

DILIsymServices

ST A SIMULATIONS PLUS COMPANY

DILlsym User Training – Physiologically-based Pharmacokinetic (PBPK) Modeling in DILlsym

DILIsym Development Team

* DILIsym[®], NAFLDsym[®], and MITOsym[®] are registered trademarks and SimPops[™] and SimCohorts[™] are trademarks of DILIsym[®] Services Inc. for computer modeling software and for consulting services.

CONFIDENTIAL

Goal for The DILIsym PBPK Sub-model Session

Participants should understand the following general concepts:

• How to use the DILIsym PBPK sub-model, including the most recent updates

SF A SIMULATIONS PLUS COMPANY

DILIsym Training on PBPK Structure

- Overview of the PBPK sub-model changes in DILIsym v6A
- Parameterizing the PBPK sub-model for DILIsym v6A

v6A PBPK Update Summary

Pathway	v5A	v6A
Passive diffusion	Only unbound compound undergoes passive diffusion	Unbound, unionized compound undergoes passive diffusion
Hepatic uptake transport	Hepatic uptake only represented for Comp W and X	Transporter-mediated hepatic uptake added for stable metabolites and Compound Y
Hepatic efflux transport	No basolateral hepatic efflux	Transporter-mediated basolateral efflux added for parent compounds, stable metabolites and Compound Y
Tissue permeability	Permeability-limited distribution represented only for the liver	Permeability-limited models added for all extra-hepatic tissues

Perfusion- and Permeability-limited Distribution Represented for All Tissues Using a Two-compartment Tissue Model

fni: fraction non-ionized

Active uptake transporter represented only in the liver •

- Perfusion-limited distribution if CLpassive >> Q (default)
 - Instant mixing of tissue and tissue blood; reach equilibrium quickly
 - Extent of tissue distribution will be determined by fu_P and fu_T (calculated using tissue:blood ratio), pKa, compound type (acid/base)
 - User input: fu_P, B:P, Tissue:Blood partition coefficients, compound type (acid/base), pKa
- For permeability-limited distribution, CLpassive of each compound can be optimized or calculated from *in vitro* permeability data
 - Only unbound, <u>non-ionized</u> drugs can undergo passive diffusion; frac non-ionized calculated by DILIsym using compound type (acid/base) and pKa values
 - CLpassive calculated by DILIsym using *in vitro* permeability and the tissue surface area
 - User input: compound type (acid/base), pKa, *in vitro* permeability, transporter Km/Vmax if a substrate of hepatic uptake transporters

DILIsymServices

SF A SIMULATIONS PLUS COMPANY

Switched Added for Tissue Distribution Model

DILIsymServices

ST A SIMULATIONS PLUS COMPANY

Passive Diffusion CL Calculated by DILIsym from In Vitro Permeability or Liver Passive Diffusion CL

	Variable	Name		Unit	Default Value	
	Comp_X_liver_CL_pd	Compound X liver passi	ve clearance	mL/hr/kg^0.75	1	
	Comp_X_perm_app	Compound X apparent passive permeability		cm/sec	1e-6	
•	Perm_app: obtaine permeability assays Default: 1e-06 cm/	 Liver_CL modeling optimiza Easier to active he 	_pd: obtained f g using SCH dat tion, or HC upt compare cont epatic CL	from mechanis a, parameter ake study ribution of pas	tic sive vs.	
P (" P (" (" ("	Perm_app: input paramet cm/sec) P_neutral = 2*Perm_app/ cm/sec) CL_passive_L = P_neutral ³ mL/hr/kg^0.75) CL_passive_M = P_neutra mL/hr/kg^0.75)	er frac_nonionized *liver SA *3600 l*muscle SA *3600	Liver_CL_pd: (mL/hr/kg^0.7 CL_passive_L (mL/hr/kg^0.7 CL_passive_N (mL/hr/kg^0.7	input parameter 75) = CL_passive_L_a 75) 1 = CL_passive_L 75)	app/frac_nonion * muscle SA/ liv	ized er SA

