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ABSTRACT
Background: Since published pharmacokinetic and pharmacodynamic models are often used by others for 
the purpose of simulations, enhanced clarity in reporting and clear statements regarding assumptions will 
improve the reproducibility of modeling and simulation results and allow for accurate re-use of models and 
modeling findings. 

Methods: To illustrate the importance of this issue, simulations were performed using the pharmacokinetic 
model for paroxetine by Feng et. al.1, a manuscript that did not report which method was used for %CV 
calculation.  This paper was selected in part because reported variability was in excess of 70 %CV for several 
parameters.  Two simulations of 1000 individuals were performed using ω2 parameter estimates that were 

calculated from the reported %CV values, one based on the method of %𝐶𝑉 = 100 ∗ exp 𝜔2 − 1 and one 

one based on the method of %𝐶𝑉 = 100 ∗ 𝜔2. Simulations were performed using the R package 
mrgsolve. 2 Results of the simulations were then used to calculate the magnitude of between-subject 
variability (%CV) for each run and compare it to the original value. 

Results: A 13.3-27.8% difference in %CV of the simulated distribution of the VM parameter was observed 

with the %𝐶𝑉 = 100 ∗ 𝜔2method when the other method was assumed to be used for reporting, and a 
15.6-24.5% difference was observed when the reverse was assumed. Calculated % difference increases as the 
true ω2 increases, with ω2 = 0.1 yielding a 0.81% difference and ω2 =1.25 yielding a 46.0% difference. 

Conclusions: Accurate reporting of either the variance (ω2) estimates in parameter tables or the method used 
to calculate %CV is important, especially as between-subject variance estimates increase. 

INTRODUCTION
Since published pharmacokinetic and pharmacodynamic models are often used by others for the purpose of 
simulations, clarity in reporting model parameter estimates is needed.3,4,5 We have found a particular 
situation where lack of clarity is frequently observed. Pharmacokinetic parameters are typically assumed to 
have log-normal distributions as they are required to be positive and are often right skewed.6,7 For instance, 
clearance (CL) is typically described as shown (Equation 1).

𝐶𝐿𝑖 = 𝜃1 ∗ exp (η1𝑖) (1)

where η1i is the zero-centered, normally-distributed, random deviate that determines the difference between 
the ith individual from the typical population clearance, θ1.  As variance parameters are reported in 
NONMEM®,8 and other population analysis software, the OMEGA element (ω2

CL) is a scalar, fixed-effect 
parameter that describes the variance of the distribution for CLi. The relationship between the variance of η 
and variance of CL is described elsewhere.9 Estimates of interindividual variability in parameters (ω2) are 
often reported in the tables of manuscripts and clinical study reports as percent coefficients of variation 
(%CV). Two methods have been presented in the literature and on the NONMEM Users Network listserv to 
calculate the %CV for the ω2 parameter estimate; these methods are presented below in Equation 2 and 
Equation 3.10-13

%𝐶𝑉 = 100 ∗ exp 𝜔2 − 1 (2)

%𝐶𝑉 = 100 ∗ 𝜔2 (3)

For a given ω2 estimate, the method of Equation 2 gives a %CV value which exceeds that of the method of 
Equation 3.  It has been suggested that when ω2 is <30%CV the simpler method of Equation 3 can be used 
with reasonably small error.8 As ω2 increases however, the difference between the two methods increases 
(Table 1).  The difference in %CV between methods exceeds 10 %CV units when the ω2 estimate exceeds 0.5 
(approximate %CV > 70%).  

METHODS
To give context to the frequency of equivocal reporting of ω2 parameter estimates, we performed a survey of 
models (PK, PD, PBPK, mathematical) published in the journal CPT: Pharmacometrics & Systems 
Pharmacology (CPT:PSP) from the first online issue (September 2012) until December 2018. Each manuscript 
was examined to see whether the authors reported:  1) either the method used to compute %CV values or 
the ω2 parameter estimates themselves, or 2) neither the equation used to compute %CV nor the ω2

parameter estimates. Three time ranges were considered: 2012-2015, 2016-2017, and 2018. This choice of 
range and stratification was intended to give both a broad scope of the literature and a look at current 
practice in a core pharmacometrics journal.

To illustrate the importance of this issue, two different simulation exercises were performed using the 
identified models. The first exercise was performed using a model for vancomycin based on the paper by 
Moore et al.14, which was chosen as it reported the parameter estimates and represented a first order model. 
For this exercise, three simulations were performed. The first simulation used the ω2 estimates reported in 
the paper. The second simulation used an erroneous ω2  value that was obtained from calculating the %CV 
with Eq. 3 and calculating the resulting ω2  value with Eq. 4.  The third simulation was repeated in the same 
way, but utilized Eq. 2 and Eq. 5.

𝜔2 = ln((
%𝐶𝑉

100
)2 + 1) (4)

𝜔2 = (
%𝐶𝑉

100
)2 (5)

The second exercise was performed using a model for paroxetine by Feng et. al.1, a manuscript that did not 
report which method was used for %CV calculation.  While there are numerous examples of this scenario in 
the literature, this paper was selected in part because reported variability was in excess of 70 %CV for several 
parameters.  For this exercise, two simulations of 1000 individuals were performed using ω2 parameter 
estimates that were calculated from the reported %CV values, one based on Equation 4 and one based on 
Equation 5. Simulations were performed using the R package mrgsolve.2 Results of the simulations were 
then used to calculate the magnitude of between-subject variability (%CV) for each run and compare it to the 
original value. 

