MONTE CARLO SIMULATION TO ESTIMATE IN VITRO SUSCEPTIBILITY BREAKPOINTS FOR MOXIFLOXACIN, GATIFLOXACIN, AND LEVOFLOXACIN AGAINST STAPHYLOCOCCUS AUREUS

A-136

AK MEAGHER¹, WA CRAIG², RN JONES³, A DALHOFF⁴, H STASS⁴, PG AMBROSE¹

¹Cognigen Corp, Buffalo, NY; ²Univ of Wisc, Madison, WI; ³The JONES Group, N. Liberty, IA; ⁴Bayer HealthCare, Wuppertal, Germany

RESULTS (CONT.)

hrs

2

E

<1

ABSTRACT

Background: Emerging resistance with staphylococci has called for a change in treatment paradigms and review of breakpoints. Current NCCLS breakpoints for gatifloxacin and levofloxacin agains Staphylococcus spp. are $\leq 2 \ \mu g/mL$ for susceptible; breakpo moxifloxacin have not been established. Breakpoints can be evaluated using PK-PD models to predict in vivo efficacy.

Methods: Monte Carlo simulation was used to identify the probability attaining PK-PD targets associated with efficacy using standard dosing regimens: moxifloxacin 400 mg QD, gatifloxacin 400 mg QD, and levofloxacin 500 mg QD. Single oral dose Phase I $AUC_{0\multimap}$ data for moxifloxacin was obtained (n=374). FDA submitted PK data were used for gatifloxacin and levofloxacin; all were adjusted for protein binding. PK-PD target was derived from a neutropenic murine-thigh model that dentified a static AUC:MIC for reference quinolones. A target free-drug (f) 24hr AUC:MIC value of 30 was evaluated. Clinical isolate MIC distributions, including MSSA and MRSA, were obtained from surveillance studies. 5000 subject simulations were performed using fixed and continuous MIC data.

Results:						
	PK-PD Target /AUC ₂₄ :MIC = 30					
	MIC (µg/mL)					
	0.25	0.5	1	2	Continuous Distribution*	
% of Subjects Achieving PK-PD Target for moxi/gati/levo	100/100/100	93/100/100	8/23/74	1/1/1	73/66/62	
Cumulative % MIC Distribution for moxi/gati/levo *	60/65/60	61/66/62	70/68/63	80/80/64	100/100/100	
*N=3,204 strains for mo	oxifloxacin; N=35,	528 strains for	gatifloxacin; a	and N=19,29	6 strains for	

Target attainment rates correlated extremely well with S. aureus MIC population statistics; MIC₅₀/MIC₉₀ for moxifloxacin, gatifloxacin, and lev ofloxacin are 0.06/4, 0.12/4, and 0.25/8 µg/mL, respectively. Probability of target attainment was \geq 90% for MIC values \leq 0.5 µg/mL for all region mens, but approached zero at a MIC value of 2 µg/mL. At a MIC value o ≤ 0.5 µg/mL, MRSA accounted for ~10% of susceptible strains.

Conclusion: Target attainment was similar for moxifloxacin, gatifloxacir and levofloxacin. At a PK-PD target (fAUC₂₄:MIC) of 30, these data suggest a breakpoint for moxifloxacin, gatifloxacin, and levofloxacin of ≤ 0.5 µg/mL for susceptible. Correlation between *in vitro* tests and clinical outcome statistics is needed.

INTRODUCTION

- · Resistance rates among Gram-positive organisms have increased dramatically over the past decade and staphylococci have emerged as one of the most prevalent pathogens in nosocomial infections [1,2].
- · Inadequate treatment of infections caused by Gram-positive organisms has resulted in increased morbidity and mortality [3].
- Clinicians are often guided in choosing antimicrobial treatment by susceptibility breakpoints [4,5].
- · Susceptibility breakpoints can be estimated using Monte Carlo simulation to integrate pharmacokinetic-pharmacodynamic (PK-PD) animal infection models, human PK, and in vitro microbiological activity data to predict clinical and microbiological response [6,7].
- · For this analysis, Monte Carlo simulation was used to estimate susceptibil ity breakpoints for moxifloxacin, gatifloxacin, and levofloxacin against S.

INTRODUCTION (CONT.)

