

DILIsymServices

ST A SIMULATIONS PLUS COMPANY

Using DILlsym, a Quantitative Systems Toxicology (QST) Software Tool of Drug-Induced Liver Injury (DILI), to Assess DILI Risk in Drug Development

August 17, 2018

Brett A. Howell, Ph.D., President, DILlsym Services

*DILIsym[®], NAFLDsym[®], SimPops[®], and MITOsym[®] are registered trademarks, and ADMET Predictor[™], GastroPlus[™], SimCohorts[™] and RENAsym[™] are trademarks, of Simulations Plus and its affiliates for computer modeling software and for consulting services

CONFIDENTIAL

DILIsym Talk Agenda

- Mechanistic mathematical modeling within drug development
- Overview of the DILIsym Software
- Example GastroPlus / DILIsym Application

SF A SIMULATIONS PLUS COMPANY

2

FDA U.S. FOOD & DRUG ADMINISTRATION

FDA Voice by Commissioner Scott Gottlieb, M.D.

Blog Home Categories »

FDA.gov

← Previous Next \rightarrow

How FDA Plans to Help Consumers Capitalize on Advances in Science

Contact Us

Posted on July 7, 2017 by FDA Voice

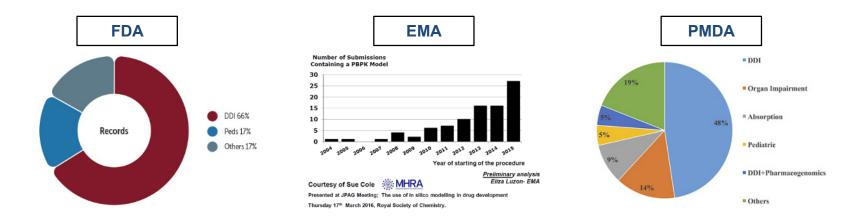
To build upon such opportunities, FDA will soon unveil a comprehensive Innovation Initiative. It will be aimed at making sure our regulatory processes are modern and efficient, so that safe and effective new technologies can reach patients in a timely fashion. We need to make sure that our regulatory principles are efficient and informed by the most up to date science. We

don't want to present regulatory barriers to beneficial new medical innovations that add to the time, cost, and uncertainty of bringing these technologies forward if they don't add to our understanding of the product's safety and benefits.

Today we announced our detailed work plan for the steps we're taking to implement different aspects of Cures. I want to highlight one example of these steps, which we're investing in, and will be expanding on, as part of our broader Innovation Initiative. It's the use of in silico tools in clinical trials for improving drug development and making regulation more efficient

FDA's Center for Drug Evaluation and Research (CDER) is currently using modeling. and simulation to predict clinical outcomes, inform clinical trial designs, support evidence of effectiveness, optimize dosing, predict product safety, and evaluate potential adverse event mechanisms. We'll be putting out additional, updated guidance on how aspects of these in silico tools can be advanced and incorporated into different aspects of drug development.

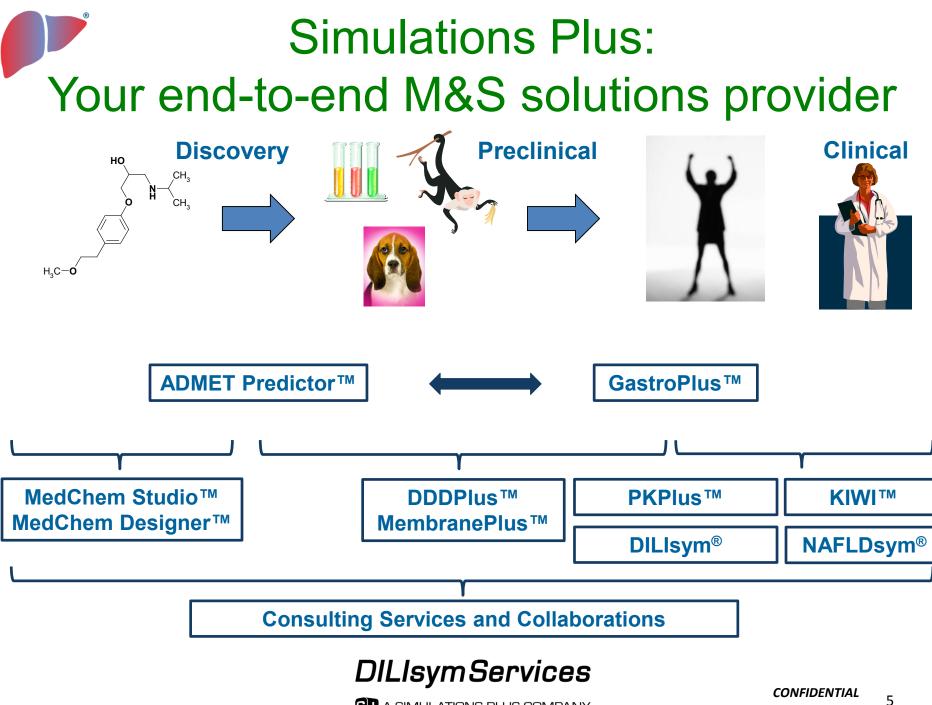
DILIsymServices


FDA Voice blog: July 7th, 2017

SH A SIMULATIONS PLUS COMPANY

3

Recent PBPK Modeling Trends: Regulatory Information


- 180 PBPK modeling citations in the FDA's Office of Clinical Pharmacology database (2008-15)
- 60 submissions received by EMA containing PBPK models (2013-15)
- 17 PBPK modeling citations at Japan PMDA (2014-16)

