

S+ A SIMULATIONS PLUS COMPANY

TUMOR GROWTH INHIBITION MODELING

Webinar, 9 March 2021

- Presentation of the models in the TGI library available in Monolix and Simulx
- Example 1: Combination therapy in lung cancer xenografts
- Example 2: PSA in metastatic Castration-Resistant Prostate Cancer treated with chemotherapy

TGI library

Shortcuts To Commonly Used Models					
Claret exponential	Simeoni	Stein	Wang	Bonate	Ribba TwoPopulation
Initial Tumor Size	Kine	tics	Model	Additional Fea	ature Treatment
As parameter	No saturation		Linear	None	None
As regressor	Saturation		Quadratic	Immune Dynamics	PK model
			Exponential		Exposure as regressor
			Generalized Exponential		Treatment start at t=0
			Exponential-linear		Treatment start time as regressor
			Simeoni		No treatment (0) vs
			Koch		treatment (1) regressor
Killing Hypothe	sis	Dynami	cs Re	esistance	Delay
Log-kill	First-o	order	Claret expon	ential	Signal distribution
Norton-Simon	Micha	elis-Menten	Resistant cell	IS	Cell distribution
	Micha	elis-Menten Hill	None		None
	Expor	ential Kill	Rt		

S+ A SIMULATIONS PLUS COMPANY

Common tumor growth models

Common tumor growth models

Tumor growth models without saturation:

Tumor growth models with saturation:

- Linear
- Quadratic
- Exponential
- Generalized exponential
- Exponential-linear
- Simeoni
- Koch

- Logistic
- Generalized logistic
- Hybrid Simeoni-logistic
- Gompertz
- Gompertz-exponential
- Von Bertalanffy
- Generalized Von Bertalanffy

Linear model:

constant zero-order growth rate

$$TS(t=0)=TS0$$

Quadratic model:

combines linear and quadratic growth rates

$$\frac{dTS}{dt} = kgl + 2kg_2 * t$$

$$TS(t=0) = TS0$$

$$TS = kgl * t + kg_2 * t^2 + TS0$$

Exponential model:

 assumes that the growth rate of a tumor is proportional to tumor burden (first-order growth)

 $TS = TS0 * e^{kge * t}$

TS(t=0) = TS0

Generalized exponential model (power law):

 assumes that the growth rate of a tumor is proportional to tumor burden (first-order growth)

Exponential-linear model:

 assumes that the growth rate of a tumor is proportional to tumor burden (first-order growth)

$$\frac{dTS}{dt} = \begin{cases} kge * TS, & t \le \tau \\ kgl, & t > \tau \end{cases} \quad \overleftarrow{TS} = \begin{cases} TS0 * e^{(kge*t)}, & t \le \tau \\ kgl * (t - \tau) + TS0 * e^{kge*\tau}, & t > \tau \end{cases}$$
$$TS(t = 0) = TS0$$

$$\tau = \frac{1}{kge} ln\left(\frac{kgl}{kg*TSO}\right)$$

• At t=
$$\tau$$
, $TS = \frac{kgl}{kge}$

 The transition time can not be computed if the model is combined with a treatment effect or an additional feature

Simeoni model:

approximates the exponential-linear model with a single differential equation

- ψ should be fixed to a high value (20 for example) for a sharp switch from the first-order to the zero-order growth
- Differentiable even when combined with any type of treatment effect

Koch model:

assumes a smooth transition between exponential and linear growth phase

MonolixSuite training 2021

[Koch, G. et al. (2009). Journal of Pharmacokinetics and Pharmacodynamics, 36(2), 179-197.]

Logistic model:

 assumes an exponential growth rate which decelerates linearly with respect to the tumor size.

Generalized logistic model:

 assumes an exponential growth rate kg which decelerates linearly with respect to the tumor size.

Gompertz model:

assumes an exponential decay of the relative growth rate

Gompertz model:

assumes an exponential decay of the relative growth rate

$$\frac{dTS}{dt} = TS * \beta * ln\left(\frac{TS_{max}}{TS}\right) \qquad \checkmark \qquad TS = TS_{max} * e^{e^{-\beta * t} * ln(\frac{TS0}{TS_{max}})}$$

$$TS(t=0)=TS0$$

Exponential-Gompertz model:

 assumes that the tumor follows at first an exponential growth, and is then akin to a Gompertz model once the nutrients start to go scarce

Hybrid Simeoni-logistic model:

 Hybrid model derived from the Simeoni model that combines exponential, linear and logistic growth.

$$\frac{dTS}{dt} = \frac{kge * TS * \left(1 - \frac{TS}{TS_{max}}\right)}{\left[1 + \left(\frac{kge}{kgl} * TS\right)^{\psi}\right]^{1/\psi}},$$
$$TS(t = 0) = TS0$$

ψ should be fixed to a high value (20 for example)

[Haddish-Berhane et al., 2013]

Von Bertalanffy model:

Model based on balance equations of metabolic processes. The growth is
proportional to the surface of the tumor and is limited with a loss term.

$$\frac{dTS}{dt} = kg * TS^{2/3} - kd * TS \qquad \qquad \qquad TS = \left[\frac{kg}{kd} + \left(TS0^{1/3} - \frac{kg}{kd}\right) * e^{-\frac{1}{3}*kd*t}\right]^3$$

[Von Bertalanffy, 1957]

Von Bertalanffy model:

