Beyond the linear model: fully automated concentration-QT analysis and reporting

Géraldine Cellière¹, Andreas Krause¹, Guillaume Bonnefois¹, Jonathan Chauvin¹ (1) Simulations Plus, CPP and PTO divisions. **Contact**: geraldine.celliere@simulations-plus.com

SimulationsPlus

INTRODUCTION

- QT interval prolongation assessment as a marker for risk of drug-induced arrythmia is an integral part of drug development for small molecules.
- QT analysis may be carried out with concentration-QTc modeling based on entry-intoman (SAD and MAD studies) as an alternative to thorough QT (TQT) studies [1].
- The scientific white paper (Garnett et al. [2]) provides guidance for performing and reporting concentration-QT modeling to support regulatory submissions.
- The standard model is a linear mixed-effects model.

OBJECTIVE 1: Extend the linear model to nonlinear and delayed-effect models OBJECTIVE 2: Automation of data preparation, model selection, and reporting

EXTENSIONS OF THE LINEAR MODEL

The white-paper linear model is defined as:

 $\Delta QTc_{i,j,k} = (\Theta_0 + \eta_{0,i}) + \Theta_1^*TRT_j + (\Theta_2 + \eta_{2,i})^*C_{i,j,k} + \Theta_{3,k}^*TIME_k + \Theta_4^*(QTc_{i,j,k=0} - mean(QTc_{i,j,k=0}))$

The model is rewritten to have two components, a structural model and a statistical model (i.e., drug effect and inter-interindividual variability with random and covariate effects) [3]:

$$\begin{split} & \textit{Structural model: } \Delta QTc_{i,j,k} = \Theta_{0,i} + \Theta_{2,i} * C_{i,j,k} \\ & \textit{Statistical model:} \\ & \Theta_{0,i} = \Theta_{0,pop} + \eta_{0,i} + \Theta_1 * TRT_j + \Theta_4 * BL_{cent,i,j} + \Theta_{3,T1} * I(TIME=T1) + \Theta_{3,T2} * I(TIME=T2) + ... \\ & \Theta_{2,i} = \Theta_{2,pop} + \eta_{2,i} \end{split}$$

Considering that the structural model is expressed as a simple function of the concentration, other models are specified by defining the transformation of the concentration, $f(C_{i,j,k})$. The same applies when directly modeling $\Delta\Delta QTc$.

General structural model: (Δ) Δ QTc_{i,i,k} = $\Theta_{0,i}$ + f(C_{i,i,k})

The following models can capture nonlinear conc- Δ QTc relationships or a delayed effect between the concentration and Δ QTc:

Table 1. Model alternatives for structural concentration-QT modeling

Model	Structural model	Parameters		
No effect	f(Cc) = 0			
Linear	f(Cc)=slope*Cc	slope		
Loglinear	$f(Cc) = p_1 * log(1 + Cc/p_2)$	p ₁ , p ₂		
E _{max}	$f(Cc) = E_{max} * Cc/(Cc + EC_{50})$	E _{max} , EC ₅₀		
E _{max} with sigmoidicity	$f(Cc) = E_{max} * Cc^{\gamma} / (Cc^{\gamma} + EC_{50}^{\gamma})$	E_{max}, EC_{50}, γ		
Effect compartment (hysteresis)	$d/dt(Ce) = (1/\tau_0)^*(Cc-Ce)$ f(Ce) = slope*Ce	τ_0 , slope		

STEP 1: DATA PREPARATION

The R function process_QTcData() computes additional variables for the analysis data set:

- **QTc** computation by applying the heart-rate correction, e.g., using Fridericia's formula.
- Averaging of triplicate QTc for each time point.
- ΔQTc (baseline-corrected QTc) computation
- ΔΔQTc (baseline and placebo-corrected QT) derivation (if cross-over setup).
- **ΔHR** and **ΔΔHR** computation for exploratory data visualization.
- Covariate derivation: centered QTc baseline, placebo-adjusted centered baseline (for ΔΔQTc), time as categorical factor, drug concentration, and RR interval duration.