Mehrotra et al., DMD, 2016 Sato et al., CPT 2017 Cole et al., 2016 JPAG Meeting

DILISYM Services SE A SIMULATIONS PLUS COMPANY

SH A SIMULATIONS PLUS COMPANY

Saying "I do" to the QSAR / PBPK / QST marriage... Ca = 101.079 Age years]: Permeability, Local & systemic Weight [solubility vs. pH, Height [Q = 3.1636 exposure, drug Q = 101.079 V = 4488.87 Plasma Paramet pKa(s), Vnp: 0.0035 distribution, 0 - 25.731 Vphp: 0.00225 logD vs. pH, parent and Vwp: 0.945 Fup, metabolite Adipose 0 = 10.5247 Hct 0.45 0 = 10.6772 blood:plasma levels. Blood Cells Para 0 = 3.94528 Vnbc: 0.0017 ratio, tissue Kps, patient 0 = 14.7354 Vphbc: 0.0029 C 0 = 17.4631 **CLint**, **CLfilt** Vwbc: 0.603 variability Cap: 0.5 O 0 = 4.03355 V = 2016.5 C 0.1155

Quantitative Structure Activity Relationships (QSAR)

ADMET Predictor^{**}

Physiologically-Based Pharmacokinetics (PBPK)

GastroPlus

Quantitative Systems Pharmacology/Toxicology (QSP/QST)

DILIsym[•]

SH A SIMULATIONS PLUS COMPANY

6

DILIsym Talk Agenda

- Mechanistic mathematical modeling within drug development
- Overview of the DILIsym Software
- Example GastroPlus / DILIsym Application

SF A SIMULATIONS PLUS COMPANY

FDA Briefing Document

Solithromycin Oral Capsule and Injection

Meeting of the Antimicrobial Drugs Advisory Committee (AMDAC)

November 4, 2016

The committee will discuss new drug applications (NDAs) 209006 and 209007 for solithromycin oral capsule and injection, submitted by Cempra Pharmaceuticals, for the proposed indication of treatment of community acquired bacterial pneumonia.

SH A SIMULATIONS PLUS COMPANY

FDA panel narrowly backs Cempra antibiotic Posted: 5:17 p.m. Friday, Nov. 4, 2016

The Associated Press WASHINGTON —

The Food and Drug Administration's outside experts voted 7-6 in favor of the drug, saying its effectiveness outweighed risks of liver toxicity seen in company studies. The vote is nonbinding but the FDA often follows the advice of its panelists.

Reuters News – Thu Dec 29, 2016. 9:05 am EST

"The agency recommended an additional 9,000 patient study to rule out risk".

Cempra lost \$1B of valuation in 1 day

SF A SIMULATIONS PLUS COMPANY

9

The DILI-sim Initiative is a Partnership between DILIsym Services and Pharmaceutical Companies to Minimize DILI

Select Sample of Current Companies Licensing DILIsym

- Overall Goals
 - Improve patient safety through QST
 - Reduce the need for animal testing
 - Reduce the costs and time necessary to develop new drugs
 - <u>History</u>
 - Officially started in 2011
 - 19 major pharmaceutical companies have participated
 - Members have provided compounds, data, and conducted experiments to support effort
 - Over \$8 million total invested in project

ST A SIMULATIONS PLUS COMPANY

DILI-sim SAB Includes World Class Scientists

Dr. Neil Kaplowitz Professor of Medicine USC Thomas H. Brem Chair in Medicine Chief, Division of Gastroenterology and Liver Diseases

Dr. Paul B. Watkins DIRECTOR, INSTITUTE FOR DRUG SAFETY SCIENCES HOWARD Q. FERGUSON DISTINGUISHED PROFESSOR OF MEDICINE UNC Eshelman School of Pharmacy

Dr. Kevin Park Head of Institute of Translational Medicine / Director, MRC Centre for Drug Safety Science, University of Liverpool

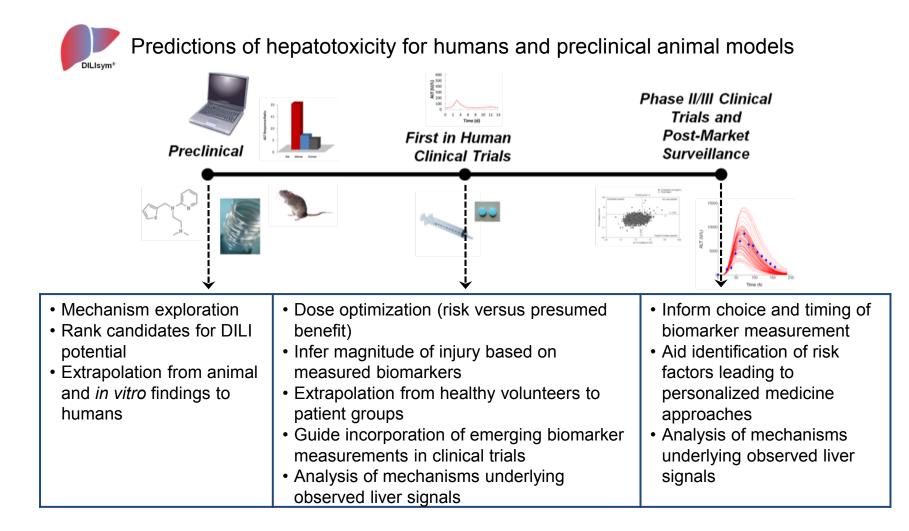
Dr. Jack Uetrecht Professor, Canada Research Chair in Adverse Drug Reactions University of Toronto

Dr. Robert Roth Distinguished Professor of Pharmacology & Toxicology Director, Graduate Training Program in Environmental and Integrative Toxicological Sciences, Center for Integrative Toxicology Michigan State University

David Pisetsky Professor of Medicine Professor of Immunology Member of the Duke Cancer Institute Member of the Duke Human Vaccine Institute