These data were presented to the NCCLS in June 2004 as decision-sup-

port for the establishment of stanhylococcal susceptibility breakpoints for

moxifloxacin and the re-evaluation of those breakpoints for other fluoro-

· Five strains of S. aureus were evaluated and MIC values were determined

Mice were inoculated with 10⁶ to 10⁷ CFU/mL 2 hours prior to moxifloxacir

· Single-dose serum pharmacokinetic studies were performed in thigh-infect-

· For each of the examined doses, three mice were sampled at 24 hours

after the start of treatment. Control mice were sampled at 7-hour and at 24 hours. Serial dilutions of thigh homogenates were plated for CFU determi-

· Serum moxifloxacin concentrations were determined by standard microbi-

ologic assays with S. aureus ATCC 6538p as the test organism and antibi-

The lower limit of detection for assays was 0.1 µg/mL with an intraday vari-

· PK parameters were calculated using standard non-compartmental tech

Serum protein binding in infected neutropenic mice was performed with

• Efficacy was calculated by subtracting the log₁₀ CFU/thigh of each treated

mouse at the end of therapy from the mean log₁₀ CFU/thigh of control mice

 $- E = (Emax \cdot D^N)/(ED_{50}^N + D^N)$, where E is the effect, Emax is the maxi-

The correlation between efficacy and three PK-PD indices (fALICo or MIC)

• Moxifloxacin PK data (AUC0-----) were from single-dose Phase I studies of

the oral administration of moxifloxacin 400 mg to normal adult volunteers

• Phase I single-dose AUC_{0-∞} values for orally administered gatifloxacin 400

mg daily and levofloxacin 500 mg were obtained from each product's label

Sample distribution of the moxifloxacin AUC0-... data was fit to a lognormal

· A lognormal distribution was also employed for gatifloxacin and lev-

• The free fraction (f) of moxifloxacin, gatifloxacin, and levofloxacin were

ratio, fpeak:MIC ratio, and T>MIC) were examined by using nonlinear least-

mal effect. D is the 24 hour total dose. ED₅₀ is the dose required to

just prior to treatment (0 hour) and at the end of therapy (24 hour).

achieve 50% Emax, and N is the slope of the dose-effect curve.

A sigmoid dose-effect model was used to analyze the data:

PHARMACOKINETIC PARAMETERS

administration by injection of 0.1 mL of inoculum into each posterior thigh.

ed mice given subcutaneous doses of moxifloxacin (0.293 to 75 mg/kg

by the broth microdilution method described by the NCCLS [4,5].

moxifloxacin had not yet been established [4,5].

PK-PD TARGET EXPOSURE

otic medium 1 as the agar diffusion medium.

• A neutropenic murine thigh infection model was used.

quinolones

METHODS

every 12 hours).

ation less than 14%

ultra-filtration methods [8].

squares multivariate regression

(n=374) (Table 1)

(Table 1) [9,10].

ofloxacin PK data

fixed at 0.61, 0.8, and 0.69, respectively

distribution.

nations

niques.

METHODS (CONT.)

• At the time these analyses were conducted, the National Committee on Table 1: Pharmacokinetic parameter values for Central Laboratory Standards (NCCLS) breakpoint for gatifloxacin and levmoxifloxacin, gatifloxacin, and levofloxacin ofloxacin against Staphylococcus spp. was ≤ 2 µg/mL; a breakpoint for

Agent	Dose (mg)	AUC _{0-∞} ª (mg · hr/L)	Protein binding (%)
Moxifloxacin	400 mg q.d.	36.1 ± 9.1	37-50% ^b
Gatifloxacin	400 mg q.d.	33.0 ± 6.2	20%
Levofloxacin	500 mg q.d.	47.9 ± 6.8	24-38%°

^a Mean and standard deviation (SD) values are from single oral dose healthy adult Phase I studies

^b Moxifloxacin protein binding was fixed at 39% ^c Levofloxacin protein binding was fixed at 31%

MICROBIOLOGICAL SUSCEPTIBILITY DATA

- · Moxifloxacin, gatifloxacin, and levofloxacin susceptibility data were obtained from the SENTRY Antimicrobial Surveillance Program (2000-2002).
- · Isolates were primarily from patients with documented pneumonia or
- MIC values were determined by the broth microdilution method described

SUSCEPTIBILITY BREAKPOINT

- PK-PD target attainment analyses were performed using Monte Carlo simulation
- · Five thousand random subject simulations were performed using the following structural model
- evant MIC value with a probability of PK-PD target attainment of 0.9.