DILIsymServices

ST A SIMULATIONS PLUS COMPANY

Compound Ionization is Determined by Compound pKa and System pH

- The default assay pH for in vitro permeability is 7.4 can be changed if in vitro experiment is run under different assay conditions
- The pKa of Comp W/X/Y and stable metabolites now need to be entered as parameters

Group	Sut	ogroup		Group	Subgroup		
Species •	Biological sp	ecifications -		Drug	Compound W PBPK		
Variable	Value	Units		Variable	Value	Units	
Other tissue surface area	4.4607e+05	cm^2/kg^0.75	This parameter represents the othe	Compound W fu liver switch		0 dimensionless	This parameter is the swi
Plasma pH	7.4000	dimensionless	This parameter represents the plas	Compound W fu liver defined by the use	r	0 dimensionless	This parameter represent
Gut tissue pH	7	dimensionless	This parameter represents the intra	Compound W molecular weight	1.0000e-0	3 g/mol	This parameter represent
Liver tissue pH	7	dimensionless	This parameter represents the intra	Compound W acid base switch		1 switch	This parameter describes
Muscle tissue pH	7	dimensionless	This parameter represents the intra	Compound W pKa 1 or pKa base (for zw	vitter ion)	0 dimensionless	This parameter describes
Other tissue pH	7	dimensionless	This parameter represents the intra	Compound W pKa 2 or pKa acid (for zw	itter ion)	0 dimensionless	This parameter describes
In vitro permeability assay pH	7.4000	dimensionless	This parameter represents the pH i	Compound W renal clearance		0 mL/hour/kg^0.75	This parameter represent
Hepatocyte membrane potential	-0.0350	v	This parameter represents the mer	k(diss) - Compound W	1	2 1/hour	This parameter describes
Universal gas constant	8.3145	J/K/mol	This parameter represents the univ	k(ge) - Compound W	1	2 1/hour	This parameter describes
Accou tamparatura	310 1500	κ κ	This noromator represents the tem	4 Commentation		r 4.6 III	This annual to describes
Convert	Cor	mpare (mat)	Compare (xls)	Convert	Compare (n	nat) Comp	pare (xls)
Panel View	Sav	e w/ Custom	Cancel Changes Save	Panel View	Save w/ Cus	tom Cance	Changes Save A

DILIsymServices

Clarify Parameter Names and Descriptions for Recirculation

DILIsym Parameter Customization			
Group	Subgroup		
All Groups CompV	V MetA PBPK		
Variable	Value Units		$\sqrt{50}$. This parameter represents the
Compound W metabolite A biliary excretion Vmax	0 ug/hour/kg^0.75	This parameter rep	VJA. This parameter represents the
Compound W metabolite A biliary excretion Km	1.0000e+10 ug/mL	This para	fraction of Compound W/ motabolite A
Compound W metabolite A fraction recirculated	0 dimensionless	Tris parameter represent	fraction of compound w metabolite A
Compound W metabolite A fraction unbound plasma	1 dimensionless	This panter describes	alaarad in the hile that is regirevlated heak
Compound W metabolite A blood to plasma	1 dimensionless	This paramete	Cleared in the bile that is recirculated back
Compound W metabolite A liver to blood	1 dimensionless	This parameter des	into the neutral wain (Mino Marul)
Compound W metabolite A active liver uptake Vmax	0 ug/hour/kg^0.75	This parameter describes	nto the portal vein (Wilh:0, Wax:1)
Compound W metabolite A active liver uptake Km	1.0000e+10 ug/mL	This parameter describes	
Compound W metabolite A active liver basolateral	0 ug/hour/kg^0.75	This parameter describes	the maxime Metabolite A
Compound W metabolite A active liver basolateral	1.0000e+10 ug/mL	This parameter describes	the Km for Comp.
•	III		
Convert Panel View	Compare (mat) Comp Save w/ Custom Cancel	are (xls) Changes Save	v6A: This parameter represents the fraction of Compound W metabolite A cleared in the bile
			that is converted to Compound W in the gut