11

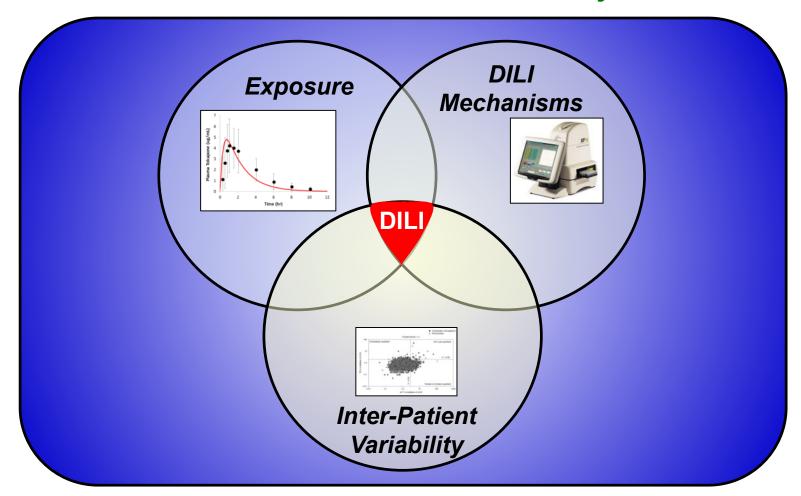
Stage 3 Will Include Key Components Necessary for Predicting Idiosyncratic Liver Injury


THE HAMNER INSTITUTES FOR HEADIN SCIENCES	DILIsym [®] Services	DILISYM Services SF A SIMULATIONS PLUS COMPANY
2012 <u>Stage 1</u>	2015 <u>Stage 2</u>	2018 <u>Stage 3</u>
 <u>Mechanisms</u> Reactive metabolites Oxidative stress Mitochondrial toxicity Bile acid toxicity 	<u>Mechanisms</u>LipotoxicityInnate immunity	 Mechanisms Adaptive immunity Cholestasis Improve in vitro assay systems
Patients and animals	Patients and animals	Patients and animals
Rats, mice, dogsHealthy volunteers	Healthy volunteersDisease area patients	 Larger more robust SimPops and biomarkers Disease area patients
 <u>Compounds</u> Exemplars for optimization 	 <u>Compounds</u> Exemplars for optimization Exemplars for validation 	 <u>Compounds</u> Exemplars for optimization Exemplars for validation

Application of DILIsym in Drug Development

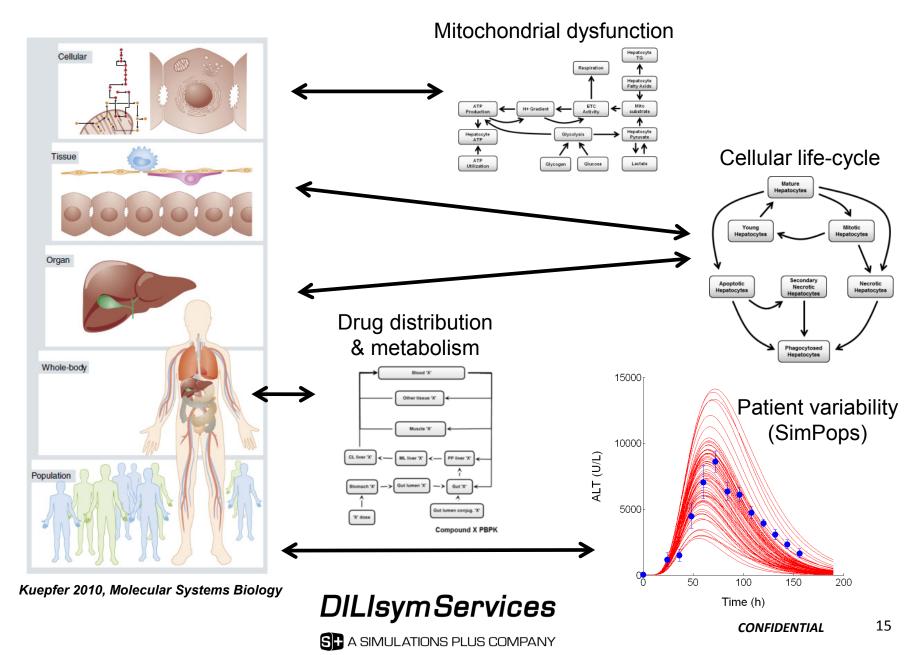
DILIsymServices

SH A SIMULATIONS PLUS COMPANY


Applications of DILIsym Along the Drug Development Pipeline

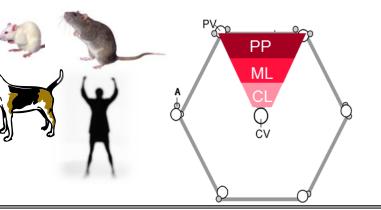
DILIsymServices

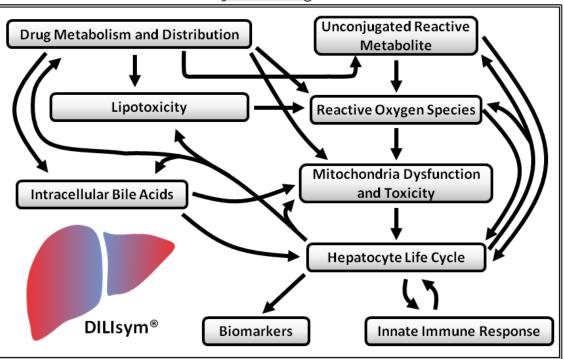
ST A SIMULATIONS PLUS COMPANY


DILIsym Predicts DILI via the Intersection Between Exposure, Mechanisms, and Inter-Patient Variability