RANDID	EXTRT	EXDOSE	TPT	BASELINE	PCSTRESN	RR	PR	QT	QRS														
1001	Dofetilide	500	-0.5	Y		908	141	370	96		pr	ocess	QTcD	ata(c	lata='	'Dofetil	ide data.d	csv",					
1001	Dofetilide	500	-0.5	Y		938	135	367	93	QTname = "QT", RRname = "RR", CONCname = "PCSTRESN", TRTname = "EXTRT", IDname = "RANDID", TIMEname = "TPT", bComputeQTc = TRUE, correctionMethod = "Fridericia", bComputeBaseline = TRUE, BLFLAGname = "BASELINE", stepOrder = "FirstCorrectThenAverage",													
1001	Dofetilide	500	-0.5	Y		901	143	372	100														
1001	Dofetilide	500	0.5	N	120	899	142	369	95														
1001	Dofetilide	500	0.5	N	120	1057	126	380	95														
1001	Dofetilide	500	0.5	N	120	902	131	369	97														
1001	Dofetilide	500	1	N	1610	907	147	389	93														
1001	Dofetilide	500	1	N	1610	949	139	392	94														
1001	Dofetilide	500	1	N	1610	979	144	395	96														
1001	Dofetilide	500	1.5	N	1930	896	158	425	92			out	Name	= "D	ofeti	lide fo	rmatted c	sv"	silen	t=FΔI	SE)		
1001	Dofetilide	500	1.5	N	1930	946	144	435	96			out	Name	- 0	01611		i macteu.c.	, ۷۵	51161				
1001	Dofetilide	500	1.5	N	1930	958	138	436	95														
RANDIE	EXTRT	EXDOSE	TPT	BASELINE	CONC	RR	PR	OT	ORS	HR	OTc	BLOTC	BLHR	dOTc	dHR	BLOTc cent	BLOTc centAdiPl	ddOTc	ddHR	Cc reg	RR reg	TIME cat	
1001	Dofetilide	500	-0.5	V	0	915 667	141	369 667	96	65 546	380 722	380 722	65 546	0	0	-14 202	-10 788	0	0	0	915 667	-0.5	
1001	Dofetilide	500	0.5	N	120	952.667	142	372.667	95	63.341	379.094	380.722	65.546	-1.628	-2.205	-14 202	-10.788	4.371	6.311	120	952.667	0.5	
1001	Dofetilide	500	1	N	1610	945	147	392	93	63 555	399 523	380 722	65 546	18 802	-1 991	-14 202	-10 788	18 948	-3 259	1610	945	1	
1001	Dofetilide	500	1.5	N	1930	933 333	158	432	92	64 34	442 083	380 722	65 546	61 362	-1 206	-14 202	-10 788	63.409	-1 844	1930	933 333	1.5	
1001	Dofetilide	500	2	N	2430	939 667	136	442	97	63.941	451 355	380 722	65 546	70.633	-1 605	-14 202	-10 788	68 143	0.584	2430	939 667	2	
1001	Dofetilide	500	25	N	2900	970 333	129	441 667	97	61 847	446 142	380 722	65 546	65 421	-3 699	-14 202	-10 788	66 689	.7 137	2900	970 333	25	
1001	Dofetilide	500	3	N	2940	917 333	138	433 333	97	65 441	446 032	380 722	65 546	65.31	-0.105	-14 202	-10 788	72.46	-5 739	2940	917 333	3	
1001	Dofetilide	500	3.5	N	2500	946 667	146	416 667	95	63.39	424 359	380 722	65 546	43 638	-2 156	-14 202	-10 788	50.43	-4 78	2500	946 667	3.5	
-001			0.0		2000	0.007	140		50	00.00		000.722	00.040	-0.000	2.100	1-1-202	20.700	00.40		2000	5.007	0.0	
1001	Dotetilide	500	4	N	2560	924 667	138	426	95	64 904	437 284	380 722	65 546	56 562	-0 642	-14 202	-10 788	61 864	.7 167	2560	924 667	4	

The process_QTcData() function is flexible and adapts to the columns already present in the dataset. Several options are available for heart-rate correction and baseline calculation.

STEP 2: CONCENTRATION-QTc ANALYSIS

The function generateAllQTcProjects() creates and executes Monolix conc-QT projects.

- A library of models is provided (all models in Table 1).
- Choice of modeling ΔQTc or ΔΔQTc directly.
- Choice of running the standard linear model only or assessing alternatives
- If alternatives are chosen to be considered:
 - $\circ~$ The best-fitting model is automatically selected based on the BICc.
 - Results for the best-fitting model are reported.
 - The best-fitting model is compared to the linear model.
 - A delayed effect is detected, warning that a full pop PK/PD model is suggested.

AUTOMATED CONCENTRATION-QT ANALYSIS

The freely downloadable R scripts automatically execute the analysis:

- 1. data preparation: triplicate averaging, baseline derivation, QTc calculation, and more.
- **2.** conc-(Δ) Δ QTc analysis: standard linear analysis or evaluation of alternative models.
- **3. report generation:** as Word document including exploratory data analysis, assessment of key modeling assumptions, and results in figures and tables.

Case study

The dofetilide data (Johannesen et al. [4]) are analyzed. Single doses of 500 μ g dofetilide or placebo were administered to 22 healthy subjects in a two-period crossover study. PK and QT data were collected at 16 matching time points of 24 h.

Prerequisites

R and MonolixSuite 2024 with the R API lixoftConnectors. Execution of the following R code:

source('../_mlxQTcTools/mlxQTcTools.R')
library(lixoftConnectors)
initQTc(path="C:/Program Files/Lixoft/MonolixSuite2024R1")

REFERENCES

[1] ICH E14 Guideline: Q&A (2015)
[2] Garnett et al., *JPKPD* (2018)
[3] Celliere et al., *JPKPD* (2025)
[4] Johannesen et al., *CPT* (2014)

The Monolix projects generated can be opened in the GUI and explored or further modified (e.g., covariates can be added).

STEP 3: REPORTING

A customizable Quarto template is used to create a standard report in Word.

The report includes:

- Exploratory data analysis: data summary, QT/QTc, HR correction, baseline QTc, ΔQTc, ΔΔQTc and concentration-time.
- Model assumption validation: heart-rate independence from drug concentration, QTc independence from heart rate, linearity of the concentration-QTc relationship, immediate effect of concentration change on (Δ)ΔQTc change.
- Modeling results: model comparison, model fit, parameter estimates, goodness of fit.
- ΔΔQTc prediction intervals: derivation and assessment of the 10-ms threshold.

www.simulations-plus.com