Model based on balance equations of metabolic processes. The growth is
proportional to the surface of the tumor and is limited with a loss term.

$$\frac{dTS}{dt} = kg * TS^{2/3} - kd * TS \qquad \qquad \qquad TS = \left[\frac{kg}{kd} + \left(TS0^{1/3} - \frac{kg}{kd}\right) * e^{-\frac{1}{3}*kd*t}\right]^3$$

Generalized Von Bertalanffy model:

Generalization to a power law growth

Common tumor growth models

Additional TG features

Initial Tumor Size	Kinetics	Model	Additional Feature	Treatment
As parameter	No saturation	Logistic	None	None
As regressor	Saturation	Generalized Logistic	Angiogenesis	PK model
		Simeoni-Logistic Hybrid	Immune Dynamics	Exposure as regressor
		Gompertz		Treatment start at t=0
		Exponential-Gompertz		Treatment start time as
		Von Bertalanffy		Ne treatment (0) ve treatment
		Generalized Von Bertalanffy		(1) regressor

S+ A SIMULATIONS PLUS COMPANY

Different ways to encode the treatment and initial tumor size

Encoding initial tumor size

TSO as parameter

	_
Ditio	Tumor Sizo
IIIIIai	TUITOL SIZE

As parameter

As regressor

TSO in input list

[LONGITUDINAL] input = {kge, kkill, TS0}

EQUATION: odeType=stiff

if t<0 dTS = kge*TS else dTS = kge*TS - kkill*TS end

TS_0=TS0 ddt_TS = dTS

OUTPUT: output = {TS}

TSO not in data

ID	TIME	Y
1	-45	98
1	-20	150
1	0	•
1	12	112

- TSO is not TS at time 0 but at the initial integration time: the time of first dose or observation for each individual
- If t_0=0 is in the model, TS0 is TS at time 0, and TS=TS0 for all negative times

Encoding initial tumor size

TSO as regressor

Initia	Tumor Sizo

As parameter

As regressor

TSO in input list

[LONGITUDINAL] input = {kge, kkill, TS0} $TSO = \{use = regressor\}$ EOUATION: odeType=stiff if t<0 dTS = kge*TSelse dTS = kge*TS - kkill*TS end $TS_0=TS0$ $ddt_TS = dTS$ OUTPUT: output = {TS}

TSO in data

ID	TIME	Y	TS0
1	-45	98	98
1	-20	150	•
1	0	•	•
1	12	112	•

- TSO is not TS at time 0 but at the initial integration time: the time of first dose or observation for each individual
- If t_0=0 is in the model, TS0 is TS at time 0, and TS=0 for all negative times

ressor

Joint model for drug concentration and tumor size

Treatment
None
PK model
Exposure as regressor
Treatment start at t=0
Treatment start time as regressor
No treatment (0) vs treatment (1) reg

PK model in structural model

[LONGITUDINAL] input = {V, k, TS0, kge, kkill}

PK: Cc = pkmodel(V, k)

EQUATION: odeType=stiff

TS_0=TS0

ddt_TS = kge*TS - kkill*Cc*TS

OUTPUT: output = {TS}

Amounts and dosing times in dataset

ID	TIME	AMT	Y
1	-45	•	98
1	-20	•	150
1	0	0.02	•
1	12	•	112

- Possible if dosing information is available
- PK parameters can be estimated if PK data is available, or fixed to literature values
- High computation cost in case of dense doses over a large treatment period → not recommended for modeling

• Exposure read as regressor

Treatment

None

PK model

Exposure as regressor

Treatment start at t=0

Treatment start time as regressor

No treatment (0) vs treatment (1) regressor

EXPOSURE regressor in structural model

```
[LONGITUDINAL]
input = {TS0, EXPOSURE, kge, kkill}
EXPOSURE = {use=regressor}
```

EQUATION: odeType=stiff

TS_0=TS0

ddt_TS = kge*TS - kkill*EXPOSURE*TS

OUTPUT:

output = {TS}

EXPOSURE in dataset

ID	TIME	EXP	Y
1	-45	0	98
1	-20	0	150
1	0	0.02	•
1	12	0.02	112

- EXPOSURE can come from PK concentration, AUC, Cmax, etc...
- EXPOSURE can be time-varying
- Carried-forward interpolation is used
- Not necessary to use the same names in data and model

• Exposure read as regressor

Treatment

None

PK model

Exposure as regressor

Treatment start at t=0

Treatment start time as regressor

No treatment (0) vs treatment (1) regressor

EXPOSURE regressor in structural model

```
[LONGITUDINAL]
input = {TS0, EXPOSURE, kge, kkill}
EXPOSURE = {use=regressor}
```

EQUATION: odeType=stiff

TS_0=TS0

ddt_TS = kge*TS - kkill*EXPOSURE*TS

OUTPUT:

output = {TS}

EXPOSURE in dataset

ID	TIME	EXP	Y
1	-45	0	98
1	-20	•	150
1	0	0.02	•
1	12	•	112

- EXPOSURE can come from PK concentration, AUC, Cmax, etc...
- EXPOSURE can be time-varying
- Carried-forward interpolation is used
- Not necessary to use the same names in data and model

Constant treatment at time 0

	Treatment
N	one
P	K model
Ð	kposure as regressor
Ti	reatment start at t=0
Т	reatment start time as regressor
N	o treatment (0) vs treatment (1) regress