DILIsymServices

SF A SIMULATIONS PLUS COMPANY


DILIsym: Quantitative Systems Toxicology


DILIsym Overview

Multiple species: human, rat, mouse, and dog

- Population variability
- The three primary acinar zones of liver represented
- Essential cellular processes represented to multiple scales in interacting sub-models
 - Pharmacokinetics
 - Dosing (IP, IV, Oral)
 - Transporter Inhibition
 - Drug metabolism
 - GSH depletion
 - Injury progression
 - Mitochondrial dysfunction, toxicity, DNA depletion
 - Bile acid mediated toxicity
 - Steatosis and lipotoxicity
 - Cellular energy balance
 - Hepatocyte apoptosis and necrosis, and proliferation
 - Macrophage, LSEC life cycles
 - Immune mediators
 - Caloric intake
 - Biomarkers

- Over 30 detailed representations of optimization or validation compounds
- Single and combination drug therapies

DILIsymServices

SH A SIMULATIONS PLUS COMPANY

DILIsym Utilizes Various Data Types to Inform Decisions

Exposure Data

PBPK Modeling

- Compound Properties
 - Tissue partition coefficients
- Tissue penetration studies
 - Liver to blood ratio
- Pharmacokinetic data
 - Absorption, extra-hepatic clearance, metabolites
- in vitro data
 - Metabolite synthesis, active uptake

In vitro Mechanistic DILI Data

- Assays performed to determine <u>quantitative</u> <u>aspects of DILI mechanisms</u>
- Oxidative stress
 - Direct and reactive metabolite-mediated
- Mitochondrial toxicity
 - ETC inhibition
 - Uncoupling
- Bile acid transporter inhibition
 - BSEP, MRP3 and 4, NTCP
- Bilirubin transport/metabolism
 - OATP1B1, OATP1B3, UGT1A1, MRP2, MRP3

Modeling & Simulation

Simulations and Assays inform:

- Prediction of DILI risk
- Participating DILI mechanisms
- Characteristics of patients at risk for DILI
- Drug dosing paradigms
- DILI monitoring strategies

Clinical Data

- Dosing Protocols, fasting/fed state, meal times
- Anthropometric data
 - Body weight, age, ethnicity
- Pharmacokinetic data
 - Absorption, extra-hepatic clearance, metabolites

DILIsymServices

SF A SIMULATIONS PLUS COMPANY

DILIsym Performance Review – Level 1

- Key Question: would the weight of evidence from the drug case and from the DILIsym results have led to the same overall conclusion regarding the presence or absence of a possible drug-induced liver injury liability for the compound?
 - Secondary question: was the general magnitude of injury over-predicted (O), under-predicted (U), or correctly predicted (C), based on severity and frequency of injury?

Compound L (DILI)	Didanosine (clean)	Ambrisentan (clean)	Sitaxsentan (DILI)	Compound S (DILI)	Compound R (DILI)	Lixivaptan (clean)	Compound Q sc. 2 (DILI)	Compound Q sc. 1 (DILI)	acidosis)	Phenformin (lactic	Metformin (clean)	TAK-875 (DILI)	MK-0536 (DILI)	Azithromycin (DILI)	Telithromycin (DILI)	Compound P (DILI)	Compound O (DILI)	Compound N (DILI)	Clarithromycin (DILI)	Erythromycin (DILI)	Compound H (Clean)	CKA (Clean/Some DILI)	Solithromycin (DILI)	Compound G (DILI)	AMG 853 (Clean)	Compound F (DILI)	AMAP (N/A)	Compound E (DILI)	Compound C (DILI)	Compound B (DILI)	Tolvaptan (DILI)	Telmisartan (Clean)	Bosentan (DILI)	Compound A (DILI)	AMG009 (DILI)	Pioglitazone (Clean)	Troglitazone (DILI)	ivietnapyrijene (Clean)	Tolcapone (DILI)	Entacapone (Clean)	Drug
C	С	С	С	0	C	С	C	C	C	ר	C	C	С	C	C	C	С	0	C	С	C	C	C	0	С	C	I	c	0	0	0	C	0	C	C	C	0	C	C	С	Human
																				;	ł	C	1	ł	1	1	;	1	C	1	1	1	C	1	C	ł	C	C	1	ł	Rat
																				;	1	ł	1	ł	;	1	C	;	1	:	1	1	1	1	1	1	;	C	1	;	Mouse
																				I	I	I	I	I	1	I	ł	1	1	ł	ł	I	I	I	ł	I	1	ł	1	I	Dog
Co	olor	Key -	- Ac	cura	acy	of D	OILISY	m			8	3	%	/ 0	(3	33	3/	12	10)	ge	n	e	61		Y					H	U	M	A	N				MI	CE	
		ood ad												р	r	e	d	ic	cte	90		ve										R	A٦	٢S				[00	GS	
		al, F Simi					Data ults														n S															C	ON	FIDEI	NTIA	L	18