RESULTS

PK-PD TARGET EXPOSURE

- MIC values of moxifloxacin for the five strains of S. aureus ranged from 0.03 to 0.06 µg/mL:
- Three strains were oxacillin-susceptible (MIC < 2 un/mL)
- Two strains were oxacillin-resistant (MIC $\ge 4 \ \mu g/mL$) The PK of moxifloxacin in infected neutropenic mice at doses of 4.68, 18.8. and 75 mg/kg was linear:
- The elimination half-life was 0.6 to 0.8 hours
- Mean peak serum concentration/dose ratio was 0.5 to 0.6 - Mean AUC0.24/dose ratio was 0.7 to 0.8
- Serum protein binding was 50 to 55% at concentrations ranging from 1.0 to 5.0 µg/mL
- Mice had 6.79 \pm 0.29 log₁₀ CFU/thigh of *S. aureus* at the initiation of therapy and organisms grew 1.75 ± 0.34 log₁₀ CFU/thigh in untreated control mice.
- Increasing moxifloxacin doses resulted in concentration-dependent killing. The highest dose studied reduced the bacterial burden at 0-hour by 3.12 \pm 0.37 log₁₀ CFU/thigh.
- · A strong relationship was seen when results were correlated with the fAUC_{o ox}:MIC ratio, with an r² value of 89% (Figure 1).
- An fAUC₀₋₂₄:MIC ratio of approximately 30 is required for stasis

RESULTS (CONT.)

Figure 3: Fractional probability of PK-PD target aureus

MICROBIOLOGICAL SUSCEPTIBILITY DATA

Figure 1: Relationship between fAUC₀₋₂₄: MIC

moxifloxacin therapy

ratio and change in bacterial density of five strains of *S. aureus* in the thighs of

neutropenic mice after 24 hours of

- Figures 2, 3, and 4 show the MIC distribution for the three fluoroquinolones against all S. aureus isolates, oxacillin-susceptible S. aureus, and oxacillin-resistant S. aureus, respectively.
- . The total number of isolates tested for moxifloxacin, gatifloxacin, and lev ofloxacin were 3.204, 35,528, and 19,296, respectively.
- The rank order of in vitro potency (most active to least) was as follows: moxifloxacin (MIC_{50/90}: 0.06/4 µg/mL); gatifloxacin (MIC_{50/90}: 0.12/4 µg/mL); and levofloxacin (MIC_{50/90}: 0.25/≥8 µg/mL).
- Approximately 8 to 10% of oxacillin-resistant isolates had fluoroquinolone C values of $\leq 0.5 \,\mu$ g/mL and 6 to 7% of oxacillin-susceptible isolates had MIC values of $\geq 1 \mu q/mL$.

Figure 2: Fractional probability of PK-PD target attainment (fAUC₂₄:MIC = 30) for moxi-

floxacin, gatifloxacin, and levofloxacin against *Staphylococcus aureus*

- bloodstream infections.
- by the NCCLS [4.5].

MONTE CARLO SIMULATION AND

$fAUC_{0.24}$:MIC = $f \cdot AUC_{0.24}$:MIC

The MIC susceptible breakpoint was determined as the highest clinically rel-

- **ESTIMATION**

Author Contact Information – Presenting Author: Alison K. Meagher, PharmD Assistant Director, Division of Infectious Disease Cognigen Corporation 395 Youngs Road Buffalo, NY 14221-5831 Phone: 716-633-3463 ext 277 E-mail: ameagher@cognigencorp.com

attainment (fAUC₂₄:MIC = 30) for moxifloxacin, gatifloxacin, and levofloxacin against oxacillin-sensitive Staphylococcus

floxacin, gatifloxacin, and levofloxacin against oxacillin-resistant Staphylococcus

RESULTS (CONT.)

