FACTORS INFLUENCING THE PHARMACOKINETICS (PK) OF THE ANTICANCER DRUG IRINOTECAN (CPT-11) AND ITS MAJOR METABOLITES, SN-38 AND SN-38G A. Xiao,¹ J. Fiedler-Kelly,¹ L. Schaaf², J. McGovren², E. Ludwig,¹ and G. Elfring² ¹Cognigen Corporation, Buffalo, NY and ²Pharmacia, Kalamazoo, MI

ABSTRACT

Purpose. To evaluate significant covariate effects on the PK of CPT-11 (C). SN-38 (S) and SN-38G (G).

Methods. Data obtained from 2 Phase II and 1 Phase III trials in 581 patients (pts) with colorectal cancer who received infusions of C 100 (99 pts), 125 (481 pts), or 150 mg/m² (1 pt) wkly for 4 wks, followed by a 2-wk rest period. Sparse sampling was performed after the wk 1 and/or 3 dose of Course 1 resulting in 2495, 2493 and 1107 samples for C, S, and G, respectively. Covariate effects were evaluated with a validated 5-compartment model via NONMEM® using p = 0.0001 as inclusion/exclusion criteria. Results. The table shows the % change in the typical clearances when a

covariate is changed in the indicated way.

Clearance Pathway	C→	C→S	S→G	G→	G→S	
Typical Value (L/hr)	26	3.54	309	16.9	71.1	
Change in covariate	Cov. effect (% change from typical value)					
Hemoglobin (1 g/dL)	7	-10			4	
Tot. bili (0.1 mg/dL)	-3	3				
CLcr (10 ml/min)	-5					
Perf. Status = 1 (vs 0)	-14		12			
Perf. Status = 2 (vs 0)	-40	22			-81	
Hisp./Asian (vs Cauc.)		-27				
Female (vs Male)		-19				
5-FU/LV (vs No)*			-20	32		
AST (10 U/L)	-3	3	7			
* Some patients received CPT-11 in combination with 5-FU/LV						

Conclusions. This comprehensive analysis provides insights into the magnitude of covariate effects. Consideration of such factors may be important for optimal irinotecan dosing.

INTRODUCTION

- Irinotecan (CPT-11), a camptothecin-derived inhibitor of topoisomerase-1, is a prodrug that undergoes metabolism to an active metabolite. SN-38. The metabolite is further conjugated to form the secondary metabolite, SN-38G.
- · A five-compartment population pharmacokinetic model was previously developed that simultaneously describes the plasma concentration profiles for CPT-11, SN-38, and SN-38G.
- Since diarrhea and myelosuppression associated with irinotecan therapy may relate to prodrug/metabolite exposure, understanding of patient factors that influence the pharmacokinetics of CPT-11 and its metabolites would be of value for more optimal design of dosage regimens.
- Previous studies evaluating the influence of patient covariates on the pharmacokinetics of CPT-11 and SN-38 have provided conflicting findings that may in part be the result of use of non-compartmental analysis methods for a drug with complex metabolism.
- · This analysis describes the evaluation of significant covariate effects on the pharmacokinetics of CPT-11, SN-38, and SN-38G using a validated 5-compartment model.1

METHODS

Study Design and Data

- Data were obtained from 1 Phase III and 2 Phase II trials of CPT-11 in patients with colorectal cancer
- Dose: 100-150 mg/m² infused over 90 minutes weekly for 4 weeks, followed by 2-week rest (6-week cycle). Dose adjustments were based on predefined criteria.

 PK sampling: week 1 (and week 3 for 1 study) of Course 1 at pre-dose. end of infusion, and at 1, 2, 4, and 24 hours post-infusion in 2 studies, and only at 2 and 6-8 hours post-infusion in the third study.