Known DILIsym Applications Submitted to or Intended for Regulatory Agencies

N	Agency	Context	Scenario	Simulation Type	Presented/ Submitted By
1	FDA	Simulation results included in formal, written correspondence to agency	Sponsor responding to concerns over liver safety signals	Hepatocyte loss (biomarker fitting)	Sponsor
2	FDA	Simulation results included in formal, written correspondence to agency	Sponsor responding to concerns over liver safety signals	Hepatocyte loss (biomarker fitting)	Sponsor
3	FDA	Simulation results included in formal, written correspondence to agency and presented during meeting	Sponsor responding to concerns over liver safety signals	Hepatocyte loss (biomarker fitting)	Sponsor and DSS
4	BARDA*	Simulation results presented to sponsor group at BARDA	Sponsor responding to concerns over liver safety signals	Mechanistic liver injury (predictive)	DSS and Sponsor
5	FDA and Japanese FDA	Simulation results included in formal, written correspondence to agency and presented during meeting	Sponsor addressing concerns over liver safety in NDA submission	Mechanistic liver injury (predictive)	Sponsor and DSS
6	FDA	Simulation results included in formal, written correspondence to agency and presented during meeting	Sponsor repurposing compound that failed due to hepatotoxicity in IND submission	Mechanistic liver injury (predictive)	Sponsor and DILIsym Services
7	FDA	Simulation results included in formal, written correspondence to agency and presented during meeting	Sponsor addressing concerns over liver signals from other drug in same class with same indication	Mechanistic liver injury (predictive)	Sponsor
8	FDA	Simulation results included in formal, written correspondence to agency	Sponsor addressing concerns over liver safety in NDA submission	Mechanistic liver injury (predictive)	Sponsor
9	FDA	Simulation results included in formal, written correspondence to agency and discussed during call with FDA	Sponsor responding to concerns over liver safety signals	Hepatocyte loss (biomarker fitting)	Sponsor
10	FDA and global regulators	Sponsor intended to submit simulation results	Sponsor addressing concerns over liver safety signals	Hepatocyte loss (biomarker fitting) Mechanistic liver injury (predictive)	Sponsor
11	FDA	Sponsor intended to submit simulation results	Sponsor addressing concerns over liver signals from other drug in same class with same indication	Mechanistic liver injury (predictive)	Sponsor
12	FDA	Sponsor intended to submit simulation results	Sponsor reformulating existing compound on the market	Mechanistic liver injury (predictive)	Sponsor
13	FDA	Sponsor intended to submit simulation results and present at meeting	Sponsor addressing concerns over liver safety signals	Mechanistic bilirubin (predictive)	Sponsor
*N	ot a direct regulato	ry agency, but affiliated closely with NIH and EDA			

*Not a direct regulatory agency, but affiliated closely with NIH and FDA

**Several additional sponsors have declared intent to include results in regulatory communications in the future

***Additional drug development teams have implied that regulators have informally requested or recommended DILIsym simulations

Scientists at the FDA Have Expressed a Strong Interest in DILIsym Results

PERSPECTIVES

"We look forward to future efforts to apply this model for prediction of hepatotoxicity that has not been clinically observed."

FDA Office of Clinical

Pharmacology

abstantially reassure ators about the safety ug, thereby preventination of promising ally, the potential for for TdP presented by v combining them king drugs (e.g., ectively eval-

The views exploopinions of the authpolicy of the United State Services University, or the Dep Defense.

CONFLICT OF INTEREST The author declared no conflict of interest.

© 2014 ASCPT

 January, C.T. & Riddle, J.M. Early after depolarizations: mechanism of induction and block: a role for 1-type Ca⁺⁺ current. Circ. Res. 64 077, 000 (1089).

See ARTICLE page 589

Application of Systems Pharmacology to Explore Mechanisms of Hepatotoxicity

J Shon¹ and DR Abernethy¹

Advances in systems biology have allowed the development of a highly characterized systems pharmacology model to study mechanisms of drug-induced hepatotoxicity. In this issue of T, Yang *et al.* describe a model, DILIsym, used to characterize anisms of hepatotoxicity of troglitazone. Their modeling appro-th has provided new insight into troglitazone-induced hepatotoxicity in humans but is not associated with hepatotoxicity in rats, consistent with preclinical data for this drug.

*Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA. Correspondence: DR Abernethy (Darrell. Abernethy@fda.hhs.gov)

doi:10.1038/clpt.2014.167

VOLUME 96 NUMBER 5 | NOVEMBER 2014 | www.nature.com/cpt

DILIsymServices

S + A SIMULATIONS PLUS COMPANY

DILIsym Talk Agenda

- Mechanistic mathematical modeling within drug development
- Overview of the DILIsym Software
- Example GastroPlus / DILIsym Application

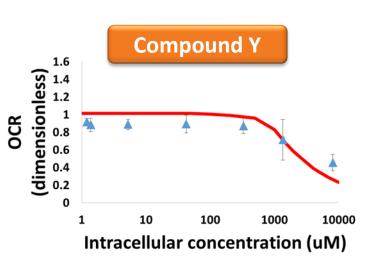
SH A SIMULATIONS PLUS COMPANY

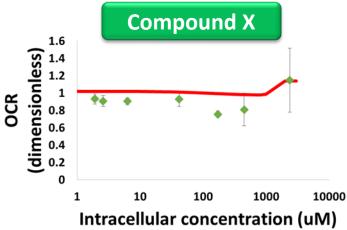
Example Project Goal – Assess Compound X and Compound Y

- The primary goal of this simulation work within the DILIsym software was to:
 - quantitatively and mechanistically assess the liver toxicity potential of Compound X and Compound Y combining clinical and mechanistic *in vitro* data with DILIsym and GastroPlus software simulations of previous or prospective clinical dosing paradigms.

Mitochondrial Toxicity Parameters Determined for Compound Y and Compound X

- Parameter values were fit to mitochondrial data for Compound Y and Compound X
 - Electron transport chain inhibition for Compound Y
 - Both electron transport chain inhibition and uncoupling for Compound X
 - 24 hour data used
- MITOsym and DILIsym used to parameterize both compounds

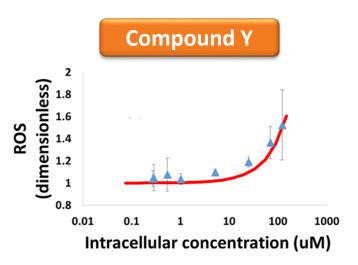


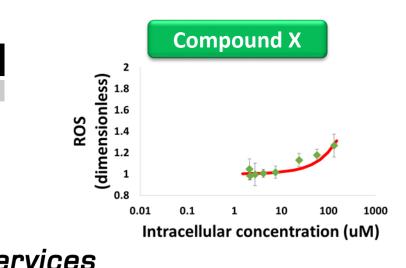

DILIsym Parameter	Compound Y Value	Compound X Value	Units
Coefficient for ETC inhibition 1	38,000	Not used	μΜ
Coefficient for ETC Inhibition 3	0.1	4,200	μΜ
Max inhibitory effect for ETC inhibition 3	0.2	0.4 (max effect)	dimensionless
Uncoupler 1 effect Km	No effect	15,000	μΜ
Uncoupler 1 effect Vmax	No effect	22	dimensionless
Uncoupler 1 effect Hill	No effect	4	dimensionless

