SINGLE-DOSE AND STEADY-STATE PHARMACOKINETICS OF MOXDUOTM, A DUAL-OPIOID FORMULATION CONTAINING A FIXED RATIO OF MORPHINE AND OXYCODONE

LYNN WEBSTER, MD;¹ JOEL OWEN, PHD, RPH;² INGER DARLING, PHD;³ PATRICIA RICHARDS, MD, PHD;⁴ ROBIN KELEN, RN;⁴ AND WARREN STERN, PHD⁴

¹Lifetree Clinical Research, Salt Lake City, Utah; ²Union University, Jackson, Tennessee; ³Cognigen Corporation, Buffalo, New York; ⁴QRxPharma, Inc., Bedminster, New Jersey

Introduction

- Opioid analgesics are standard therapy for moderate to severe acute pain in many patients¹
- Q8003 (MoxDuo™) is the first dual-opioid combination product that has been evaluated in clinical trials. MoxDuo immediate-release capsules were developed for the management of acute moderate to severe pain and contain
- morphine sulfate and oxycodone hydrochloride combined in a fixed ratio of 3:2 by weight • The MoxDuo dosage forms currently being studied are 3/2 mg, 6/4 mg, 12/8 mg, and 18/12 mg
- Use of opioids in combination has been shown to be an effective therapeutic strategy that results in lower drug consumption and fewer side effects than monotherapy.²⁻⁴ Moreover, MoxDuo may potentiate analgesia through
- interactions on a wider range of opioid subreceptors, including μ receptors (morphine) and κ receptors (oxycodone)³⁻¹ While the individual pharmacokinetic properties, including dose proportionality, of orally administered morphine and oxycodone are well documented,6,7 the pharmacokinetics of a therapeutic product combining these opioids has not been reported. The aim of the present study is to assess the dose proportionality of MoxDuo by examining the single-dose (3 mg/2 mg and 12 mg/8 mg morphine/oxycodone, respectively) and steady-state (12 mg/8 mg) pharmacokinetic

OBJECTIVE

properties of MoxDuo

To assess the dose proportionality of the morphine plus oxycodone combination (MoxDuo) immediate-release capsule following single-dose administration of low-strength (3 mg/2 mg, morphine/oxycodone) and high-strength (12 mg/8 mg, morphine/oxycodone) MoxDuo capsules and to evaluate the steady-state pharmacokinetic profiles of MoxDuo after multiple-dose administration of the high-strength 12 mg/8 mg capsule

METHODS

Study Design

- The study was performed in 18 healthy male and female volunteers
- Part 1 of the study was a single-dose, 2-way crossover study of a low-strength MoxDuo capsule containing 3 mg of morphine and 2 mg of oxycodone (3 mg/2 mg) and a high-strength MoxDuo capsule containing 12 mg of morphine and 8 mg of oxycodone (12 mg/8 mg) (Figure 1)
- The first treatment was administered on the morning of day 1, followed by a 48-hour washout period - The second treatment was administered on the morning of day 3
- Part 2 of the study was a multiple-dose study of MoxDuo 12 mg/8 mg administered every 4 hours from the morning
- of day 4 until the morning of day 6 (total of 13 doses) (Figure 1 - Full-profile blood sampling was performed on days 1, 3, and 6
- In both part 1 and part 2, subjects received naltrexone 50-mg tablets at approximately 12 hours and at 30 minutes prior to each morning dose of MoxDuo
- All analyte concentrations for oxycodone, morphine, morphine-3β-D-glucuronide (M3G; a morphine metabolite), and morphine-6β-D-glucuronide (M6G; a morphine metabolite) were determined using high-performance liquid chromatography
- with tandem mass spectrometry [LC/MS/MS]) detection by MEDTOX Labs, St. Paul, MN • The detection limits for the assays were 50 pg/mL for oxycodone, 0.10 ng/mL for morphine, 2.0 ng/mL for morphine 3β-D-glucuronide (M3G; a morphine metabolite), and 0.5 ng/mL for morphine-6β-D-glucuronide (M6G; a morphine

FIGURE 1. STUDY DESIGN.