If/else in model to apply treatment after time 0

[LONGITUDINAL] input = {TS0, kge, kkill}

EQUATION: odeType=stiff

if t<0

dTS = kge*TS else dTS = kge*TS - kkill*TS end

TS_0=TS0 ddt_TS = dTS

OUTPUT: output = {TS}

No treatment information in dataset

ID	TIME	Y
1	-45	98
1	-20	150
1	0	•
1	12	112

 It is not possible to define an ODE directly in the if/else statement: an intermediate variable should be used

gressor

Constant treatment at time T read as regressor

Treatment	
None	
PK model	
Exposure as regressor	
Treatment start at t=0	
Treatment start time as regressor	
No treatment (0) vs treatment (1) r	ľ

If/else in model to apply treatment after time T

[LONGITUDINAL] input = {TS0 , kge, kkill, T} T = {use = regressor} EQUATION: odeType=stiff

if t<T

dTS = kge*TS else dTS = kge*TS - kkill*TS end

TS_0=TS0 ddt_TS = dTS

OUTPUT: output = {TS}

T in dataset

ID	TIME	Y	Т
1	-45	98	5
1	-20	150	5
1	0	•	5
1	12	112	5

 It is not possible to define an ODE directly in the if/else statement: an intermediate variable should be used

Treatment or not as regressor 0/1

Treatment None PK model Exposure as regressor Treatment start at t=0 Treatment start time as regressor No treatment (0) vs treatment (1) regressor

If/else in model to apply treatment or not depending on the arm

```
[LONGITUDINAL]
input = {TSO, kge, kkill, Trt}
Trt = {use = regressor}
EQUATION:
odeType=stiff
```

```
if Trt ==0
  dTS = kge*TS
else
  dTS = kge*TS - kkill*TS
end
```

TS_0=TS0 ddt_TS = dTS

```
OUTPUT:
output = {TS}
```

Treatment arm in dataset

ID	TIME	Y	TrtArm
1	-45	98	1
1	-20	150	1
1	0	•	1
1	12	112	1

- The regressor must be a number
- If the regressor names in the model and the data do not match, the mapping is done by order

Shortcuts To Commonly Used Models									
Claret exponential	Sir	neoni	Stein	Wa	ing	Bonate	Ribba	TwoPopulation	
Initial Tumor	Size	Kir	Kinetics Mo		del	Additional F	eature	Treatment	
As parameter	As parameter No sa		No saturation			None		None	
As regressor		Saturation	tion Quadratic			Immune Dynamics		PK model	
			Exponential Generalized Exponential Exponential-linear Simeoni			Exposure as regressor			
						Treatment start at t=0			
							Treatment start time as		
L. L		No trootmont (0) up							
			8.5) 	Koch				treatment (1) regressor	
Killing Hyp	othesis	3	Dynam	ics	Re	sistance		Delay	
Log-kill		First	t-order	Claret expon		Claret exponential		Signal distribution	
Norton-Simon		Micl	haelis-Menten		Resistant cells		Cell di	Cell distribution	
	Michaelis-Menten Hill		None		None	None			
Exponential Kill									

S+ A SIMULATIONS PLUS COMPANY

Common tumor growth inhibition models

Tumor killing hypothesis

Tumor killing hypothesis

Killing Hypothesis

Log-kill

Norton-Simon

Skipper-Schabel-Wilcox log-kill hypothesis:

 $\frac{dTS}{dt} = growth - K * TS$

Norton-Simon killing hypothesis:

$$\frac{dTS}{dt} = growth * (1 - K)$$

Exposure-dependent killing kinetics

S+ A SIMULATIONS PLUS COMPANY

Delay in tumor growth inhibition

Delay for treatment effect

MonolixSuite training 2021

Delay in Simeoni model

		Shortc	uts To Comn	nonly Used	Models		
Claret exponential	Simeoni	Stein	Wa	ng	Bonate	Ribba	TwoPopulation
Initial Tumor S	ize K	inetics	Мо	del	Additional Fea	ature	Treatment
As parameter	No saturat	ion	Linear		None		None
As regressor	Saturation		Quadratic		Immune Dynamics		PK model
			Exponential				Exposure as regressor
			Generalized Ex	ponential			Treatment start at t=0
			Exponential-lin	iear			Treatment start time as
			Simeoni				No troatmont (0) us
			Koch				treatment (1) regressor
Killing Hypo	thes is	Dynam	nics	Re	sistance		Delay
Log-kill	Fi	rst-order		Claret exponen	tial	Signal	distribution
Norton-Simon	м	ichaelis-Menten		Resistant cells		Cell di	stribution
	м	ichaelis-Menten Hill		None		None	
	Б	ponential Kill	a de la companya de la			2012 	
Shortcut to S	imeoni mode	el (TGI)					

MonolixSuite training 2021

S+ A SIMULATIONS PLUS COMPANY

Common resistance models

Resistance: Claret model

500

Claret model

 \Rightarrow With the analytical solution, TSO is the tumor size at time 0

Resistance: Claret model

		Shortc	uts To Com	monly Used	Models		
Claret exponential	Sim	neoni Stein	W	ang	Bonate	Ribba	1 TwoPopulation
Initial Tumor	Size	Kinetics	Мс	del	Additional	Feature	Treatment
As parameter		No saturation	Linear		None		None
As regressor		Saturation	Quadratic		Immune Dynam	ics	PK model
			Exponential				Exposure as regressor
			Generalized E	xponential			Treatment start at t=0
			Exponential-l	inear			Treatment start time as
			Simeoni				Ne treatment (0) us
			Koch				treatment (1) regressor
Killing Hyp	othesis	Dynam	ics	Re	sistance		Delay
Log-kill		First-order		Claret exponer	ntial	Signal	distribution
Norton-Simon		Michaelis-Menten		Resistant cells		Cell di	istribution
		Michaelis-Menten Hill		None		None	
		Exponential Kill				7 - C.	
Shortcut to analytical sc	expone	ential Claret with			Resistance	module	