RESULTS
For the years 2012-2015, 30 of 55 (54.5%) manuscripts reported either the ω2 estimate or how %CV was 
calculated.  For the years 2016-2017, 37 of 65 (56.9%) manuscripts reported either the estimate or how %CV 
was calculated.  For the year 2018, 13 of 19 (68.4%) manuscripts reported either the estimate or how %CV 
was calculated (Figure 1). Thus, more recent papers were more likely to have given clarity to the definition of 
the parameter variance, yet still nearly one-third of the manuscripts examined did not give adequate clarity 
or definition to use the reported model parameters accurately with certainty.

For the first exercise, 10,000 subjects receiving a 1500mg infusion every 12 hours were simulated. 
Concentration time profiles were generated for each run.  The %CV was calculated using both methods and 
ω2 value were then calculated using the wrong method. Estimates used were shown below (Table 2). There 
was approximately a 1.5-fold increase in the ω2  value for CL between the two incorrect calculations leading 
to under or overestimation of the model (Figure 2). 

Another example of the impact of using the incorrect assumption regarding variability is provided in the table 
below, where differences from the true value are presented assuming simulation estimates were calculated 
with the incorrect assumption regarding the %CV calculation. Table 3 demonstrates the magnitude of error 
that will result in simulations from a published model if the wrong equation is used to derive the ω2 estimate 
from the %CV value reported in a manuscript. When the wrong assumption is used, between-subject 
variability in model-based simulations will be systematically under- or over-estimated. The impact of the 
discrepancy will increase with increasing values of the true ω2 value.

SUMMARY
Accurate reporting of either the variance (ω2) estimates in parameter tables or the method used to calculate 
%CV is important, especially as the magnitude of between-subject variance estimates increase. Enhanced 
clarity in reporting and clear statements regarding assumptions will improve the reproducibility of modeling 
and simulation results and allow for accurate re-use of models and modeling findings. w2 %CV based on Eq. 2 %CV based on Eq. 3 Difference in %CV (Eq. 2 – Eq. 3)

0.001 3.163 3.162 0.001

0.01 10.025 10.000 0.025

0.025 15.911 15.811 0.099

0.05 22.643 22.361 0.282

0.1 32.430 31.623 0.807

0.15 40.229 38.730 1.499

0.2 47.053 44.721 2.332

0.25 53.294 50.000 3.294

0.4 70.130 63.246 6.885

0.5 80.543 70.711 9.833

0.6 90.671 77.460 13.211

0.7 100.685 83.666 17.019

0.8 110.704 89.443 21.261

1 131.083 100.000 31.083

1.25 157.808 111.803 46.005

Table 1: Difference between resulting %CV values using the two computation methods for various values of ω2

2012-2015 20182016-2017

Not Reported Equation 2
Equation 3 Estimate Reported

Calculated %CV 

from simulation 

(calculated using 

Equation 3)

%CV assuming

Equation 2 

solution is true

% Difference in %CV† Calculated %CV 

from simulation 

(calculated using 

Equation 2)

%CV assuming

Equation 3 

solution is true

% Difference in %CV†

VM Pheno0=111

Pheno1=110

Pheno2=102

Pheno3=115

Pheno4=108

90 23.3

22.2

13.3

27.8

20

Pheno0=90.4

Pheno1=89.2

Pheno2=84.3

Pheno3=94.3

Pheno4=88.6

111.7 -19.1

-20.1

-24.5

-15.6

-20.7

KM 156 109 43.1 112 156 -28.2

V2 90.2 77.8 15.9 78 91.2 -14.5
†Percent Difference = ((calculated-actual)/actual))*100

Pheno0 = missing phenotype information

Pheno1 = poor metabolizers

Pheno2 = intermediate metabolizers

Pheno3 = extensive metabolizers

Pheno4 = ultra-rapid metabolizers

Table 3: Magnitude of error if the inappropriate calculation is used for simulations

w2 True Value %CV based on Eq. 3
Incorrect Estimate

using Eq. 4
%CV based on Eq. 2

Incorrect Estimate

using Eq. 5

CL 0.466 68 0.382 77 0.593

V 0.109 33 0.104 34 0.116

Table 2: Estimates of random effects used for simulations

Figure 2: Concentration vs time profiles for vancomycin at a) Prior to steady state. b) Steady state. c) Steady state on a log scale. Lines represent 
the median, 5th and 95th percentile of concentrations for each of the three simulations. The black lines represent the simulation using the 
estimate reported. The blue line represents the simulation when incorrectly calculating ω2 estimate with Eq. 4. The red line represents the 
simulation when incorrectly calculating ω2 estimate from Eq. 5.
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Figure 1: Percentage of papers that reported the method, the ω2 estimate, or did not accurately report either

a

b c

https://github.com/metrumresearchgroup/mrgsolve
http://www.cognigencorp.com/nonmem/nm/98sep261997.html
http://www.cognigencorp.com/nonmem/nm/99feb042003.html