Preclinical Data and Simulation Results

DILIsymServices

SF A SIMULATIONS PLUS COMPANY


Oxidative Stress Parameters Determined for Compound Y and Compound X


- Parameter values were fit to 24-hour ROS data for Compound Y and Compound X
- DILIsym representation of *in vitro* environment used to parameterize both compounds
- Saturable model explored but did not lead to better fit

DILIsym Parameter		Compound Y Value	Compound X Value	Units
RNS/ROS production rate cor	nstant 1	3.4 x 10 ⁻⁴	1.7 x 10 ⁻⁴	mL/nmol/hr
су	þ	AN EVOTE		
Preclinical Data and			DIL	lsymSe

Simulation Results

Compound Y Weakly Inhibits BSEP; Compound X Does Not

- Compound Y is a weak but noncompetitive/uncompetitive inhibitor of BSEP
- Compound X does not inhibit BSEP
 - No changes to V_{max} or K_m of transporters observed over course of assay

DILlsymServices

SH A SIMULATIONS PLUS COMPANY

DILIsym Toxicity Parameters for Compound Y and X

Mechanism	Parameter	Unit	DILIsym Parameter Value*			
Wechanishi	Parameter	Omt	Compound Y	Compound X		
	Coefficient for ETC inhibition 1	μΜ	38,000	Not used		
	Coefficient for ETC Inhibition 3	μΜ	0.1	4,200		
Mitochondrial	Max inhibitory effect for ETC inhibition 3	dimensionless	0.2	0.4		
Dysfunction	Uncoupler 1 effect Km	μΜ	No effect	15,000		
	Uncoupler 1 effect Vmax	dimensionless	No effect	22		
	Uncoupler 1 effect Hill	dimensionless	No effect	4		
Oxidative Stress	RNS/ROS production rate constant 1	mL/nmol/hr	3.4 x 10 ⁻⁴	1.7 x 10 ⁻⁴		
	BSEP inhibition constant	μΜ	140	No inhibition		
Bile Acid	BSEP inhibition alpha value	dimensionless	0.6	No inhibition		
Transporter Inhibition	NTCP inhibition constant	μΜ	No inhibition	No inhibition		
	MRP4 inhibition	μM	40	75		


*Values shown in the table for DILIsym input parameters should not be interpreted in isolation with respect to clinical implications, but rather, should be combined with exposure in DILIsym to produce simulations that have predictive and insightful value

DILlsymServices

GastroPlus PBPK Model Used to Predict Liver Exposure of Compound Y and Compound X

- Data on Compound Y and Compound X pharmacokinetics not available in the literature
 - No plasma time courses available; no *in vitro* or animal studies available either
 - Data on T_{max} , Compound Y $f_{u,plasma}$ available
 - In vitro data on liver distribution available from intracellular data collected for this project
- Structure of each compound available online
 - QSAR modeling using ADMET Predictor and GastroPlus provided the best possible estimate of Compound Y and Compound X distribution and pharmacokinetics

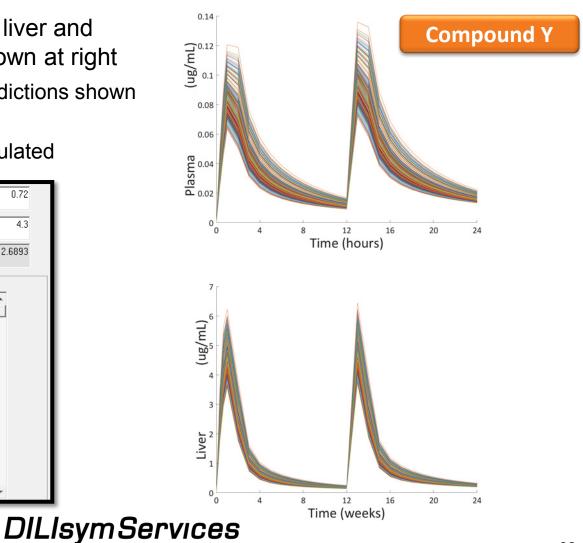
- Plasma time course was estimated in GastroPlus and translated into DILIsym using "specified data" option
 - Liver:plasma partition coefficient was calculated from the cell:media ratio in the *in vitro* data and used as input into GastroPlus; the remainder of the parameters were calculated by ADMET Predictor

LlsymServices

A SIMULATIONS PLUS COMPANY

Both compounds distribute significantly into the liver

Compound X


Compound Y

- Compound Y average cell:media was 18; Compound X average cell:media was 9

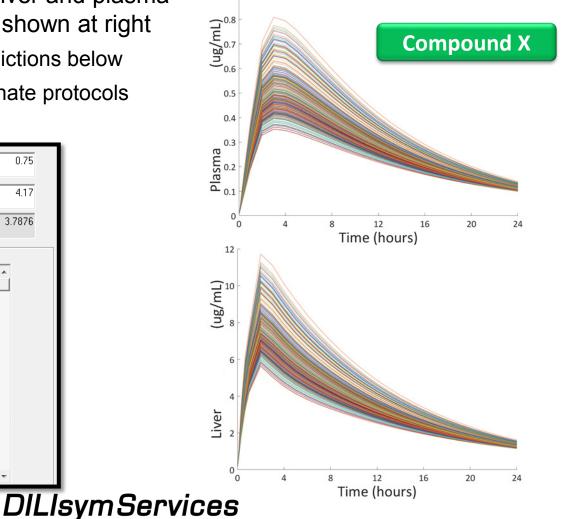
Compound Y PBPK Representation Calculated at Clinical Dose