Bioanalytical Assay Method

- Total (sum of lactone + hydroxyacid form) CPT-11 and SN-38 concentrations (determined by HPLC)
- Species measured: CPT-11 and SN-38 all studies; SN-38G in 2 studies
- Mean interassay precision < 6% for all species
- Mean interassay QC sample recovery range: 92-112% for all species

Pharmacostatistical Mode

- NONMEM[®] V using first-order estimation
- · Five-compartment PK model Exponential error model evaluated for interindividual error
- · Constant coefficient of variation and combined additive plus constant
- coefficient of variation error models evaluated for residual error

Covariate Analysis

- Patient covariates: hemoglobin, total bilirubin (TBIL), creatinine clearance (CLcr), ECOG performance status (PS), race, gender, coadministration of 5-fluorouracil/leucovorin, aspartate aminotransferase (AST), age, body surface area (BSA), dose
- · Continuous covariates modeled using linear, exponential, and/or power models
- · Dichotomous and categorical covariates modeled using proportional or additive shift models
- Univariate analyses performed followed by stepwise backward elimination to determine significant subject covariates

Statistical Analyses

- Statistical significance assessed for univariate analyses using alpha = 0.001; backward elimination using alpha = 0.0001
- Goodness-of-fit plots of each NONMEM® analysis assessed by examination of:
- scatterplots of predicted versus measured concentrations and versus weighted residuals
- %SEM of the parameter estimates
- changes in the estimates of the interindividual and residual variabilitv
- physiologic relevance
- numerical stability

Simulations

- Assessed individual covariate effects on concentration-time profiles and area under the concentration-time profiles (AUC)
- Dose selection: 125 mg/m² for a typical subject with BSA = 1.85 m² Data:
 - continuous covariates: values selected as every 10th percentile of the population range
 - categorical covariates: selected as all real values (0.1...)
- all other covariates fixed at population median (continuous) or population probabilities (dichotomous)
- Concentrations and AUC's expressed as CPT-11 equivalent in units of
- ng/mL and ng/mL•hr, respectively, with calibration of molecular weights

Table 1: Covariate Definitions and Distributions (n = 581)					
Variable Name	Definition	Mean ± SD; Median (min, max); or % (n/N)			
AGEC	Age group: 1 if AGE <u>></u> 65 and 0 otherwise	40.1% (233/581) and 59.9% (348/581)			
AGEN	Age (years)	60.7 ± 11.8; 63.0 (25, 87)			
AST	Aspartate aminotransferase (U/L)	37.7 ± 28.0; 28.0 (7.0, 176.0)			
BSA	Body surface area (m ²)	1.86 ± 0.23; 1.85 (1.36, 2.46)			
CLcr	Creatinine clearance (mL/min) ²	87.7 ± 30.5; 83.3 (22.4, 225.9)			
DOSE	Doses administered (mg/m ²)	120.8 ± 9.5; 125 (100, 150)			
FU5	Co-medication of 5-Fluorouracil/Leucovorin	26.3% (153/581)			
HGB	Hemoglobin (g/dL)	12.6 ± 1.73; 12.6 (8.0, 19.1)			
PS	Performance status (PS): 0, 1 (PS1) and 2 (PS2)	49.5% (287/581), 41.1% (239/581), and 9.5% (55/581)			
RACE	Race: Whites (RACW), Black (RACB) and Others (RACO)	86.4% (502/581), 6.9% (40/581), and 6.7% (39/581)			
SEXF	Gender: 1 for females and 0 for males	42.5% (247/581) and 57.5% (334/581)			
TBIL	Total bilirubin (mg/dL)	0.64 ± 0.37; 0.50 (0.1, 2.5)			
WTKG	Body weight (kg)	75.8 ± 17.1; 74.5 (42.4, 152.6)			

· Covariates with significant influence on CPT-11 PK were: hemoglobin, total bilirubin, creatinine clearance, performance status score of 2, race Others (= Hispanic/Asian), female gender, concurrent 5-FU/leucovorin, and aspartate aminotransferase.

For detailed PK parameter estimates, refer to the appendix

68 👓 10.3 =

- This analysis provides the first simultaneous compartmental-based quantitative evaluation of the magnitude of covariate effects on PK of CPT-11 and its major metabolites
- CPT-11 SN-38 and/or SN-38G
- may be facilitated through application of this analysis approach.