V6A: This parameter represents the fraction of Compound W metabolite A cleared in the bile that is converted to Compound W in the gut lumen and recirculated back into the portal vein as Compound W (Min:0, Max:1)

Transporter-Mediated Hepatic Basolateral Efflux Added for Comp W, X, Y

1	

DILIsymServices

New Outputs Added for QWBA Comparison

CompW_all_liver_to_blood	Compound W liver to blood ratio including parent and metabolites	dimensionless

- Calculates liver:blood ratio for the sum of all species (parent+metabolites) in the simulation
- In the QWBA study, radioactivity is measured and reported as "ug equivalent of parent/g tissue"
 - Stable metabolite concentrations corrected for M.W. differences
 - RM and RM-adducts in molar unit converted to ug using the m.w. of the parent
 - Plasma RM-adduct concentrations converted to blood RM-adduct concentrations

DILIsym Training on PBPK Structure

- Overview of the PBPK sub-model changes in DILIsym v6A
- Parameterizing the PBPK sub-model for DILIsym v6A

The PBPK Representation in DILIsym Depends Heavily on the Development Stage of the Compound being Simulated

Early candidate screening

- Metabolic clearance of parent compound and coincidental appearance of specific metabolites *in vitro*
- Potential for active transport in the liver *in vitro* (rate of hepatocyte uptake); transport kinetic information if possible
- Basic molecular properties
 - Acid or base?
 - Monoprotoic or diprotic
 - pKa(s)
 - log P (oil:water and octanol:water)
 - Fraction bound to plasma or serum proteins
 - Fraction partitioned into red blood cells

Late-stage development / OTM

- In vivo PK time-course and doseresponse
- Mass balance tissue distribution studies in animals (*in vitro* accumulation as well)
- *In vitro* drug metabolism assays identifying the appropriate metabolizing enzymes for the drug
- Metabolic clearance of parent compound and coincidental appearance of specific metabolites
- Potential for active transport in the liver (rate of hepatocyte uptake); transport kinetic information if possible
- Basic molecular properties

DILIsymServices

DILIsym PBPK Overview – Compounds W and X

- Compound W, X, and Y PBPK models for drug combinations
- Compound W and X PBPK models feature five main compartments
 - Gut, liver, blood, muscle, other
- Parent metabolized to metabolite A or B, or reactive metabolites A or B in the liver
 - Michaelis-Menten kinetics
 - Primary metabolite models include three main compartments (liver, blood, other)
 - <u>As of v5A, stable metabolites A and B can be</u> generated by intestinal metabolism
- Oral and IV dosing available
 - IP dosing also included; not generally used for human
- Liver is divided into periportal (PP), midlobular (ML), and centrilobular (CL) zones to allow for zonal distribution of drug and injury
 - 5:3:1 volume distribution
 - − Blood flow goes from $PP \rightarrow ML \rightarrow CL$
 - Metabolic activity can be adjusted among the zones

DILIsymServices

DILIsym PBPK Overview – Compound Y

- Compound Y is a simpler two compartment model
- Minimal PBPK sub-model:
 - Consists of blood, liver, and extrahepatic compartments
 - Metabolite disposition is not tracked
 - Clearance options include renal, non-renal from plasma compartment, and hepatic clearance from liver compartment
- Oral and IV dosing available
 - IP dosing also included; not generally used for human
- Liver is represented with a single, wellmixed compartment
- Extrahepatic distribution is determined by volume of distribution

Selecting Proper PBPK Parameters Is Necessary to Get Maximum Value from DILIsym Simulations