- GastroPlus predictions for liver and
 plasma at clinical dose shown at right
 - PBPK model specific predictions shown below
 - Dose escalation was simulated

Scale Pediat		Blood	/plasr	na Conc	Ratio: 0.72
Fup & Rbp	۰ι		•	sma Fup sma Fup	2 6893
PBPK Summ	-	1			
Tissue	Кр	CL	CLint	Fut/FuInt	A
Hepatic Artery	0.00	0.000	0.000	0.000	
Tung Cung	0.51	0.000	0.000	0.053	
🗾 Arterial Supply	0.00	0.000	0.000	0.000	
🗾 Venous Return	0.00	0.000	0.000	0.000	
Adipose 🔁	5.33	0.000	0.000	0.005	
To Muscle	1.66	0.000	0.000	0.016	
Tiver	18.30	0.000	0.000	0.001	
1 📶 ACAT Gut	0.00	0.000	0.000	0.000	
🛅 Spleen	1.69	0.000	0.000	0.016	
Teart 🔁	1.89	0.000	0.000	0.014	
🛅 Brain	4.24	0.000	0.000	0.006	
Tidney	1.69	0.318	0.000	0.016	
🛅 Skin	2.17	0.000	0.000	0.012	
The ReproOrg	1.70	0.000	0.000	0.016	
	4.70	0.000	0.000	0.006	
Transformation RedMarrow				0.005	
TellowMarrow	5.33	0.000	0.000	0.005	

Simulation Results

ST A SIMULATIONS PLUS COMPANY


Compound X PBPK Representation Calculated at Clinical Dose

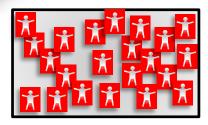
SH A SIMULATIONS PLUS COMPANY

0.9

- GastroPlus predictions for liver and plasma at clinical dose for 25 days shown at right
 - PBPK model specific predictions below
 - Dose escalation and alternate protocols were also simulated

	cale Pediatr		Blood	/plasr	na Conc	Ratio: 0.75
	up&Rbp	ે (Jse Ex	(p Pla	sma Fup	[%] : 4.17
PB	PK Summa		Jse Ao	ij Plas	sma Fup	[%]:
	Tissue	Кр	CL	CLint	Fut/FuInt	A
(Hepatic Artery	0.00	0.000	0.000	0.000	
\mathbf{a}	Lung	0.30	0.000	0.000	0.125	
1	Arterial Supply	0.00	0.000	0.000	0.000	
1	Venous Return	0.00	0.000	0.000	0.000	
δ	Adipose	1.11	0.000	0.000	0.034	1
δ	Muscle	0.48	0.000	0.000	0.079	1
δ	Liver	9.34	0.000	0.000	0.004	1
1	ACAT Gut	0.00	0.000	0.000	0.000	1
Ծ	Spleen	0.51	0.000	0.000	0.074	
Ծ	Heart	0.60	0.000	0.000	0.063	
Ծ	Brain	1.10	0.000	0.000	0.034	
Ծ	Kidney	0.53	0.309	0.000	0.071	
Ծ	Skin	0.75	0.000	0.000	0.050	
	ReproOrg	0.54	0.000	0.000	0.070	
Ծ			0.000	0.000	0.030	
	RedMarrow	1.28	0.000	0.000	0.030	
δ		1.28	0.000	0.000	0.034	

Simulation Results


GastroPlus 9.6 Allows for Efficient Use of GastroPlus PBPK Models in Combination with DILIsym SimPops

- GastroPlus users build PBPK models within GastroPlus
- The "DILIsym" simulation mode in v9.6 will allow users to select a mapping of GastroPlus outputs to DILIsym PK inputs
- All DILIsym SimPops and SimCohorts are embedded within GastroPlus so user can select option of their choice
- Exported DILIsym Specified Data Excel template will be seamlessly compatible with DILIsym and contain PK outputs for <u>the right number of</u> <u>body-weight matched</u> rats, dogs, mice or humans
- This makes the manual creation of a Specified Data template unnecessary

DILIsym[®] SimPops

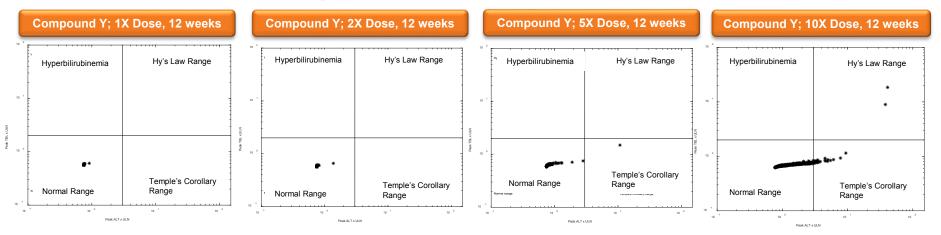
SimPops Results Show Compound X and Compound Y to be Safe at Clinical Doses; ALT Elevations Occur at Higher Doses for Both Compounds

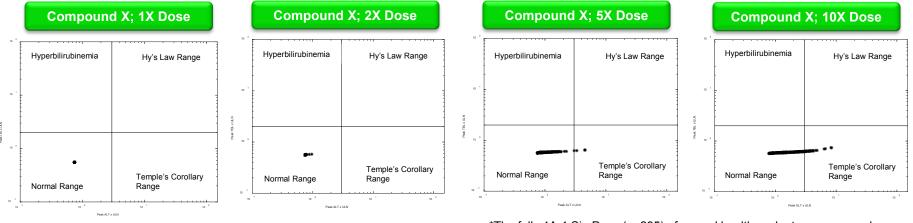
Compound Y

Compound X

- Neither Compound Y nor Compound X are predicted to cause toxicity at the highest clinical dose
 - Some exposure variability included in these predictions due to GastroPlus population generation
- Both Compound Y and Compound X are predicted to cause mild ALT elevations at supratherapeutic doses
 - No bilirubin elevations or Hy's Law cases occurred in simulations with Compound X
 - 2 Hy's Law cases occurred at 10x clinical dose simulations with Compound Y