RESULTS

APPENDIX					
Estimates of PK Parameters and Covariate Effects:					
CLc	=	$\label{eq:constraint} \begin{split} &\{(26.0\pm0.612)+(1.85\pm0.25)^*(HGB-12.6)+(-8.88\pm1.34)^*[(TBIL-0.50)\\ ^*FBL +1.5^*(1\text{-}FBL)]+(-11.6\pm1.70)^*(PS2-0.0947)+(0.123\pm0.0149)\\ ^*(CRCL-83.3)+(-0.0862\pm0.0233)^*[(AST-28.0)^*FLG+92^*(1\text{-}FLG)]+\\ &(-4.18\pm1.03)^*(PS1-0.411)\}^*exp(N(0,\omega_c^2))\ (L/hr),\\ &\text{with } \omega_c^2 = 0.18\pm0.0174 \end{split}$			
CLcs	=	$\label{eq:constraints} \begin{split} &\{(3.54\pm0.0832) + (-0.143\pm0.0416)^*(HGB-12.6) + (1.11\pm0.243)^* \\ &[(TBIL-0.50)^*FBL+1.5^*(1-FBL)] + (1.30\pm0.324)^*(RACO-0.0671) + \\ &(0.769\pm0.152)^*(SEXF-0.425) + (0.0107\pm0.00377)^*[(AST-28.0)^*FLG \\ &+92^*~(1-FLG)] + (0.771\pm0.383)^*(PS2-0.0947)\}^*exp(N(0,~\omega_{cs}^2))(L/hr), \\ &with~\omega_{cs}^{-2} = 0.0785\pm0.00824 \end{split}$			
CLs	=	(44.1±4.26)/[1+(0.230±0.0109)(309±29.8)/(16.9±0.787)] (L/hr)			
CLsg	=	$\begin{split} &\{(309\pm29.8)+(2.01\pm0.458)^*[(AST-28.0)^*FLG+92^*(1\text{-}FLG)]+\\ &(\text{-}66.5\pm17.2)^*(FU5\text{-}0.263)+(35.0\pm16.8)^*(PS1\text{-}0.411)\}^* \text{ exp}(N(0, \\ & \omega_{sg}^2)) \ (L/hr), \text{ with } \omega_{sg}^2 = 0.171\pm0.0199 \end{split}$			
CLg	=	$\{(16.9\pm0.787)+(4.97\pm1.64)^*(FU5\text{-}0.263)\}^* \ exp(N(0,\ \omega_g^2)) \ (L/hr), \\ with \ \omega_g^{\ 2}=0.257\pm0.041$			
CLgs	=	$\begin{array}{l} (309\pm29.8)^*(0.230\pm0.0109) + (7.38\pm1.44)^*(HGB\text{-}12.6) + (-33.3\pm6.54) \\ ^*(PS2-0.0947) \ (L/hr) \end{array}$			
<mark>თ_{sg}თ</mark> g	=	-0.110 ± 0.0171			
V1 V2 V3 V4 V5		109 ± 5.16 (L); 40.4 ± 6.4 (L); 9.12 ± 2.52 (L); 109 ± 11.2 (L); 188 ± 15.3 (L)			
Q _P Q _g	=	14.0 ± 1.95 (L/hr); 26.7 ± 1.18 (L/hr)			
C _{CPTmeas}	=	$C_{\text{CPTpred}} \ ^{*}(1+N(0,\sigma_{c}^{2})) \ (\text{ng/mL as CPT-11}),$ with $\sigma_{c}^{2}=0.0656\pm 0.00416$			
C _{SN38meas}	=	$C_{SN38pred}^{*}(1+N(0, \sigma_s^2)) (ng/mL as CPT-11),$ with $\sigma_c^2 = 0.103 \pm 0.00706$			
C _{SN38Gmean}	s =	$C_{\text{SN38Gpred}}^{}^{}*(1+N(0,\sigma_g^{2})) \text{ (ng/mL as CPT-11),}$ with $\sigma_g^{2}=0.0326\pm0.00316$			
Where:					
FBL	=	0 if TBIL > 2 and 1 otherwise;			
FLG N(0, σ²)	_	a normal distribution centered at 0.			
(-, -)	_				

REFERENCES

- 1. A. Xiao, J. Fiedler-Kelly, L. Schaaf, J. McGovren, G. Elfring, S. Sardella, and M. Redman. Simultaneous Population Pharmacokinetic Modeling of Irinotecan (CPT-11) and Its Major Metabolites, SN-38 and SN-38G. Poster for ASCPT, Atlanta, GA, Mar 21-24, 2002.
- 2. Cockcroft DW, Gault MH. Prediction of Creatinine Clearance from Serum Creatinine. Nephron 1976; 16:31-41.