2000, Schulz 2013)
- Uncoupling causes adaptive increase in ETC flux via S_fb_gradient
 - Acts to preserve ∆ψm to some extent
- Potential for negative
 interaction with ETC inhibitors
 - Restricts adaptive increase in ETC flux

DILlsymServices

SH A SIMULATIONS PLUS COMPANY

Combining BA Toxicity with ETC Inhibition Reveals Hepatotoxic Interaction Effect

- Predicted DILI in response to either theoretical ETC inhibitor or AMG009
 - AMG009 is bile acid transport inhibitor
 - N=36 SimCohort
 - Some predicted DILI for each drug (ALT, loss of hepatocytes)
- Combined ETC inhibitor + AMG009
 - Substantial increase in magnitude and frequency of predicted DILI with combination of two simulated drugs
- Simulations reveal clear interaction effect between bile acid-induced DILI and ETC inhibition
- ETC inhibitor is restricting adaptive increase in ETC flux
 - via S_fb_gradient
 - Loss of $\Delta\psi m$

Combining BA Toxicity with ETC Inhibition Reveals Hepatotoxic Interaction Effect

- Predicted DILI in response theoretical ETC inhibitor and AMG009, alone and in combination
 - Patient #24 from n=36 SimCohort
 - Simulated 4 weeks of dosing

ETC Inhibition Restricts Adaptive Response to Bile Acid-Induced Mitochondrial Uncoupling

- Predicted DILI in response theoretical ETC inhibitor and AMG009, alone and in combination
 - Patient #24 from n=36 SimCohort
 - Simulated 4 weeks of dosing
- ETC activity
 - AMG009: adaptive increase with BA uncoupling
 - ETCinhib: decrease due to inhibition
 - AMG009+ETCinhib: direct ETC inhibition prevents adaptive increase
- Δψm
 - AMG009: proton gradient preserved through 48 h
 - ETCinhib: transient decrease due to ETC inhibition
 - AMG009+ETCinhib: sustained reduction due to ETC inhibition preventing adaptive increase
- Substantial increase in DILI risk due to interaction between ETC inhibitor and bile acid mitochondrial effects

Synergy Between BA Accumulation and ETC Inhibition Can Explain Delayed-Onset Toxicity

- Delayed-onset liver toxicity is often thought to be indicative of an adaptive immune response
 - Unclear why delay would be required for adaptive immune activation in most circumstances
- ALT time course simulation results in T2D patients (right) demonstrate that delayed-onset liver toxicity can be explained by slow synergy between bile acid accumulation and ETC inhibition
 - Simulated ALT elevations occur anywhere from 1 week to 12 weeks after beginning of dosing
 - Adaptive immune attack still plausible explanation for TAK-875 toxicity; delay could be explained by delay in the development of cellular stress that would lead to immunogenic damage signals
 - Delay in manifestation of ALT elevations should not be taken as evidence of immune-mediated toxicity on its own
- Note overprediction of severity of TAK-875 toxicity
 - May be due to protective mechanisms not yet included in DILIsym
 - Lack of stop protocol in the simulations may also contribute to overprediction of severity

Simulation Results

DILlsymServices

SH A SIMULATIONS PLUS COMPANY

Overview of the DILIsym Workflow and Mechanism Integration Training Session

- How to approach mechanistic DILIsym projects from a workflow perspective
- The importance of integrating all mechanisms in DILIsym together for accurate predictions background information
- The importance of integrating all mechanisms in DILIsym together for accurate predictions hands-on example

Hands-on DILI Mechanism Integration Example – Step 1 – Place Provided Tolvaptan SimSingles in Simulations Folder and Review

- Find Simulations directory by clicking any load option within DILIsym and copying location from Windows Explorer
- Copy three provided SimSingles into your Simulations directory
- Explore SimSingles
 - "Tolvaptan_24Weeks"
 - "Tolvaptan_24Weeks_NoBA"
 - "Tolvaptan_24Weeks_NoMITO"
- Review the mechanisms active on the Mechanism panel for each one

*	folder		- Istory		ion	
ganize	New		Open	Select		
› Example_Files	> Workflow_Mech	_Integration >	Simulations	~ ē	Search Sir	mulatio
Name	~		Date modified	Туре	Si	ze
💧 Tolvapta	n_24Weeks		2/16/2018 2:17 P	M MATLAB D	ata	7,950
Tolvapta	n_24Weeks_NoBA		2/16/2018 2:18 P	M MATLAB D	ata	7,952
Tolvapta 🏠	n_24Weeks_NoMito)	2/16/2018 2:18 P	M MATLAB D	ata	7,952
New	Open)ILIsym v7A Results View He	-			
ell > mcrCache9.3 >	DiLisyi					
Name	Sir	mSingle Setup				
.META		New SimSingle	Tolvaptan_24Wee	ks		
bin		Load SimSingle				
Code		_				
ComparisonDa		out Parameters				
DataTemplates		Species	Parameters_Spec	cies_Human_v7A	~	Customiz
 DILlsym_User_F DILlsym_v7A 	esources	Drug	Parameters Drug	Human Tolvaptan v7.	A ~	Customiz
	D73EA2EE2A7520EA	brug	r arameters_brug		• •	
Distributions						Mechanis
Icons		Caloric Intake	Parameters_Calo	ries Human v7A	~	Customiz
local_cluster_jo	bs	Comp W Dosing			2040	Customize
Logos				split_24wk_Woodhead		
MonitoringTen		Comp X Dosing	Parameters_Com	pXDosing_Blank_v7A	\sim	Customiz
OptimizationRe OptimizationTe		Comp Y Dosing	Parameters_Com	pYDosing_Blank_v7A	~	Customiz
ParallelResults Parameters		Time	24Weeks		\sim	Customize
Parameters		Solver	Parameters Solv	er Default v7A	~	Customize
SDTemplates						
SimPops		Input Panel	Panel_Blank		~	Viewer
SimPopsResult						
SimSingleResul	ts	Simulate	Specify Data	Clinical Monitoring	Param Sweep	Data Compari
Simulations						_ and o company
Studies		Run in Parallel	SimPops	Create SimCohorts	Optimization	
SweepResults toolbox		Plot	Table	Export	Save Results	SimSingle