MONTE CARLO SIMULATION AND SUSCEPTIBILITY BREAKPOINT **ESTIMATION**

- The forecast AUC distributions (mean + SD) for moxifloxacin, gatifloxacin, and levofloxacin were 35.9 ± 9.04 , 33.0 ± 6.1 , and 48.1 ± 6.77 mg•hr/L, respectively.
- Figure 2 shows the fractional PK-PD target ($fAUC_{0.24}$:MIC ratio \geq 30) attainment over the S. aureus MIC distributions for each drug. Figures 3 and 4 show the fractional target attainment over the oxacillin-sensitive and resistant S. aureus distributions, respectively
- The probability of target attainment was greater than 0.9 for MIC values ≤0.5 µg/mL for moxifloxacin, gatifloxacin, and levofloxacin regimens
- Target attainment rapidly degraded for MIC values > 0.5 µg/mL and approached zero for MIC values $\geq 2 \mu g/mL$.
- \bullet These data suggest susceptible MIC breakpoints of 0.5 $\mu\text{g/mL}$ for moxifloxacin, gatifloxacin and levofloxacin.
- · The estimated susceptibility breakpoints correlate extremely well with the SENTRY Antimicrobial Surveillance Program MIC distributions of S aureus, including both oxacillin-susceptible and -resistant strains (Figures 2. 3. and 4) [2].
- Each fluoroquinolone displayed a bimodal distribution of MIC values, with a natural cleave or breakpoint at 0.5 µg/mL for all three agents.
- This breakpoint effectively differentiated the oxacillin-susceptible and oxacillin-resistant S. aureus subpopulation as well as the quinolone-susceptible and -resistant subpopulations, the latter with QRDR mutations.

CONCLUSIONS

- The probability of target attainment at an MIC of $\leq 2 \mu g/mL$, the previously establish NCCLS breakpoints, approached zero for all three studied fluoro quinolones using traditional dosing regimens.
- Results from this PK-PD analysis were presented to the NCCLS in June 2004 to establish a susceptibility breakpoint for moxifloxacin at \leq 0.5 μ g/mL, and to lower the susceptibility breakpoints for gatifloxacin and levofloxacin to \leq 0.5 µg/mL and \leq 1 µg/mL, respectively.
- The revised breakpoints resulted in nearly identical perceived spectrums of anti-staphylococcal activity as measured by percentage susceptible rates for all evaluated fluoroquinolones, and a clear lack of potency for the three agents against oxacillin-resistant S. aureus isola

REFERENCES

- Jones RN. Contemporary antimicrobial susceptibility patterns of bacterial pathogens commonly asso-ciated with tehrile patients with neutropenia. Clin Infect Dis 1999; 29:495-502.
 Jones RN. Global Epidemiology of Antimicrobial Resistance Among Community-Acquired and Nosocomial Pathogens. A Five-Year Summary From the SENTRY Antimicrobial Surveillance Program
- NOSCOTIAL Partugelis A Previous Control (2011) 11:00-0000 (2011) 11:00-
- approved standard M7-A6, 6th edition. Wayne, PA: NCCLS, 2003. S. NCCLS. Performance standards for antimicrobial susceptibility testing: 14th informational supplement M100-S14. Wayne, PA: NCCLS, 2004. 6. Dudley MM, Ambrose PC. Pharmacodynamics in the study of drug resistance and establishing *in vitro*
- o. usuary NN, ambrose PG. Pharmacodynamics in the study of drug resistance and establishing in vitro susceptibility breakpoints: ready for prime time. Curr Opin Morobiol 2000; 5:15-521.
 7. Dinsano GL, Preston SL, Hardalo C, Hara R, Banfield C, Andes D et al. Use of preclinical data for selection of a phase IIIII does for everyminic and identification of a preclinical MC breakpoint. Antimicrob Agents Chemother 2001; 45:15-22.
 8. Craigi VN, Sub B. Protein binding and the antimicrobial effects. Methods for the determination of protein binding. In: Lorian V, editor. Antibiotics in Laboratory Medicine. Baltimore, MD: Williams & Wilkins, 1991; 33:74.22.
- 1991: 367-402.
 Bristol-Meyers Squibb Company. Gatifloxacin Prescribing Information. Princeton, NJ, 2003.
 Ortho-McNeil Pharmaceutical Inc. Levofloxacin Prescribing Information. Raritan, NJ, 2003.