

DILIsymServices

ST A SIMULATIONS PLUS COMPANY

DILlsym[®] User Training –

Parameterizing a Saturable Electron Transport Chain Inhibitor

December 2017

DILIsym[®] Development Team

*DILIsym[®], NAFLDsym[®], and MITOsym[®] are registered trademarks and SimPops[™] is a trademark of DILIsym[®] Services Inc. for computer modeling software and for consulting services.

CONFIDENTIAL

Participants should understand the following general concepts:

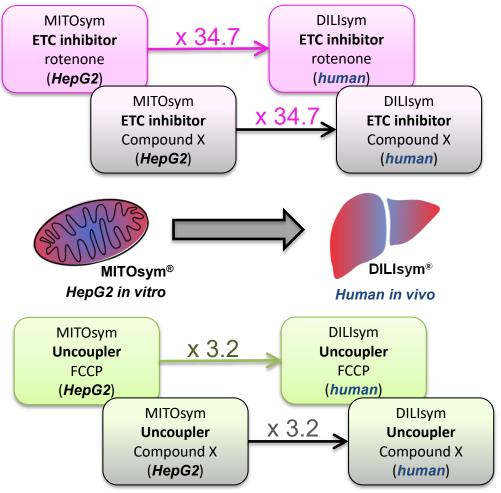
- Notable updates to toxicity parameters in DILIsym v7A as compared to v5A
- Methods used to parameterize and to simulate mitochondrial dysfunction in DILIsym
- DILIsym team recommendations for the use of saturable ETC inhibition

Toxicity Pathways Have Been Added for DILIsym v6A

- Several saturable toxicity pathways have been added for DILIsym v6A
 - Two saturable electron transport chain inhibition pathways (ETC-3 and ETC-4)
 - Two saturable reactive oxygen species production pathways (ROS-4 and ROS-5)
- Parameterization of these pathways has not been covered in a previous training session
 - Video instructions for parameterization of standard ETC inhibition and ROS production pathways are on the DILIsym website
 - Example of parameterization for saturable ETC inhibition follows

Saturable ETC Inhibition Can Be Used In Combination With Non-Saturable ETC Inhibition

- Some compounds exhibit OCR decline that appears to occur slowly at increasing concentrations
 - Compound G example ETC inhibition clearly goes to completion but data cannot be fit using normal ETC-1 alone
- These compounds can be represented as a combination of both saturable ETC inhibition (ETC-3 or 4) and traditional, non-saturable inhibition (ETC-1 or 2)
- Parameterization of such compounds can be a challenge due to lack of exemplar compound for saturable ETC inhibition

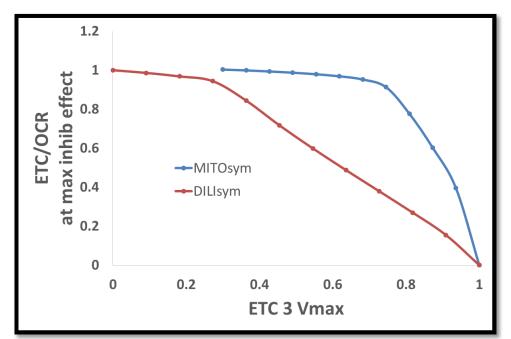


Preclinical Data

SH A SIMULATIONS PLUS COMPANY

ETC Inhibition Coefficient Values Are Designed To Be Translated from MITOsym

- Traditionally, ETC and uncoupler coefficient values are calculated in MITOsym and translated into DILIsym using coefficients determined by experience with exemplar compounds
 - Approximates difference between *in* vitro and *in vivo* environments
 - Rotenone is the exemplar for ETC inhibitors
- Saturable ETC inhibition does not have an exemplar compound
- Coefficient can be translated directly by assuming similarity with rotenone, but what about V_{max} value?
 - Unclear what the difference between
 V_{max} values should be between *in vitro* and *in vivo* situations



DILIsymServices

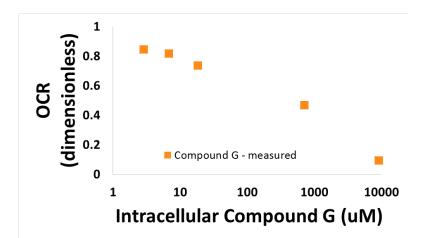
ST A SIMULATIONS PLUS COMPANY

Saturable ETC Inhibition V_{max} Values Do Not Directly Translate from MITOsym to DILIsym

- MITOsym and DILIsym have different behavior when saturable ETC inhibition is implemented
 - When concentration of inhibitor is much larger than the inhibition coefficient (i.e. inhibition is working at maximum capacity), MITOsym responds less than DILIsym
 - Unclear what is driving the difference in responses
- Direct translation of V_{max} from MITOsym to DILIsym will lead to substantially larger responses in DILIsym
 - This is plausible but unrealistic in the view of the DILIsym team

