Probability of Target Attainment Analyses to Inform Ceftolozane/Tazobactam Dosing **Regimens in Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia Patients** With End-Stage Renal Disease on Intermittent Hemodialysis

BACKGROUND

- Nosocomial pneumonia, including hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), is a common type of hospital-acquired infection, with mortality rates estimated to be as high as 50%1-3
- Ceftolozane/tazobactam (C/T)-a combination of ceftolozane, a potent antipseudomonal cephalosporin, and tazobactam, a beta-lactamase inhibitor-is approved for the treatment of complicated intra-abdominal infections (cIAI); complicated urinary tract infections (cUTI), including pyelonephritis; and HAP, including VAP, in the European Union and United States4,5
- Both ceftolozane and tazobactam are eliminated renally; therefore dose adjustment is necessary based on renal function^{4,5}
- The efficacy and safety of C/T for the treatment of HAP/VAP was demonstrated with a C/T 3 g (ceftolozane 2 g/tazobactam 1 g) dose by 1-hour infusion every 8 hours dosing regimen in the phase 3, randomized, controlled, double-blind ASPECT-NP study; however, patients with end-stage renal disease (ESRD) requiring hemodialysis were excluded from the study⁶

OBJECTIVE

Apply probability of target attainment (PTA) analyses to data from the ASPECT-NP study to inform the C/T-recommended dosing regimen in HAP/VAP patients with ESRD on intermittent hemodialysis (HD)

METHODS

Population Pharmacokinetic (PopPK) Modeling

- The plasma components of the popPK models for ceftolozane and tazobactam in patients with HAP/VAP were developed based on previously established models for cIAI/cUTI7
 - The models consist of 2-compartments with first-order elimination, and were informed by data from 16 clinical studies, including patients with HAP/VAP in ASPECT-NP and patients with ESRD without infection
 - Among the covariates identified in the developed popPK models in HAP/VAP patients, baseline creatinine clearance (CrCl) was a significant covariate on ceftolozane and tazobactam clearance; body weight and pneumonia were covariates on ceftolozane and tazobactam volumes of distribution
 - Based on concentration data from 6 patients with ESRD,⁸ ESRD (as a categorical covariate) was identified as a significant predictor of ceftolozane and tazobactam plasma clearance and volume of distribution, in addition to the covariate effects described above and of ESRD and HD on plasma PK reported previously9
- The pulmonary epithelial lining fluid (ELF) components of the models were informed by ELF concentration data from 2 phase 1 studies^{10,11}
 - The ELF disposition models were the plasma models with a hypothetical ELF compartment linked to the plasma compartment
 - Pneumonia was a covariate on the influx and elimination rate constants for the ELF compartment

Simulations

- The popPK models for ceftolozane and tazobactam in HAP/VAP patients were used to simulate daily plasma and ELF ceftolozane and tazobactam concentration-time profiles in ESRD patients with HAP/VAP (n=1000); the simulated concentration-time profiles were used to estimate exposures (area under the time-curve [AUC] and maximum concentration [C_{max}]) and calculate PTA in this population at 3 different dosing levels relative to the recommended dose used in patients with cIAI/cUTI and ESRD (at two times [2X] the dose: 1 g/0.5 g C/T loading dose + 0.2 g/0.1 g C/T maintenance dose; three times [3X] the dose: 1.5 g/0.75 g C/T loading dose + 0.3 g/0.15 g C/T maintenance dose, or four times [4X] the dose: 2 g/1 g C/T loading dose + 0.4 g/0.2 g C/T maintenance dose) by 1-hour infusion every 8 hours over a 14-day treatment duration, with HD on every other weekday
- PTA was calculated based on a target for ceftolozane of 30% of the dosing interval that the free drug concentration (fT) exceeded the minimum inhibitory concentration (MIC; 30% fT>MIC=4 µg/mL; 1-log kill) and for tazobactam of 20% *f*T greater than the threshold concentration (C_T) of 1 μ g/mL (20% *f*T> C_T , restoring ceftolozane antibacterial activity to stasis)
 - Sensitivity analyses were performed at ceftolozane targets up to 50% fT>MIC=4 μ g/mL (2-log kill) and a tazobactam target of 35% $fT>C_T=1 \mu g/mL$