- Subjects were healthy male and female volunteers (N=18), aged 18 to 55 years, inclusive
- Resting respiration rate was ≥10 breaths per minute, and the pulse oximetry measurement was ≥95% Pharmacokinetic Evaluation
- The primary variables for the pharmacokinetic analysis were plasma concentrations of oxycodone, morphine, and the morphine
- Pharmacokinetic analyses were performed using WinNonlin® Professional, Version 5.2 (Pharsight Corporation, Cary, NC) • Standard noncompartmental analyses were conducted for computation of metrics of exposure (C_{max}, AUC) and disposition
- terminal elimination half-life $(t_{1/2})$
- The accumulation index was calculated as the minimum plasma concentration (C_{min}) obtained under steady-state conditions
- (time 0 on day 6) divided by the C_{min} value obtained after a single dose (4-hour time point on day 1 or day 3) Analysis of variance (ANOVA) was performed using the general linear model procedure in SAS
- Separate ANOVA analyses were performed to assess differences in the 3 mg/2 mg dose and the 12 mg/8 mg dose for
- each of the measured analytes (morphine, M3G, M6G, and oxycodone)

- These analyses were performed for dose-normalized maximum observed plasma concentration (C_{max}), area under the
 The plasma concentration vs time profiles for morphine, M3G, M6G, and oxycodone following administration of the plasma concentration-time curve from time 0 to 4 hours (AUC $_{0-4}$), area under the plasma concentration-time curve from time 0 to 8 hours (AUC_{0.8}), area under the plasma concentration-time curve from time 0 to the time of last non-zero concentration (AUC_{0-t}), and total area under the plasma concentration-time curve (AUC_{0-t})
- The ANOVA model included factors of sequence, subject nested within sequence, period, and treatment (formulation) on dose-normalized, log-transformed AUC and C_{max}
- Ninety percent confidence intervals (CIs) of the ratios of the geometric means for C_{max} , AUC_{0-4} , AUC_{0-8} , AUC_{0-1} , and $AUC_{0-\infty}$ were compared with the equivalence criteria limits (80% and 125%)
- Safety was assessed through the collection of adverse event (AE) reports, clinical laboratory evaluation, vital signs, and pulse
- Summary statistics were performed for measured values and change from screening values for each dose period, where applicable

RESULTS

• Demographic and baseline characteristics are summarized in Table 1

Table 1. Subject Demographics

Characteristic	
Age, y	25.4 ± 6.8 (20.0-47.0)
Sex, n (%)	
Male	8 (44.4)
Female	10 (55.6)
Race, n (%)	
White	18 (100)
BMI, kg/m ²	23.0 ± 2.5 (19.9-28.7)
Height, cm	173.0 ± 9.6 (154.8-194.2)
Weight, kg	69.3 ± 11.9 (55.8-95.3)
N=18.	·

MoxDuo Single-Dose Pharmacokinetic Results: Part 1

All results are mean ± SD (range) unless otherwise noted.

- All 18 subjects completed the study and were included in the descriptive statistics and the pairwise bioequivalence analyses, with the exception of 1 subject. This subject's day 3 M3G and M6G profiles were excluded because the predose M3G and M6G concentrations were greater than 5% of the corresponding C_{max} for that dosing interval
- The mean plasma concentrations for morphine, M3G, M6G, and oxycodone following administration of MoxDuo 3 mg/2 mg and 12 mg/8 mg are shown in Figures 2A and 2B, respectively
- Mean plasma concentrations during the terminal phase for morphine and the metabolites (M3G and M6G) appeared to decline at similar rates for the 3 mg/2 mg dose (Figure 2A), resulting in apparent parallel profiles
- Similar parallel profiles for morphine, M3G, and M6G also were observed for the 12 mg/8 mg dose (Figure 2B)
- By inspection, the oxycodone profiles for the 3 mg/2 mg dose (Figure 2A) and the 12 mg/8 mg dose (Figure 2B) appeared to decline in a parallel manner

12 mg/8 mg dose were consistently approximately 4 times greater than those following administration of the 3 mg/2 mg dose, • Steady-state conditions for all analytes were reached prior to the day 6 dose administration (Figures 3 and 4) indicating pharmacokinetic linearity (dose proportionality) over this dose range (Figures 2A and 2B)