- Liver concentration dynamics are important for the accurate prediction of toxicity
- DILIsym contains many PBPK parameters for the Compound W and X models
- PBPK model parameterization requires two main steps
 - Selecting appropriate metabolic scaffold
 - Parameterizing model

DILIsym Can Represent Up To Four Metabolites In Addition to Parent Compound

- Selecting the proper metabolism scaffold requires:
 - Knowing what data are available for each metabolite
 - Knowing what chemical species are likely to be involved in toxic mechanisms
- Example: bosentan
 - Two main metabolites, neither reactive
 - Minor metabolite involved in toxicity
 - Parent compound induces metabolism

DILlsymServices

Selecting Proper PBPK Parameters Is Necessary to Get Maximum Value from DILIsym Simulations

- Liver concentration dynamics are important for the accurate prediction of toxicity
- DILIsym contains many PBPK parameters for the Compound W and X models
- PBPK model parameterization requires two main steps
 - Selecting appropriate metabolic scaffold
 - Parameterizing model

Group	Subgroup	
Drug 🗸	Compound X PBPK	
Variable	Value Units	Description
Compound X biliary excretion Vmax	0 mg/hour/kg^0.75	This parameter represents the maximum rate for biliary excretion of Compound X. (🔺
Compound X biliary excretion Km	1.0000e+10 mg/mL	This parameter represents the Km for biliary excretion of Compound X. (Min:0, Max
Compound X fraction recirculated	0 dimensionless	This parameter represents the fraction of compound X cleared in the bile that is rec
Compound X blood to plasma	1 dimensionless	This parameter describes the Compound X blood to plasma concentration ratio. (Mi
Compound X gut to blood	1 dimensionless	This parameter describes the Compound X gut tissue to blood concentration ratio.
Compound X liver to blood	1 dimensionless	This parameter describes the Compound X liver tissue to blood concentration ratio.
Compound X active liver uptake Vmax	0 mg/hour/kg^0.75	This parameter describes the maximum rate of Compound X transporter-mediated u
Compound X active liver uptake Km	1.0000e+10 mg/mL	This parameter describes the Km for Compound X transporter-mediated uptake into
Compound X delay time constant (uptake i	0 1/hour	This parameter describes the time constant for the delay of Compound X used to c
Compound X uptake induction Vmax	0 1/hour	This parameter describes the Vmax for the induction of Compound X active uptake 👻
٠ [•
Convert Panel View	Compare (mat) Save w/ Custom	Compare (xls) Cancel Changes Save As New Save As New w/ Custom

DILIsym PBPK Input Parameters Fall Into Several Main Categories

- Absorption
 - Saturable and linear models

Make sure to select relevant subgroup (e.g., Compound W, X, Y...)

				/
承 DIL	Lsym Parameter Customization		\setminus	
	Group	Sub	group	
	Drug 🗸 🗸	Compound X	РВРК 🔻	
	Variable	Value	Units	lhio parameter r
	Jompound A renar clearance	•	mL/nou//kg-0.75	mis parameter i
k	(diss) - compound X	12	1/hour	This parameter o
k	(ge) - compound X	12	1/hour	This parameter o
k	s(ab) - compound X	5	1/hour	This parameter of
С	Compound X absorption from gut Vmax	0	1/hour	This parameter o
c	Compound X absorption from gut Km	1.0000e+10	mg	This parameter of
С	Compound X rate of elimination in feces	0	1/hour	This parameter o
k	(ab) conjugates - compound X	0	1/hour	This parameter o
k	(ab,IP dose) - compound X	12	1/hour	This parameter o
k	(IV) - compound X	60	1/hour	This parameter o
	•			
	Convert	Con	npare (mat)	Compare (xls)
	Panel View	Save	e w/ Custom	Cancel Changes

DILIsym PBPK Input Parameters Fall Into Several Main Categories

- Absorption
 - Saturable and linear models
- Distribution
 - Linear and non-linear plasma protein binding
 - Blood to plasma partition coefficient
 - Tissue partition coefficients
 - Transporter-mediated uptake model for liver
 - Liver partition coefficient and volume of distribution for metabolites