- 3 dosing regimens (**Table 1**)
 - When evaluated at a ceftolozane target of up to 50% fT>MIC=4 µg/mL, ceftolozane plasma and ELF PTA for the 3X cIAI/cUTI ESRD dosing regimen was >97% for the entire 14-day dosing duration, including on HD days
- For tazobactam, when evaluated at a target of 20% fT>C_T=1 μ g/mL, plasma PTA values were >99% for all 3 dosing regimens and ELF PTA values were >90% for the 3X and 4X cIAI/cUTI ESRD dosing regimens; however, ELF PTA values were <80% on dialysis days for the 2X cIAI/cUTI ESRD dosing regimen
 - When evaluated at a tazobactam target of 35% $fT>C_T=1 \mu g/mL$ (restoring ceftolozane antibacterial activity to 1-log kill), tazobactam plasma PTA for the 3X cIAI/cUTI dosing regimen was 99% for the entire 14-day dosing duration, including HD days, whereas tazobactam ELF PTA for the 3X cIAI/cUTI dosing regimen was >90% for non-HD days and was >88% on HD days

Table 1. Simulated Daily PTA for Ceftolozane (30% fT>MIC=4 μ g/mL) and Tazobactam (20% $fT>C_T = 1 \mu g/mL$) in Plasma and ELF Over the 14-day Treatment Duration for Each of the 3 ESRD Dosing Regimens^a

Ceftolozane				Tazobactam		
	2X cIAI/cUTI ESRD Dose	3X cIAI/cUTI ESRD Dose	4X cIAI/cUTI ESRD Dose	2X cIAI/cUTI ESRD Dose	3X cIAI/cUTI ESRD Dose	4X cIAI/cUTI ESRD Dose
Plasma	• 	• 	^	·		^
Day 1 ^b	100	100	100	100	100	100
Day 2	100	100	100	99.9	100	100
Day 3⁵	100	100	100	99.8	100	100
Day 4	100	100	100	99.9	100	100
Day 5 ^b	100	100	100	99.8	100	100
Day 6	100	100	100	99.9	100	100
Day 7	100	100	100	99.9	100	100
Day 8 ^b	100	100	100	99.8	100	100
Day 9	100	100	100	99.9	100	100
Day 10 ^b	100	100	100	99.8	100	100
Day 11	100	100	100	99.9	100	100
Day 12 ^b	100	100	100	99.8	100	100
Day 13	100	100	100	99.9	100	100
Day 14	100	100	100	99.9	100	100
ELF						
Day 1 ^b	95.0	99.1	99.9	98.1	99.9	100
Day 2	99.7	99.9	100	85.7	94.2	98.0
Day 3⁵	99.7	100	100	77.3	90.8	96.1
Day 4	99.6	100	100	82.2	92.7	97.4
Day 5⁵	99.4	100	100	77.0	90.6	96.0
Day 6	99.7	100	100	82.3	92.7	97.4
Day 7	100	100	100	83.1	93.0	97.6
Day 8⁵	99.7	100	100	77.0	90.6	96.0
Day 9	99.7	100	100	82.2	92.6	97.4
Day 10 ^b	99.4	100	100	77.0	90.6	96.0
Day 11	99.6	100	100	82.2	92.6	97.4
Day 12 ^b	99.3	100	100	77.0	90.6	96.0
Day 13	99.7	100	100	82.3	92.7	97.4
Dav 14	100	100	100	83.1	93.0	97.6

C_T, concentration threshold; ELF, epithelial lining fluid; ESRD, end-stage renal disease; *f*T, free drug concentration during the dosing interval; MIC, minimum inhibitory concentration; PTA, probability of target attainment.

^a2X cIAI/cUTI ESRD dose: 1 g/0.5 g C/T loading dose + 0.2 g/0.1 g C/T maintenance dose; 3X cIAI/cUTI ESRD dose: 1.5 g/0.75 g C/T loading dose + 0.3 g/0.15 g C/T maintenance dose; 4X cIAI/cUTI ESRD dose: 2 g/1 g C/T loading dose + 0.4 g/0.2 g C/T maintenance dose; ^bDialysis day; first dose inistered immediately after dialysis on day 1

Hwa-Ping Feng,¹ Yogesh T. Patel,² Zufei Zhang,¹ Jill Fiedler-Kelly,² Christopher J. Bruno,¹ Elizabeth Rhee,¹ Carisa De Anda,¹ Wei Gao¹