- Peak exposure (C_{max}) and all metrics of total exposure (AUC) appear to be dose proportional across the two treatments (3 mg/2 mg and 12 mg/8 mg) (**Tables 2 & 3**)
- Terminal t_{1/2} values were similar for M3G and M6G compared with morphine for both doses, consistent with the observed parallel decline of morphine, M3G, and M6G plasma concentrations^{8,5}
- The $t_{1/2}$ values for M3G and M6G were consistent with previously published results, however, due to more sensitive LC/MS/MS bioanalaytical methods, the apparent $t_{1/2}$ value observed for morphine was substantially longer than those
- Time to maximum plasma concentration (T_{max}) values for morphine were similar to previously published results⁹
- The t_{max} and $t_{1/2}$ values for oxycodone were consistent with previous reports^{10,11}

Table 2. Mean Dose-Normalized Values for Peak Exposure (C_{MAX}) and Disposition $(T_{1/2})$ Reported for Part 1

Analyte	Dose, mg	t _{1/2} , h	T _{max} , h	C _{max} , ng/mL	ng/mL/mg
Morphine (N=18)	3	8.77 ± 5.06	0.500 (0.330-2.50)	3.87 ± 1.46	1.29 ± 0.487
	12	10.5 ± 3.53	0.540 (0.330-3.00)	16.1 ± 7.51	1.34 ± 0.626
Morphine-3β-D-glucuronide (N=17)	3	9.49 ± 3.23	1.00 (0.750-3.00)	82.2 ± 18.8	27.4 ± 6.26
	12	9.52 ± 2.84	1.00 (0.500-3.00)	332 ± 58.0	27.6 ± 4.83
Morphine-6β-D-glucuronide (N=17)	3	8.60 ± 4.86	1.50 (0.750-3.00)	15.2 ± 3.11	5.08 ± 1.04
	12	10.9 ± 3.29	1.50 (1.00-3.00)	60.5 ± 7.47	5.04 ± 0.622
Oxycodone (N=18)	2	3.55 ± 0.738	1.00 (0.500-4.00)	4.89 ± 2.18	2.44 ± 1.09
	8	3.95 ± 0.515	1.00 (0.500-3.00)	17.8 ± 8.20	2.22 ± 1.03
	6 /D 1	11. 1			

 C_{max} = maximum observed plasma concentration; C_{max}/D = dose-normalized maximum concentration; $t_{1/2}$ = terminal elimination half-life; = time to maximum plasma concentration. Data are mean \pm SD for $t_{1/2}$ (h), C_{max} , and C_{max}/D and median (range) for T_{max} (h).

Table 3. Mean Dose-Normalized Values for Total Exposure (AUC) TO SELECTED TIME POINTS REPORTED FOR PART 1

Analyte	Dose (mg)	(ng·h/mL/mg)	(ng·h/mL/mg)	(ng·h/mL/mg)a	(ng·h/mL/mg)
Morphine	3 (n=18)	2.07 ± 0.798	2.74 ± 0.977	2.47 ± 0.902	4.24 ± 1.97 ^b
	12 (n=18)	2.09 ± 0.738	2.75 ± 0.853	2.48 ± 0.809	4.55 ± 1.17°
Morphine-3β-D-glucuronide	3 (n=17)	67.5 ± 16.8	98.2 ± 19.8	124 ± 25.0	157 ± 34.9
	12 (n=18)	66.9 ± 13.0	97.1 ± 17.7	123 ± 23.4	158 ± 29.3
Morphine-6β-D-glucuronide	3 (n=17)	12.1 ± 2.68	17.0 ± 3.06	19.3 ± 3.62	25.3 ± 6.23 ^b
	12 (n=18)	11.8 ± 1.73	16.6 ± 2.28	18.8 ± 2.66	25.9 ± 4.53 ^b
Oxycodone	2 (n=18)	5.06 ± 1.91	7.62 ± 2.75	9.20 ± 3.35	9.62 ± 3.55
	8 (n=18)	4.85 ± 1.78	7.50 ± 2.52	9.14 ± 3.02	9.62 ± 3.20

AUC_{0.4}/Dose AUC_{0.8}/Dose AUC_{0.4}/Dose AUC_{0.8}/Dose

^aTime values for t in AUC_{D-t} /dose calculations were 6 hours for morphine, 16 hours for morphine-3 β -D-glucuronide, 12 hours for morphine-6β-D-glucuronide, and 16 hours for oxycodone.