Resistance: Claret model

$$K' = K * e^{-\lambda * t}$$

- accounts for the loss of druginduced decay over time due to declining efficacy of the drug
- λ resistance parameter

Resistant population of tumor cells

- This model assumes that a fraction of the tumor is resistant to the treatment, thus being killed with a smaller rate than the sensitive part of the tumor.
- Several possible variants:

- Redundant properties in some conditions:
 - Initial fraction of resistant cells <-> Transfer of sensitive cells to resistant cells
 - Killing of resistant cells <-> Transfer of resistant cells to sensitive cells
 - Killing of resistant cells <-> Different growth for resistant cells

Resistant population of tumor cells

Model with initial fraction of resistant cells

Comparing resistance models

Common models from literature

Evolutionary model (two populations)

$$\frac{dTS_s}{dt} = -K * EXPOSURE * TS_s,$$

$$\frac{dTS_r}{dt} = kge * TS_r,$$

$$TS_s(t = 0) = TS0 * (1 - f)$$

$$TS_r(t = 0) = TS0 * f$$

$$TS = TS_s + TS_r$$
ANALYTICAL SOLUTION for constant exposure

$$TS = TS0 * (f * e^{kp*t} + (1 - f) * e^{-k*EXPOSURE * t})$$

Time

		Shortcuts	To Commonly U	sed Models		
Claret exponential	Simeoni	Stein	Wang	Bonate	Ribba	TwoPopulation

Common models from literature

Stein regression-growth model $t < 0; TS = TS0 * e^{kge*t}$ $t \ge 0; TS = TS0 * (e^{-k_{kill}*t} + e^{kge*t} - 1)$

		Shortcuts To	o Commonly U	sed Models		
Claret exponential Si	Simeoni	Stein	Wang	Bonate	Ribba	TwoPopulation

[Stein et al. (2011))

Common models from literature

 $TotalTS = P + Q + Q_p$

		Shortcuts	To Commonly U	sed Models		
Claret exponential	Simeoni	Stein	Wang	Bonate	Ribba	TwoPopulation

S+ A SIMULATIONS PLUS COMPANY

Good practices for model definition in Monolix

Model with analytical solution

Example: exponential-linear

[LONGITUDINAL]
input = {TS0, kge, kgl}

EQUATION:

TransitionTime = 1/kge*log(kgl/(kge*TS0))

if t<TransitionTime
 TS = TS0*exp(kge*t)
else
 TS = kgl*(t-TransitionTime)+TS0*exp(kge*TransitionTime)
end</pre>

OUTPUT: output = {TS}

Model with analytical solution

Example: exponential-linear

```
[LONGITUDINAL]
input = {TS0, kge, kgl}
```

```
EQUATION:
```

```
TransitionTime = 1/kge*log(kgl/(kge*TS0))
```

```
Saturation to avoid infinitely large values
```

```
if t<TransitionTime
  TS = min(1e12, TS0*exp(kge*t))</pre>
```

else

TS = min(1e12, kgl*(t-TransitionTime)+TS0*exp(kge*TransitionTime)) end

OUTPUT: output = {TS}

Model based on ODE system

Example: Simeoni

[LONGITUDINAL] input = {TS0, kge, kgl, psi}

EQUATION: odeType=stiff ;defining initial conditions of the model: ;t_0=0 TS_0=TS0

Model based on ODE system

Example: Simeoni

[LONGITUDINAL] input = {TS0, kge, kgl, psi}

EQUATION: odeType=stiff ;defining initial conditions of the model: ;t_0=0 TS_0=TS0

;model description: if TS < 1e12 dTS = (kge*TS/(1+(kge/kgl*max(0,TS))^psi)^(1/psi)) else dTS = 0 end ddt_TS = dTS OUTPUT: output = {TS}

Model based on ODE system

Example: Simeoni

[LONGITUDINAL]

input = {TS0, kge, kgl, psi}

EQUATION:

odeType=stiff ;defining initial conditions of the model:

;t_0=0 TS_0=TS0

• Initial integration time

- Can be negative
- Default value if not indicated:
 time of first dose or observation,
 vary between individuals
- Initial conditions such as TS_0 are values at that time

;model description: if TS < 1e12 dTS = (kge*TS/(1+(kge/kgl*max(0,TS))^psi)^(1/psi)) else dTS = 0 end ddt_TS = dTS

OUTPUT: output = {TS}

Model based on ODE system

Example: Simeoni

Without $t_0 = 0$

With $t_0 = 0$

S+ A SIMULATIONS PLUS COMPANY

Combination therapy in lung cancer xenografts

Example 1

Introduction

Case study based on data published and modeled in:

- Imbs et al. (2018). Revisiting Bevacizumab + Cytotoxics Scheduling Using Mathematical Modeling: Proof of Concept Study in Experimental Non-Small Cell Lung Carcinoma. *CPT*: *PSP*.
- Schneider et al. (2019). Optimal Scheduling of Bevacizumab and Pemetrexed/Cisplatin Dosing in Non-Small Cell Lung Cancer. CPT: PSP.