DILIsym Parameter Customization		
Group	Subgroup	
Drug 🗸	Compound X PBPK 🚽	
Variable	Value Units	
Compound X blood to plasma	1 dimensionless	This parameter de
Compound X gut to blood	1 dimensionless	This parameter de
Compound X liver to blood	1 dimensionless	This parameter de
Compound X active liver uptake Vmax	0 mg/hour/kg^0.75	This parameter de
Compound X active liver uptake Km	1.0000e+10 mg/mL	This parameter de
Compound X delay time constant (uptake i	0 1/hour	This parameter de
Compound X uptake induction Vmax	0 1/hour	This parameter de
Compound X uptake induction Km	1.0000e+10 mg/mL	This parameter de
Compound X uptake induction Hill	0 dimensionless	This parameter de
Compound X membrane permeability	0 mL/hour/kg^0.75	This parameter de
•		11
Convert	Compare (mat)	Compare (xls)
Panel View	Save w/ Custom	Cancel Changes

DILIsym PBPK Input Parameters Fall Into Several Main Categories

- Absorption
 - Saturable and linear models
- Distribution
 - Linear and non-linear plasma protein binding
 - Blood to plasma partition coefficient
 - Tissue partition coefficients
 - Transporter-mediated uptake model for liver
 - Liver partition coefficient and volume of distribution for metabolites
- Metabolism
 - Michaelis-Menten kinetics from parent to stable metabolites in liver and <u>gut</u>
 - RM reactions with GSH and protein in liver

Metabolis "me	m parameters ar tabolite" subgro	e in the up
DII Isym Parameter Customization		
Group	Subgroup	
Drug 🗸	CompX MetA PBPK	
Variable	Value Units	
Km(Compound X metabolite A)	1 mol/mL	This parameter desc
Vmax(Compound X metabolite A)	0 mol/hour/kg^0.75	This parameter desc
Compound X delay time constant (metabol	0 1/hour	This parameter desc
Compound X metabolite A induction Vmax	0 1/hour	This parameter desc
Compound X metabolite A induction Km	1.0000e+10 mg/mL	This parameter desc
Compound X metabolite A induction Hill	0 dimensionless	This parameter desc
CL to PP activity Compound X metabolite A	1 dimensionless	This parameter desc
ML to PP activity Compound X metabolite A	1 dimensionless	This parameter desc
PP to PP activity Compound X metabolite A	1 dimensionless	This parameter desc
() ((((0 1/1 7/	Th::
Convert	Compare (mat)	Compare (xls)
Panel View	Save w/ Custom	Cancel Changes

DILIsym PBPK Input Parameters Fall into Several Main Categories

- Absorption
 - Saturable and linear models
- Distribution
 - Linear and non-linear plasma protein binding
 - Blood to plasma partition coefficient
 - Tissue partition coefficients
 - Transporter-mediated uptake model for liver
 - Liver partition coefficient and volume of distribution for metabolites
- Metabolism
 - Michaelis-Menten kinetics from parent to stable metabolites in liver and gut
 - RM reactions with GSH and protein in liver
- Excretion
 - Biliary excretion (K_m and V_{max}) and renal clearance of parent and main metabolites
 - Intestinal efflux
 - Clearance of protein adducts

Group	Sub	group	
Drug • C	ompound X	РВРК	
Variable	Value	Units	
Compound X biliary excretion Vmax	0	mg/hour/kg^0.75	This parameter re
Compound X biliary excretion Km	1.0000e+10	mg/mL	This parameter re
Compound X fraction recirculated	0	dimensionless	This parameter re
Compound X blood to plasma	1	dimensionless	This parameter de
Compound X gut to blood	1	dimensionless	This parameter de
Compound X liver to blood	1	dimensionless	This parameter de
Compound X active liver uptake Vmax	0	mg/hour/kg^0.75	This parameter de
Compound X active liver uptake Km	1.0000e+10	mg/mL	This parameter de
Compound X delay time constant (uptake i	0	1/hour	This parameter de
Compound X uptake induction Vmax	0	1/hour	This parameter de
•			III
Convert	Con	npare (mat)	Compare (xls)
Panel View	Save	w/ Custom	Cancel Chang