AUC = area under the plasma concentration-time curve; $AUC_{0-4} = AUC$ from time 0 to 4 hours; $AUC_{0-8} = AUC$ from time 0 to 8 hours; $AUC_{0-t} = AUC$ from time 0 to the time of last non-zero concentration; $AUC_{0-\infty} = total$ area under the AUC.

FIGURE 2. A) PLASMA CONCENTRATIONS FOR ALL ANALYTES AFTER ADMINISTRATION OF A SINGLE DOSE OF MOXDUO 3 MG/2 MG; B) Plasma Concentrations for All Analytes After Administration of a Single Dose of MoxDuo 12 mg/8 mg.

Steady-State Pharmacokinetic Results: Part 2

- This is most clearly illustrated in the 4 hour-dosing interval profile, where the pre-dose concentrations are similar to the 4-hour concentrations for each analyte (Figure 4)

FIGURE 3. PLASMA CONCENTRATIONS FOR ALL ANALYTES AFTER STEADY STATE ADMINISTRATION OF MOXDUO 12 MG/8 MG (FULL PROFILE)

FIGURE 4. PLASMA CONCENTRATIONS FOR ALL ANALYTES AFTER STEADY STATE ADMINISTRATION OF MOXDUO 12 MG/8 MG: Samples From Time 0 to 4 Hours (dosing interval)

- Plasma concentration-time profiles from subjects administered the 12 mg/8 mg dose every 4 hours since day 4 show that day 6 morphine, M3G, and M6G plasma concentrations declined in a parallel manner, suggesting similar disposition (Figure 3)
- T_{max} values for all analytes were similar to those observed after a single-dose administration in part 1 of the study • The accumulation index determined from the C_{min} values at steady state and after a single dose (4-hour point from Part 1)
- was 3.16 \pm 0.927 for morphine, 2.59 \pm 0.623 for M3G, 2.49 \pm 0.618 for M6G, and 2.10 \pm 0.319 for oxycodone Bioequivalence Analysis of Pharmacokinetic Metrics From Part 1
- Results of pairwise statistical analyses of the dose-normalized pharmacokinetic parameter values between the low-strength 3 mg/2 mg capsule and the high-strength 12 mg/8 mg capsule in part 1 of the study are shown in Table 4

Table 4. Statistical Analyses of Dose-Normalized, LOG-TRANSFORMED PHARMACOKINETIC PARAMETERS FOR ALL Analytes Comparing Low-Strength (3 mg/2 mg) With HIGH-STRENGTH (12 MG/8 MG) MOXDUO CAPSULES

Analyte	PK Parameter	Point Estimate, %a	90% CI
Morphine	$\begin{array}{c} AUC_{0\text{-}4} \\ AUC_{0\text{-}8} \\ AUC_{0\text{-}t}^{b} \\ AUC_{0\text{-}\infty} \\ C_{max} \end{array}$	97.06 97.87 97.64 92.07 98.77	86.33-109.12 89.81-106.65 88.82-107.34 84.26-100.59 83.10-117.39
Morphine-3β-D-glucuronide	$\begin{array}{c} AUC_{0\text{-}4} \\ AUC_{0\text{-}8} \\ AUC_{0\text{-}b} \\ AUC_{0\text{-}\infty} \\ C_{max} \end{array}$	99.28 100.42 99.88 99.60 98.31	90.14-109.33 94.01-107.27 93.32-106.90 92.44-107.32 89.95-107.45
Morphine-6β-D-glucuronide	$\begin{array}{c} AUC_{0\text{-}4} \\ AUC_{0\text{-}8} \\ AUC_{0\text{-}^{b}} \\ AUC_{0\text{-}\infty} \\ C_{max} \end{array}$	100.72 102.37 102.01 96.00 99.92	90.60-111.98 94.61-110.77 93.94-110.77 86.70-106.29 91.92-108.61
Oxycodone	AUC ₀₋₄ AUC ₀₋₈ AUC _{0-t} ^b AUC _{0-∞} C _{max}	102.48 100.43 99.38 98.42 109.62	92.40-113.66 94.76-106.45 94.04-105.03 92.88-104.28 97.47-123.28