Context:

- Bevacizumab-pemetrexed/cisplatin is a first-line therapeutic for advanced nonsquamous non-small cell lung cancer.
- Bevacizumab potentiates pemetrexed/cisplatin (chemotherapy) cytotoxicity by inducing transient tumor vasculature normalization.
- The increase in neoplasm vascular quality because of bevacizumab typically occurs within a period of a few days after administration.

Goal of the study:

Estimate the optimal gap between administration of bevacizumab and chemotherapy to reach full activation

Introduction: lung cancer dataset

#Group:Beva-Chemo #Group:Beva_s3 #Group:Beva_s8 #Group:Chemo #Group:Control 3.50e4 3.50e4 3.50e4 3.50e4 3.50e4 3.00e4 3.00e 3.00e 3 00e 3.00e4 2.50e4 2.50e4 2.50e4 2.50e4 2.50e4 2.00e4 2.00e4 2.00e4 2.00e4 2.00e4 1.50e4 1.50e4 1.50e4 1.50e4 10000 1000 5000 time

Tumor size

Dataset overview:

 77 xenografts of initially 120000 H460 Luc+ dTomato+ cells, tracked with fluorescence

Measurements:

- OBSID = 1 tumor size (relative fluorescence unit)
- OBSID = 2 survival

Treatments:

- 3 drugs, each given 3 times every 2 weeks
- 5 treatment arms:
 - Control (n=15)
 - Chemo (n=15) = pemetrexed + cisplatin
 - Beva-Chemo: Bevacizumab and Chemo at the same time (n=15)
 - **Beva_s3**: Bevacizumab then Chemo after 3 days (n=16)
 - **Beva_s8**: Bevacizumab then Chemo after 8 days (n=15)

MonolixSuite training 2021

Data for control group in log scale

\Rightarrow Which tumor growth model?

Data for control group in log scale

- Not exponential nor linear models
- No clear carrying capacity

Data for all groups except Control: bevacizumab seems to make a difference with concomitant administration and 3-days gap, but not with 8-days gap

Data for **Chemo** group: treatment effect is small, and seems delayed

#Group:Chemo

Tumor growth inhibition data

Survival data

Survival data split by Group

Modeling workflow

The modeling workflow can be done in 4 steps:

		4	
		4	
Empirical for #Group Beva-Chemo			
Empirical for #Group Beva_83			
Empirical for #Group Beva_s8		44	
- Empirical for #Group Chemo	-		
- Empirical for #Group.Control			

. Tumor growth model estimated on Control group

Use last estimates

2. Tumor growth inhibition model for chemotherapy estimated on Chemo group

Use last estimates

3. Tumor growth inhibition model for chemotherapy combined with bevacizumab estimated on all groups

Use last estimates

4. Joint model tumor size and survival

Step 1: Tumor growth models

Project name	Hierarchy Add all Clean	Actions	Rating	-2*LL (Lin)☆ -2*LL (IS)☆	BICc (Lin)∾	BICc (IS)≁⊧	Structural model	Observation model	Individual model 🕕
r02_Simeoni	۲	×∎C@⊨		2453.0	2	2486.49	lib: TG_Sim_NoFeat_ TS0par.txt	Observation: comb1	TSO kge kgl
r01_explin	۲	×∎C@⊨	***	2453.2	4	2486.71	lib: TG_ExpLin_NoFe at_TS0par.txt	Observation: comb1	TSO kge kgl
r03_Koch	۲	×∎C@⊨		2454.4	7	2487.93	lib: TG_Koch_NoFeat _TS0par.txt	Observation: comb1	TS0 kge kgl
r04_logis	۲	×∎C@⊨	***	2459.9	4	2493.41	lib: TG_Logi_NoFeat _TS0par.txt	Observation: comb1	TS0 kge TSmax
r05_SimeoLogis	۲	×∎C@⊨		2453.0	6	2494.31	lib: TG_SimLogi_NoF eat_TS0par.txt	Observation: comb1	TSO kge kgl TSmax
r07_expGomp	۲	×∎C@⊨	***	2459.9	7	2501.22	lib: TG_ExpGomp_No Feat_TS0par.txt	Observation: comb1	TSO kge beta TSmax
r06_Gomp	۲	×∎C@⊨		2467.	9	2501.37	lib: TG_Gomp_NoFea t_TS0par.txt	Observation: comb1	TS0 beta TSmax
r09_genVonBertalanffy	۲	×∎C@⊨	***	2468.8	5	2510.09	lib: TG_GenVB_NoFe at_TS0par.txt	Observation: comb1	TS0 kg kd gamma
r08_vonBertalanffy	۲	×∎C@⊨		2709.8	1	2743.72	lib: TG_VB_NoFeat_T S0par.txt	Observation: comb1	T50 kg kd

Step 1: Tumor growth models

⇒ The exponential-linear (or Simeoni) model with a sharp switch between exponential and linear phases gives the best results

Step 2: TGI

A SIMULATIONS PLUS COMPANY

Possible inhibition model for the effect of chemotherapy:

Killing hypothesis:

- Log-kill
- Norton-Simon

Dynamics:

- First-order
- Michaelis-Menten
- Hill
- Exponential

Delay:

- Cell distribution
- Signal distribution
- ➔ 16 combinations
- ➔ The library allows to easily test different hypotheses