Fraction Unbound in Tissue Is Calculated by DILIsym or Can Be Defined by the User

- As of DILIsym v5A, drug disposition in the PBPK sub-model is based on the unbound concentration
 - Hepatic/intestinal metabolism and transport
 - Renal and biliary excretion
- DILIsym calculates tissue fraction unbound for liver, gut, muscle, and other tissue in the static calculation (default)
 - Calculated by the user prior to v5A
- Alternatively, the user can define the unbound fraction in the liver using the "Compound (X) fu liver switch"
 - If the switch is set to 1, "Compound (X) fu liver defined by the user" will be used in the PBPK submodel
 - This option is available from v5A

Make sure to select relevant chemical entity (e.g., Compound W/X/Y, metabolite A/B...)

DILIsym Parameter Customi	zation			
Group		þ	group	
Drug	•	Compound X	PBPK	
Variable		Value	Units	
Compound X fraction unbound	l plasma	1	dimensionless	Thi
Compound X fraction unbound	d correlation	0	dimensionless	Th
Compound X fu correlation 2n	d-order coeffi	0	dimensionless	Th
Compound X fu correlation 1s	t-order coeffi	0	dimensionless	Th
Compound X fu correlation co	nstant	0	dimensionless	Th
Compound X fu liver switch		0	dimensionless	Th
Compound X fu liver defined b	y the user	0	dimensionless	Th
Compound X molecular weigh	t	1.0000e-03	g/mol	Th
Compound X renal clearance		0	mL/hour/kg^0.75	Th
k(diss) - compound X		12	1/hour	Th
				111
Convert		Com	npare (mat)	Com
Panel View		Save	w/ Custom	Cance

Fraction Unbound in Tissue Calculated by DILIsym v6A

- Unless the user turns on the "Compound (X) fu liver switch", DILIsym • calculates tissue fraction unbound for liver, gut, muscle, and other tissue in the static calculation
- In case of passive diffusion, the unbound, non-ionized tissue concentration ٠ is equal to the unbound, non-ionized plasma concentration
 - f_{u.tissue} is calculated from partition coefficients and the blood:plasma ratio

$$f_{u,tissue} = \frac{f_{u,plasma} \times f_{nonionized,plasma}}{\left(\frac{C_{tissue}}{C_{blood}}\right) \times B : P \times f_{nonionized,tissue}}$$

In case of transporter-mediated liver uptake, the unbound liver ٠ concentration is not in equilibrium with the unbound plasma concentration

S+ A SIMULATIONS PLUS COMPANY

An empirical equation used to estimate $f_{u,liver}$ (Poulin and Theil 2000)

24 CONFIDENTIAL

Method for Determining Distribution Parameters Depends on Data Available

- Distribution parameters can be determined from either in vivo or in vitro data
 - Physicochemical properties
 - In vitro cellular uptake assays
 - Animal WBAR studies
- Input panel document provides some insight into most useful assays for best DILIsym inputs

