Quantitative Systems Toxicology (QST) Modeling Using BIOLOGXsym and Mechanistic Toxicity Data From a Biomimetic Liver Microphysiology System Predicts Biologics-induced *Liver Injury (BILI) For Multiple Large* Molecules

James Beaudoin

*QSP Solutions, Simulations Plus Inc., Research Triangle Park, NC; *Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA

v169kCte104ea&#L9WiE&Be4 Av. Verstetti[#]ne* D. Lansing Taylor[#], Francisco Huizar Celeste Valleio*, Conner I. Sandefur* Michael Kelley*, Vinal V. Lakhani*, Christina Battista^{*}, Scott Q. Siler^{*}, Lisl K.M. Shoda^{*}, Brett A. Howell^{*}, Kvunahee Yana

BACKGROUND: While biologics offer promise in addressing a range of unmet medical needs, clinically observed BILI events are concerning for drug developers, health care providers and patients. QST modeling, combined with *in vitro* data, can improve understanding of BILI mechanisms and help predict hepatotoxicity in humans.

biocnemistry and physiology, as well as pathways and mechanisms unique to biologics (e.g., inhibition of IL-6 signaling by tocilizumab)¹. Mechanistic toxicity assay readouts from 10-day experiments with the Liver Acinus MicroPhysiology System (LAMPS) were evaluated after treatment with different biologics (GGF2, tocilizumab, ipilimumab, infliximab, nivolumab, bevacizumab^{2,3}) with and without BILI liabilities, and were used as BIOLOGXsym inputs to represent biologics mediated hepatocyte stress signals

oxidative stress). Physiologically based (e.g., pharmacokinetic models were developed in GastroPlus[®] v9.8 to inform the exposure of these biologics in the hepatic interstitium at clinically relevant dosing protocols to drive the hepatotoxic effects in the BIOLOGXsym simulations^{1,4}.

RESULTS: BIOLOGXsym simulations, combining exposure, LAMPS-informed toxicity mechanisms, and a virtual population of normal healthy volunteers (NHV SimPops[®], n=285) predicted plasma alanine aminotransferase (ALT) >3X upper limit of normal (ULN) for large molecules with clinical BILI liabilities: GGF2 (Sim: 0.7%, Data: 4.6% with ALT >3X ULN), tocilizumab (Sim: 6.7%, Data: 0.7-33.8% with ALT >1-5X ULN), ipilimumab (Sim: 15.1%, Data: 10.9% with

QST Modeling Using BIOLOGXsym

While

≥Grade 3), infliximab (Sim: 0.7%, Data: 0.7% with ALT >3X ULN), and nivolumab (Sim: 0.7%, Data: 1.4-1.5% with ≥Grade 3). For the negative control bevacizumab, no mechanistic LAMPS signal was observed, and no ALT elevations were simulated.

Data From LAMPS Experimentation

TABLE: Direct hepatocyte stress mechanisms from LAMPS and target-mediated mechanisms affecting hepatocytes that were or will be included in BIOLOGXsym

Compound	Direct hepatocyte stress mechanisms from LAMPS [†]	Target-mediated mechanisms affecting hepatocytes
GGF2	BA, Mito	None
Tocilizumab	ROS	Inhibits IL-6 signaling
Ipilimumab	Mito	Increases effector CD8+ T cell proliferation, mediator production, and cytotoxicity [‡]
Infliximab	BA, Mito	Inhibits TNF- α signaling [‡]
Nivolumab	BA, Mito, ROS	Increases exhausted CD8+ T cell proliferation, mediator production, and cytotoxicity [‡]
Bevacizumab	None	None

[†]BA, bile acid homeostasis alteration; Mito, mitochondrial dysfunction; ROS, reactive oxygen species formatio Not yet included in current simulation

FIGURE: Simulated evaluation of Drug-Induced Serious Hepatotoxicity (eDISH) plots for clinical protocols of biologics in the NHV SimPops (n=285)

REFERENCES:

¹Beaudoin et al. Int J Mol Sci. 2023 Jun 2;24(11):9692.

²Vernetti et al. SOT 63rd Annual Meeting & ToxExpo, Salt Lake City, UT, 2024 Mar 10-14.

³Huizar et al. SOT 63rd Annual Meeting & ToxExpo, Salt Lake City, UT, 2024 Mar 10-14.

⁴Vallejo et al. Pharmaceutics. 2025 Mar 14;17(3):372.

Additional references are available upon request.

This work was supported by NIH Award R44TR003535.

Capaci ty to Predic t Clinica Hepat otoxici ty Cause d by Biologi CS

ALT > 3X ULN: 2/285 (0.7%) ALT > 3X ULN: 0/285 (0.0%)