		Shortcut	s To Com	nonly Used	Models		
Claret exponential	Simeoni	Stein	Wa	ing	Bonate	Ribba	TwoPopulation
Initial Tumor Size	Ki	netics	Мо	del	Additional Fe	ature	Treatment
As parameter	No saturati	on	Linear		None		None
As regressor	Saturation		Quadratic		Immune Dynamics		PK model
			Exponential				Exposure as regressor
			Generalized E	kponential			Treatment start at t=0
			Exponential-li	near			Treatment start time as regressor
			Simeoni				No treatment (0) vs
Killing Hunotho	eie	Dunomi	NOCII	Po	eistanco		Dolov
Кишив пуросне	ala 	Dynami	5	KG	Sistance		Delay
Log-kill	Fir	st-order		Claret expone	ntial	Signa	distribution
Norton-Simon	Mic	haelis-Menten:		Resistant cells	5	Cell d	stribution
	Mic	haelis-Menten Hill:		None		None	
	Exp	oonential Kill					
<u>q</u>							CLEAR FILTERS
TG_Sim_NoFeat_TS0par_TGI	_PKmod_LK_1st(Ord_NoRes_CD_NoF	eat 🔁				
TG_Sim_NoFeat_TS0par_TGI	_PKmod_LK_1st(Ord_NoRes_NoDel_N	loFeat 🛃				
TG_Sim_NoFeat_TS0par_TGI	_PKmod_LK_1st(Ord_NoRes_SD_NoF	eat 🛃				
TG_Sim_NoFeat_TS0par_TGI	_PKmod_LK_Exp	_NoRes_CD_NoFeat	Ð				
TG_Sim_NoFeat_TS0par_TGI	_PKmod_LK_Exp	_NoRes_NoDel_NoF	eat 🔁				
TG_Sim_NoFeat_TS0par_TGI	_PKmod_LK_Exp	_NoRes_SD_NoFeat	Ð				
Records per page: 10 24 Showing 1 to 24 of 24 entries							CANCEL

Step 2: TGI

[LONGITUDINAL] input = {TSO, kge, kgl, psi, kkill, tau, V, k} PK: EXPOSURE = pkmodel(V, k)	EQUATION: odeType=stiff ;initial conditions of the model:	Best model from the library: Simeoni tumor growth with Norton-Simon linear killing and signal distribution
	<pre>t_0=0 TS_0=TS0 K1_0=0 K2_0=0 K3_0=0 ;model description: K = (kkill*EXPOSURE) ddt_K1 = (K-K1)/tau ddt_K2 = (K1-K2)/tau ddt_K3 = (K2-K3)/tau ddt_TS = (kge*TS/(1+(kge/kgl*max(0,TS))^psi)^(1/psi))*(1-K3) OUTPUT: output = {TS}</pre>	

MonolixSuite training 2021

Step 2: TGI

[LONGITUDINAL] **EQUATION:** input = {TS0, kge, kgl, psi, kkill, tau} Model from the library: odeType=stiff Simeoni tumor growth with PK: Norton-Simon linear killing and ; initial conditions of the model: signal distribution t 0=0 TS 0=TS0 K1 0=0 Extension of the model: K2 0=0 K3 0=0 ;====cisplatin 1. PK model combining = 66.5421 ka cis ;model description: cisplatin and pemetrexed = 0.2868 k cis Vd cis = 65.1131 compartment(cmt = 2, concentration = C cis, volume = Vd cis) K = (kkill*EXPOSURE)oral(adm = 2, cmt = 2, ka = ka_cis) ddt K1 = (K-K1)/tau $elimination(cmt = 2, k = k_cis)$ ddt K2 = (K1-K2)/tau $ddt_K3 = (K2-K3)/tau$;=====pemetrexed = 28.6 ka_pem = 2.1328 k pem $ddt_TS = (kge^TS/(1+(kge/kgl^max(0,TS))^psi)^(1/psi))^*(1-K3)$ = 102.7673 Vd_pem compartment(cmt = 3, concentration = C_pem, volume = Vd_pem) oral(adm = 3, cmt = 3, ka = ka_pem) OUTPUT: $elimination(cmt = 3, k = k_pem)$ output = $\{TS\}$ $EXPOSURE = C_cis + C_pem$

Step 3: Combination therapy


```
[LONGITUDINAL]
                                                           EQUATION:
input = {TSO, kge, kgl, psi, kkill, tau, delta, Tlag}
                                                           odeType=stiff
PK:
;=====bevacizumab
                                                           ; initial conditions of the model:
ka b
             = 2.6875
k b
             = 0.1143
                                                           t 0=0
Vd b
             = 2.3800
                                                           TS 0=TS0
compartment(cmt = 1, concentration = C_bev, volume = Vd_b)
                                                           K1 0=0
oral(adm = 1, cmt = 1, ka = ka b, Tlag)
                                                           K2 0=0
elimination(cmt = 1, k = k b)
                                                           K3 0=0
;====cisplatin
ka cis
             = 66.5421
                                                           ;model description:
             = 0.2868
k cis
Vd cis
             = 65.1131
compartment(cmt = 2, concentration = C cis, volume = Vd cis)
                                                           K = (kkill*EXPOSURE)*(1+delta*C bev)
oral(adm = 2, cmt = 2, ka = ka_cis)
                                                           ddt K1 = (K-K1)/tau
elimination(cmt = 2, k = k_cis)
                                                           ddt K2 = (K1-K2)/tau
                                                           ddt_K3 = (K2-K3)/tau
;=====pemetrexed
             = 28.6
ka_pem
             = 2.1328
k pem
                                                           ddt_TS = (kge^TS/(1+(kge/kgl^max(0,TS))^psi)^(1/psi))^*(1-K3)
             = 102.7673
Vd_pem
compartment(cmt = 3, concentration = C_pem, volume = Vd_pem)
oral(adm = 3, cmt = 3, ka = ka_pem)
                                                           OUTPUT:
elimination(cmt = 3, k = k_pem)
                                                           output = \{TS\}
EXPOSURE = C_{cis} + C_{pem}
```