💽 DILIsym Para	DILIsym Parameter Customization						
	Group	Sub	group				
Drug Compound X PBPK							
	Variable	Value	Units				
Compound	X blood to plasma	1	dimensionless	This parameter de			
Compound	X gut to blood	1	dimensionless	This parameter de			
Compound	X liver to blood	1	dimensionless	This parameter de			
Compound	Compound X active liver uptake Vmax		mg/hour/kg^0.75	This parameter de			
Compound	X active liver uptake Km	1.0000e+10	mg/mL	This parameter de			
Compound	X delay time constant (uptake i	0	1/hour	This parameter de			
Compound	Compound X uptake induction Vmax		0 1/hour				
Compound	X uptake induction Km	1.0000e+10	mg/mL	This parameter de			
Compound	X uptake induction Hill	0	dimensionless	This parameter de			
Compound	X membrane permeability	0	mL/hour/kg^0.75	This parameter de			
I I I I I I I I I I I I I I I I I I I			Ī	II			
Cor	nvert	Con	npare (mat)	Compare (xls)			
Pane	l View	Save	e w/ Custom	Cancel Changes			

Predicting Partition Coefficients for Use in DILIsym

Selecting the DILIsym Parameters to Use for Active Liver Uptake

Method for Determining Metabolism Parameters Depends on Data Available

- Metabolism parameters can be determined from *in vitro* data or by fitting to PK data
 - In vitro microsome data
 - Hepatocyte metabolic clearance data
 - PK data including complete metabolite time course in plasma
- Input panel document provides some insight into most useful assays for best DILIsym inputs

Determining Metabolism Parameters for Use in DILIsym

Intestinal Metabolism and Transport Represented in DILIsym v6A

- As of v5A, intestinal metabolism and transport available for Compound X and W
 - Based on the unbound gut concentration
 - The user can define "Compound X fraction unbound in enterocyte"
- Stable metabolites (metabolite A and B) can be generated by gut metabolism
 - Saturable process (K_m and V_{max})
 - Generated metabolites enter into liver tissue and are combined with liver-generated metabolites
- Efflux of parent compounds from gut tissue to intestinal lumen represented
 - Saturable process (K_m and V_{max})

A SIN	IULATIONS I	PLUS COMPANY
-------	-------------	--------------

Group	Sub	group
Drug 🗸	Compound X	PBPK
Variable	Value	Units
Compound X absorption from gut Vmax	0	1/hour
Compound X absorption from gut Km	1.0000e+10	mg
Compound X rate of elimination in feces	0	1/hour
k(ab) conjugates - compound X	0	1/hour
k(ab,IP dose) - compound X	12	1/hour
k(IV) - compound X	60	1/hour
Compound X fraction unbound in enterocyt	1	Dimensionless
Compound X gut efflux Vmax	0	mg/hour/kg^0.75
Compound X gut efflux Km	1.0000e+10	mg/mL
Compound X conversion factor to perfusion	1	Dimensionless

Metabolism parameters are in the "metabolite" subgroup

DILIsym Parameter Customization					
Group	Subgro				
Drug 🗸	CompX MetA PBPK				
Variable	Value Units				
Compound X delay time constant (metabol	v 1/nour				
Compound X metabolite A induction Vmax	0 1/hour				
Compound X metabolite A induction Km	1.0000e+10 mg/mL				
Compound X metabolite A induction Hill	0 dimensionless				
CL to PP activity Compound X metabolite A	1 dimensionless				
ML to PP activity Compound X metabolite A	1 dimensionless				
PP to PP activity Compound X metabolite A	1 dimensionless				
Vmax for intestinal formation of Compound	0 mol/hour/kg^0.75				
Km for intestinal formation of Compound X	1.0000e+10 mol/mL				
Compound X metabolite A conversion fact	1 Dimensionless				
•	III				
Convert Panel View	Compare (mat) Save w/ Custom				

Determining DILIsym Parameter Values for Biliary Excretion

- Prior to v5A, biliary excretion was represented as a linear biliary clearance
 - Based on the total liver concentration
- As of v5A, biliary excretion is represented as a saturable process
 - Michaelis Menten kinetics employed (K_m and $V_{\text{max}})$
 - Based on the unbound liver concentration
 - Kinetic parameters can be obtained by translating *in vitro* transport data or optimized to in vivo data (e.g., biliary recovery)

DILIsymServices