¹Merck & Co., Inc., Kenilworth, NJ, USA; ²Cognigen Corporation, a Simulations Plus Company, Buffalo, NY, USA

RESULTS

For ceftolozane, when evaluated at a target of 30% *f* T>MIC=4 µg/mL, both plasma and ELF PTA values were ≥95% for all

- The simulated daily plasma ceftolozane AUC distributions for the 4X cIAI/cUTI ESRD dosing regimen (median AUC_{0-8h} range over days 1-14: 503–797 µg·h/mL) were much higher than those for the 3X cIAI/cUTI ESRD dosing regimen and extended outside of the clinical experience in ASPECT-NP; AUC distributions for the 3X cIAI/cUTI ESRD dosing regimen (1.5 g/0.75 g C/T loading + 0.3 g/0.15 g C/T maintenance; Figure 1A) were contained within the phase 3 clinical experience
- Tazobactam plasma exposure distributions for both the 3X (Figure 1B) and 4X (data not shown) cIAI/cUTI ESRD dosing regimens were within the clinical experience of ASPECT-NP

Figure 1. (A) Ceftolozane and (B) Tazobactam Plasma AUC_{0-8h} and C_{max} by Treatment Day in Patients with ESRD and HAP/VAP Receiving the 3X cIAI/cUTI ESRD Dosing Regimen^a

AUC_{0-8h}, area under the concentration-time curve from time 0 to 8 hours after start of infusion; C_{max}, maximum drug concentration; ESRD, end-stage rena disease; HAP/VAP, hospital-acquired pneumonia/ventilator-associated pneumonia; Q, quartiles

a3X cIAI/cUTI ESRD dose: 1.5 g/0.75 g C/T loading dose + 0.3 g/0.15 g C/T maintenance dose Boxes are 25th, 50th, and 75th percentiles; whiskers are 5th to 95th percentiles; HAP/VAP 1Q to HAP/VAP 4Q represent quartiles of exposure observed in patients with HAP/VAP (n=305).

CONCLUSIONS

The 3X cIAI/cUTI ESRD dose (2.25 g C/T loading dose [1.5 g ceftolozane and 0.75 g tazobactam] and 0.45 g C/T maintenance dose [0.3 g ceftolozane and 0.15 g tazobactam]) administered every 8 hours provides an acceptable balance between efficacy and safety considerations and is the recommended dosing regimen for ESRD patients with HAP/VAP with intermittent HD

References

1. Kalil AC, et al. Clin Infect Dis. 2016;63(5):e61-e111. 2. Magill SS, et al. N Engl J Med. 2014;370(13):1198-1208. 3. Peleg AY, Hooper DC. N Engl J Med. 2010;362(19):1804-1813. 4. ZERBAXA® (ceftolozane and tazobactam): Summary of product characteristics. MSD Laboratories Chibret; Riom, France; 2019. 5. ZERBAXA® (ceftolozane and tazobactam): Prescribing information. Merck Sharp & Dohme Corp.; Whitehouse Station, NJ, USA; 2019. 6. Kollef MH, et al. Lancet Infect Dis. 2019;19(12):1299-1311. 7. Chandorkar G, et al. J Clin Pharmacol. 2015;55(2):230-239. 8. Wooley M, et al. Antimicrob Ag Chemother. 2014;58(4):2249-2255. 9. Xiao A, et al. Poster presented at IDWeek; October 8-12, 2014; Philadelphia, PA. 10. Caro L, et al. J Antimicrob Chemother. 2020; accepted. 11. Chandorkar G, et al. J Antimicrob Chemother. 2012;67(10):2463-2469.

Acknowledgements

We thank the study participants, investigators, and trial site personnel for their contributions to the study. Funding for this research was provided by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA (MSD). Medical writing assistance was provided by Jessica Deckman, PhD, CMPP, of The Lockwood Group, Stamford, CT. This assistance was funded by MSD.

Disclosures

HF, ZZ, CJB, ER, CDA, and WG are employees of MSD. YTP and JFK are employees of Cognigen Corporation, a Simulations Plus Company, which provides consulting services to MSD.

This poster was originally intended for presentation at the 30th ECCMID (Paris, France; April 18–21, 2020). This meeting was canceled due to the COVID-19 pandemic. The corresponding accepted abstract can be found in the 30th ECCMID abstract book (Abstract 1207).