Model from the library: Simeoni tumor growth with Norton-Simon linear killing and signal distribution

Extension of the model:

- 1. PK model combining cisplatin and pemetrexed
- 2. PK model for bevacizumab and new effect: activation of killing with delay

Step 3: Combination therapy

 The final pro Inter-individ Correlation g Good RSEs 	ject is given in: s lual variability wa group with eta_kg	tarting_materia as removed on e, eta_kgl, eta_	l/2_TGI/r01_tr several param _TS0	rtcomb.mlxtran eters	C TS0_pop kge_pop kgl_pop kkill_pop
#Group:Beva-Chemo	#Group:Beva_s3	#Group:Beva_s8	#Group:Chemo	#Group:Control	tau_pop delta_po
					Tlag_pop
10000	10000	0000	10000	1000	Standard I
	i jiji				omega_1S omega_kg
1000 -	1000	1000	1000	1000	omega_kg
2		j		. id:	omega_kk
100	100	100	100		
					corr_kge_T
	•••		•		corr_kgl_k
10	10	10	10	10 • •	E
		1.			a
20 40 60	20 40 60	20 40 60 time	20 40 60	20 40 60	h

an in	VALUE	STOCH	. APPROX.
	VALUE	S.E.	R.S.E.(%)
	Fixed Ef	fects	
TS0_pop	7.72	1.3	16.8
kge_pop	0.19	0.0076	3.91
kgl_pop	620.03	89.61	14.5
kkill_pop	535.76	23.8	4.44
tau_pop	3.77	0.13	3.31
delta_pop	2.58	0.12	4.77
Tlag_pop	0.83	0.011	1.31
Standard Devi	iation of t	the Rando	om Effects
omega_TS0	1.1	0.13	12.1
omega_kge	0.27	0.028	10.3
omega_kgl	0.92	0.13	13.8
omega_kkill	0.18	0.028	15.1
	Correlat	ions	
corr_kge_TS0	-0.76	0.056	7.40
corr_kgl_TS0	0.62	0.096	15.5
corr_kgl_kge	-0.63	0.098	15.6
Error	Model P	arameter	5
	42.45	6.13	14.4
Ь	0.23	0.0094	4.13

Step 4: joint TGI-TTE model

Survival model: delayed Weibull after TS reaches a threshold TSth

```
...
; computing time when TS>TSth
TimeTSth_0 = 0
if TS < TSth
 xTime = 1
else
 xTime = 0
end
ddt_TimeTSth = xTime
; hazard
if TS < TSth
h = 0
else
                                                               Definition of hazard function with time
h = p/Te * max(1e-6,(t-TimeTSth)/Te)^{(p-1)}
end
OBSERVATION:
                                                               Definition of single exactly observed random event
Survival = {type = event, hazard = h, maxEventNumber = 1}
•••
```
Step 4: joint TGI-TTE model

TTE VPC split by group

S+ A SIMULATIONS PLUS COMPANY

PSA in metastatic Castration-Resistant Prostate Cancer treated with chemotherapy

Example 2

Introduction: PSA + survival dataset

Published in:

- Desmée, S. et al. (2017). Using the SAEM algorithm for mechanistic joint models characterizing the relationship between nonlinear PSA kinetics and survival in prostate cancer patients. *Biometrics*, 73(1), 305–312.
- Data from the control arm of phase 3 clinical trial VENICE

Dataset overview:

- 400 men with metastatic Castration-Resistant Prostate Cancer (mCRPC)
- treated with docetaxel and prednisone (first-line reference chemotherapy)

Observations:

- PSA concentration
- Death or censoring time

Data set

ID	TIME	Y	CENS	YTYPE	TS0reg	TIME_ENDt	tr_reg	TIME	ENDtr	maxTime	AMT	
2002	-43	14.2	0	1	14.2		328		328	670	•.3	
2002	-2	14.83	0	1			328		328	670		
2002	0	0	0	2	•		328		328	670	•	
2002	0				•		328		328	670		C
2002	21	18.55	0	1			328		328	670	1 0	
2002	42	14.8	0	1	•3		328		328	670	•3	
2002	111	2.52	0	1			328		328	670	•	
2002	196	0.49	0	1			328		328	670	.	
2002	238	0.22	0	1			328		328	670	•.2	
2002	327	0.12	0	1	- Do	aroccorc	328		328	670		
2002	328			• interest	, Re	gressors	328		328	670		C
2002	411	0.1	1	1			328		328	670	•	
2002	670	0.1	1	1	1		328		328	670	10	
2002	677	0	0	2			328		328	670		

Treatment period

1 = PSA concentration → marker of tumor size 2 = death Covariates for
stratificationDummy doses
to visualize
start and end
of treatment