DILISYMServices SE A SIMULATIONS PLUS COMPANY

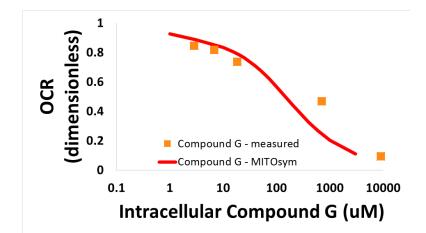
Simulation Results


Recommended Method for Parameterization of Saturable ETC Inhibitors

- Electron transport chain constant (Km) values have a known exemplar and the conversion from MITOsym to DILIsym is well understood
- The conversion for saturable ETC V_{max} values does not have an exemplar; the differences between *in vitro* and *in vivo* are less certain
- When using saturable ETC inhibition to reproduce slowly declining OCR activity, we recommend the following:
 - The curve should be reproduced in MITOsym and ETC3/4 (and ETC1/2, if using) coefficients should be translated over using the rotenone-derived conversion factor
 - 2. The curve should also be reproduced in DILIsym (with *in vitro* like setup) and the V_{max} from that simulation should be used in place of the V_{max} from MITOsym
 - 3. The resulting parameters should be a hybrid of the coefficient from MITOsym and the $V_{\rm max}$ from DILIsym

SH A SIMULATIONS PLUS COMPANY

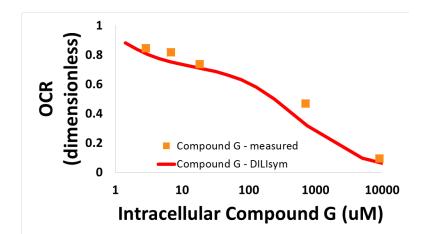
- Compound G: demonstrates a steady decrease in OCR over time in HepG2 cells
 - Cannot be represented with ETC-1 alone



Preclinical Data

SH A SIMULATIONS PLUS COMPANY

- Compound G: demonstrates a steady decrease in OCR over time in HepG2 cells
 - Cannot be represented with ETC-1 alone
- Compound G fit in MITOsym yields a set of DILIsym parameters after translation

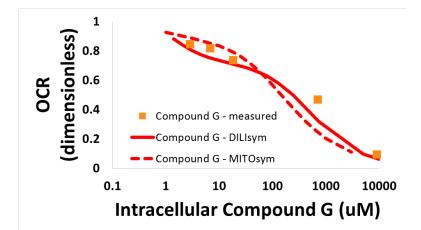

DILIsym Parameter	MITOsym parameter values	MITOsym parameters after translation	Units
Coefficient for ETC Inhibition 1	100	3470	μΜ
Coefficient for ETC Inhibition 3	0.054	1.89	μΜ
Max inhibitory effect for ETC inhibition 3	0.77	0.77	dimensionless

Preclinical Data and Simulation Results

DILIsymServices

SH A SIMULATIONS PLUS COMPANY

- Compound G: demonstrates a steady decrease in OCR over time in HepG2 cells
 - Cannot be represented with ETC-1 alone
- Compound G fit in MITOsym yields a set of DILIsym parameters after translation
- DILIsym fit also yields set of parameters


DILIsym Parameter	MITOsym parameter values	MITOsym parameters after translation	DILIsym parameter values	Units
Coefficient for ETC Inhibition 1	100	3470	510	μΜ
Coefficient for ETC Inhibition 3	0.054	1.89	0.5	μΜ
Max inhibitory effect for ETC inhibition 3	0.77	0.77	0.45	dimensionless

Preclinical Data and Simulation Results

DILIsymServices

ST A SIMULATIONS PLUS COMPANY

- Compound G: demonstrates a steady decrease in OCR over time in HepG2 cells
 - Cannot be represented with ETC-1 alone
- Compound G fit in MITOsym yields a set of DILIsym parameters after translation
- DILIsym fit also yields set of parameters
- Parameter set to be used is combination of the two parameter sets
 - Coefficients from MITOsym (with translation factors applied)
 - V_{max} from DILIsym (no translation factors required)

DILIsym Parameter	MITOsym parameter values	MITOsym parameters after translation	DILIsym parameter values	Units
Coefficient for ETC Inhibition 1	100	<u>3470</u>	510	μΜ
Coefficient for ETC Inhibition 3	0.054	<u>1.89</u>	0.5	μΜ
Max inhibitory effect for ETC inhibition 3	0.77	0.77	<u>0.45</u>	dimensionless

Preclinical Data and Simulation Results

DILIsymServices

SF A SIMULATIONS PLUS COMPANY