SH A SIMULATIONS PLUS COMPANY

Hands-on DILI Mechanism Integration Example – Step 2 – Place Provided Tolvaptan SimPops Results in SimPopsResults Folder

- Find SimPopsResults directory by clicking any load option within DILIsym and copying location from Windows Explorer
- Copy three provided SimPops results files into your SimPopsResults directory
- Load

"Results_Tolv......Multi16_17Feb18_0356" results file using the Results menu -> Load SimPops Setup and Results option

 Tolvaptan with all mechanisms active

> E	(ample_Files > Workflow_M	lech_Integration > SimPops	Results	ע ט Search S	SimPopsResults	
N	ame	^		Date modified	Туре	
1	Results Tolvantan 24Week	s_NoBA_v4A_1_Multi16_17Feb	18 1620	2/17/2018 4:20 PM	MATLAB Data	
- 		s_NoBA_v4A_1_Multi16_17Feb	-	2/17/2018 4:20 PM	Microsoft Exc	
			-			
l -		s_NoMito_v4A_1_Multi16_18F	_	2/18/2018 4:20 AM	MATLAB Data	
2		s_NoMito_v4A_1_Multi16_18F	_	2/18/2018 4:20 AM	Microsoft Exc	
-	Results_Tolvaptan_24Weeks	s_v4A_1_Multi16_17Feb18_035	6	2/17/2018 3:56 AM	MATLAB Data	
	Results_Tolvaptan_24Week	s_v4A_1_Multi16_17Feb18_035	6	2/17/2018 3:56 AM	Microsoft Exc	
rganiz	e New	DILIsym v7A				
ervices,	Inc > DILIsym_v7A > application	File Results View Help	9			
	Name	SimSingle Setup				
*	.matlab	New SimSingle	Tolvaptan 24We	oko		
*	, META		roivaptan_24vve	iens		
*	bin Code	Load SimSingle				
*	Code ComparisonDataSets	Input Parameters				
*	DataTemplates					
<u>_</u>	DILIsym_User_Resources	Species	Parameters_Sp	ecies_Human_v7A	\sim	Customize
7	DILIsym_v7A	Drug	Parameters Dr	ıg Human Tolvaptan v	7A	Customize
	DILIsym_v7A_BB18D75E59CF3E9		- drameters_Dre	.gaman_rowaptan_v		
	Distributions					Mechanism
	lcons	Caloric Intake	December 01			Customize
	Logos		Parameters_Cal	ories_Human_v7A	~	
	MonitoringTemplates	Comp W Dosing	Tolvaptan_90_3	_split_24wk_Woodhea	ad_2016 ~	Customized
	OptimizationResults OptimizationTemplates	Comp X Dosing	Parameters_Co	mpXDosing_Blank_v7A	~	Customize
	ParallelResults	Comp Y Dosing	_			Customize
	Parameters	comp i bosnig	Farameters_Co	mpYDosing_Blank_v7A		Gustomize
	ParamSweeps	Time	241//00/20			Customized
	SDTemplates		24Weeks		~	
	SimPops	Solver	Parameters_Sol	ver_Default_v7A	\sim	Customize
	SimPopsResults					
	SimSingleResults	Input Panel	Panel_Blank		~	Viewer
	Simulations					
	Studies	Simulate	Specify Data	Clinical Monitoring	Param Sweep	Data Comparison
	SweepResults		-py = atta			
	Sweepixesuits					
	toolbox	Run in Parallel	SimPops	Create SimCohorts	Optimization	

Hands-on DILI Mechanism Integration Example – Step 3 – Analyze SimPops Results and Load Other Two Tolvaptan Results Files

- Note response in liver ATP levels
 - Mitochondria ->
 Bioenergetics -> Liver
 average ATP
- Note eDISH plot
- Repeat process for other two tolvaptan SimPops results files
- Which mechanism is responsible for the ALT elevations?

No Bile Acid Tox

Hv"s Law Ran

Temple's Corollary Ran

101

Hyperbilirubinemia

100

Peak TBL × UL