	Compound	Dosing Protocol	Simulated* ALT > 3X ULN**
		1X Dose, 12 weeks	0% (0/285)
Compound Y	Compound V	2X Dose, 12 weeks	0% (0/285)
omp	Compound Y	5X Dose, 12 weeks	0.3% (1/285)
		10X Dose, 12 weeks	10.2% (29/285)
		1X Dose, 15 days	0% (0/285)
(pune	Compound V	2X Dose, 15 days	0% (0/285)
Compound X	Compound X	5X Dose, 15 days	1.1% (3/285)
		10X Dose, 15 days	11.6% (33/285)


*The full v4A-1 SimPops (n=285) of normal healthy volunteers was used **Upper limit of normal (ULN) in DILIsym is 40 U/L



DILIsymServices

SF A SIMULATIONS PLUS COMPANY

SimPops Results Show Lack of Severe Liver Injury for Both Compound Y and Compound X at Clinical Doses

*The full v4A-1 SimPops (n=285) of normal healthy volunteers was used **Upper limit of normal (ULN) in DILIsym is 40 U/L

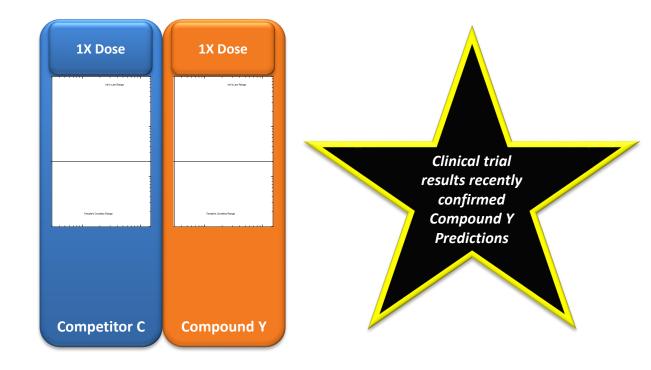
Simulation Results

SH A SIMULATIONS PLUS COMPANY

DILlsymS

32

Focus on Hy's Law Side of eDISH Plot – Comparison of Competitors and Compound X at Clinical Doses (285 Simulated Individuals in All Cases)


0.5X Dose	1X Dose	1X Dose, Regimen 1	1X Dose, Regimen 2	1X Dose, Regimen 3	1X Dose
Hy's Law Range	Hy's Law Range	Hy's Law Range	Hy's Law Range	Hy's Law Range	11/4 Lan Barge
Temple's Corollary Range	Temple's Corollary Range	• Temple's Corollary Range	** Temple's Corollary Range	Temple's Corollary Range	Tangat States Pang
Compe	etitor A		Competitor B		Compound X

Simulation Results

DILIsymServices

ST A SIMULATIONS PLUS COMPANY

Focus on Hy's Law Side of eDISH Plot – Comparison of Competitor and Compound Y at Predicted Clinical Doses (285 Simulated Individuals in All Cases)

DILlsymServices

SH A SIMULATIONS PLUS COMPANY

Example Project Summary

- GastroPlus[™] software, along with *in vitro* data, was used to construct PBPK representations to predict liver exposures for both compounds
- DILIsym parameters were successfully calculated from *in vitro* data for both compounds
- SimPops results show Compound X and Compound Y to be safe at projected clinical doses
- ALT elevations predicted within DILIsym at higher doses for both compounds
- SimPops results suggest that neither compound is likely to cause severe liver injury
- Phase IIb / III clinical trial results have subsequently confirmed the predictions for Compound Y

Presentation Summary

- A combination of multiple mechanistic, *in silico* modeling approaches can facilitate drug discovery (QSAR, PBPK, QSP and QST)
- DILIsym is a mechanistic, mathematical model that has been constructed to support pharmaceutical risk assessment and decision making
- DILIsym simulation results have been included in numerous communications with regulatory agencies
- DILIsym has been applied to support decisions related to compound DILI risk
 throughout the clinical development pipeline
 - Evaluated and interpret clinical biomarker signals in clinical trials
 - Optimized clinical trial design (dose selection, monitoring, inclusion/exclusion criteria)
 - Translated preclinical safety risk to first in human clinical trials
 - Ranked compounds by risk

Acknowledgements - The DSS Team

Paul B. Watkins **DILI-sim** Initiative Scientific Advisory Board Chair RTP, NC

Scott Q Siler **Chief Scientific Officer** Bay Area, CA

Brett Howell President RTP, NC

Shawn O'Connor CEO, Simulations Plus Inc. Lancaster, CA

Lisl Shoda Principal Scientist Director of Immunology

Kyunghee Yang Scientist II Middleton, DE

Yeshi Gebremichael Scientist II RTP, NC

Bay Area, CA

Corey Berry Bud Nelson Senior Software EngineerDirector of Operations RTP, NC

Shailendra Tallapaka Postdoctoral Fellow RTP, NC



RTP, NC

DILIsymServices

S+ A SIMULATIONS PLUS COMPANY

Patti Steele **Executive Assistant**

Diane Longo Scientist II Arlington, VA

Grant Generaux Scientist II Philadelphia, PA

Christina Battista

Scientist I

Buffalo, NY

Jeff Woodhead Scientist II RTP, NC

Vinal Lakhani Postdoctoral Fellow RTP, NC

Guncha Taneia Postdoctoral Fellow