Introduction: PSA + survival dataset

time

TGI model with Claret resistance

[LONGITUDINAL]
input = {TS0, kge, kkill, lambda}
TS0 = {use=regressor}

EQUATION:

odeType=stiff

TS_0=TS0

K = kkill*exp(-lambda*t)

TSsat = min(TS,1e9) if t<0; before treatment (kkill = 0) TSDynamics = kge*TSsat else ; during treatment TSDynamics = kge*TSsat-K*TS end

ddt_TS = TSDynamics

OUTPUT: output = {TS}

Model from library:

- Exponential growth and log-kill treatment effect
- No fixed initial time
- TSO read as regressor
- Treatment effect applied after time 0

TGI model with Claret resistance

[LONGITUDINAL]

input = {TS0, TimeEndTrt, kge, kkill, lambda}
TS0 = {use=regressor}
TimeEndTrt = {use=regressor}

EQUATION:

odeType=stiff

TS_0=TS0

K = kkill*exp(-lambda*t)

```
TSsat = min(TS,1e9)
if t<0 | t>TimeEndTrt ; before and after treatment (kkill = 0)
TSDynamics = kge*TSsat
else ; during treatment
TSDynamics = kge*TSsat-K*TS
end
```

ddt_TS = TSDynamics

OUTPUT:

output = {TS}

Model from library:

- Exponential growth and log-kill treatment effect
- No fixed initial time
- TSO read as regressor
- Treatment effect applied after time 0

Customization of the model:

- TimeEndTrt read as regressor
- Treatment effect applied between time 0 and TimeEndTrt

TGI model with Claret resistance

Result for exponential tumor growth and log-kill

- \rightarrow Need for a maximal tumor size
- ➔ After comparing several options, the Simeoni-logistic function gives the best result

Comparing Norton-Simon and log-kill treatment effects \rightarrow LK gives the best results

Project name All None It	Hierarchy Add all Clean	Actions	Rating 💵	-2*LL (Lin) ↓†	-2*LL (IS) ⊥†	BICc (Lin) ↓†	BICc (IS) ↓≞	Structural model	Observation model	Individual model 🚯
TGSimeoniLogis_LK_lin_Claret	0	×DSMB	***		52734.51		52826.06	TG_SimeoLogi s_TGI_LK_lin_ ClaretExp.txt	y1: comb1	kge kgl <i>psi</i> TSmax kkill lambda
TGSimeoniLogis_NS_Claret	0	×DSMB	***		53101.54		532 <mark>07.88</mark>	TG_SimeoLogi s_TGI_NS_Clar etExp.txt	y1: comb1	kge kgl <i>psi</i> TSmax kkill lambda kd

Log-kill

Norton-Simon

Comparing different hypotheses

Comparing resistance models: → two population model than Claret resistance

Comparing delays: → Cell distribution gives better results than signal distribution

MonolixSuite training 2021

Final model

VPC split by maximal time of observation

⇒ Under-prediction for small maxTime and over-prediction for large maxTime might be a VPC dias due to non-random dropout

Dropout and VPC

MonolixSuite training 2021

Dropout and VPC

MonolixSuite training 2021

S+ A SIMULATIONS PLUS COMPANY

Q&A

S+ A SIMULATIONS PLUS COMPANY

Additional tumor growth features

Initial Tumor Size	Kinetics	Model	Additional Feature	Treatment	
As parameter	No saturation	Logistic	None	None	
As regressor	Saturation	Generalized Logistic	Angiogenesis	PK model	
		Simeoni-Logistic Hybrid	Immune Dynamics	Exposure as regressor	
		Gompertz		Treatment start at t=0	
		Exponential-Gompertz	Treatment start time as		
Von Bertalanffy				Ne treatment (0) ve treatment	
		Generalized Von Bertalanffy	(1) regressor		

Logistic growth with dynamic TSmax due to angiogenesis

surface

Logistic growth with constant TSmax

— Tumor size

— TSmax

Logistic growth with dynamic Tsmax due to angiogenesis

— Tumor size

TSmax

Exponential growth with immune dynamics model

[de Pillis et al. (2006)]

Tumor growth models

Model based on ODE system

Example: Simeoni

;defining initial conditions of the model: t_0=0 TS_0=TS0

;model description: ddt_TS = (kge*TS/(1+(kge/kgl*TS)^psi)^(1/psi))

OUTPUT: output = {TS}

Tumor killing hypothesis

Killing Hypothesis

Log-kill

Norton-Simon

Skipper-Schabel-Wilcox log-kill hypothesis:

 $\frac{dTS}{dt} = growth - K * TS$

With exponential-linear growth:

Norton-Simon killing hypothesis:

 $\frac{dTS}{dt} = growth * (1 - K)$

"the chance of eradicating the tumor is maximized by delivering the most effective dose level of drug over as short a time as possible"

Dropout and VPC

MonolixSuite training 2021

Dropout and VPC

Simulated censored observations are sampled from the conditional distribution: $p(y_{BLQ}|y_{nonBLQ}, \hat{\psi}, \hat{\theta})$

MonolixSuite training 2021

VPC correction for censored observations

Adding censored observations until time 1500 for all ids:

VPC correction for censored observations

 \Rightarrow Empirical percentiles take into account missing times via 400 600 800 1.000 1.200 1.400 1.60 simulated observations (based on the model)

200 time

200

Ó.

400

600

time

1,000 1,200

800

1,400 1,600