 b The time values used for t in the AUC_{0-t} calculations were 6 hours for morphine, 16 hours for morphine-3 β -D-glucuronide, 12 hours for

AUC =area under the plasma concentration-time curve; $AUC_{0-4} = AUC$ from time 0 to 4 hours; $AUC_{0-8} = AUC$ from time 0 to 8 hours; AUC_{0-1} = AUC from time 0 to the time of last non-zero concentration; $AUC_{0-\infty}$ = total area under the AUC; C_{max} = maximum observed plasma concentration; CI = confidence interval; PK = pharmacokinetic.

- Results show that the 90% CIs for all the dose-normalized parameters for C_{max} , $AUC_{0.4}$, $AUC_{0.8}$, $AUC_{0.4}$, and $AUC_{0.8}$ are within the equivalence limits of 80% and 125% for all measured analytes
- The observation that all of the pharmacokinetic parameters fall within the equivalence limits for the 90% Cls provides conclusive evidence of dose proportionality between the 3 mg/2 mg dose and the 12 mg/8 mg dose
- A statistically significant difference in sex was found for oxycodone in dose-normalized, log-transformed AUC₀₋₄, AUC₀₋₈, AUC₀₋₁, and $AUC_{0-\infty}$, which were consistently higher in women than in men (41%-55% higher in women) - These sex differences were similar to those noted in a previous pharmacokinetic study¹²
- Oral doses of MoxDuo were well tolerated by healthy subjects. This was expected since all subjects received naltrexone prior
- Seven of the 18 subjects (38.9%) experienced a total of 14 treatment-emergent AEs
- Eight events were mild in severity and 6 were moderate in severity; none were considered serious - The number of patients who experienced AEs related to MoxDuo are as follows: headache (3), dizziness (2), nausea (3), gastrointestinal pain (1), hyperhidrosis (1), and pallor (1)

Conclusions

- In the dual-opioid combination MoxDuo, morphine and oxycodone exhibit pharmacokinetic properties that are linear and dose proportional over a dosage range of 3 mg/2 mg to 12 mg/8 mg (morphine/oxycodone)
- Pharmacokinetic parameters for oxycodone, morphine, and morphine metabolites following administration of MoxDuo were consistent with results obtained for the individual drugs in previously published studies8-11
- Steady-state plasma concentrations for both morphine and oxycodone were achieved within 48 hours of MoxDuo
- Steady-state accumulation was observed for both morphine (approximately 3 times single dose C_{min}) and oxycodone (approximately 2 times single dose C_{min}) with administration of the 12 mg/8 mg dose every 4 hours
- This low-level accumulation would be expected, considering the single-dose pharmacokinetics of morphine and oxycodone observed in the dual-opioid formula and the dosing interval • Single-dose AUC values for oxycodone were higher in female subjects, as observed in a previous pharmacokinetic study¹²
- Both MoxDuo 3 mg/2 mg and 12 mg/8 mg were well tolerated (in naltrexone pretreated subjects)

REFERENCES

- 1. Trescot AM et al. Pain Physician. 2008;11:S5-S62.
- 2. Blumenthal S et al. Anesth Analg. 2007;105:233-237.
- 3. Lauretti GR et al. Br J Cancer. 2003;89:2027-2030.
- 4. Ross FB et al. Pain. 2000;84:421-428.
- 5. Nielsen CK et al. Pain. 2007;132:289-300.
- 6. Lugo RA, Kern SE. J Pain Palliat Care Pharmacother. 2004;18:17-30.
- 2002;16:5-18. 8. Osborne R et al. Clin Pharmacol Ther. 1990;47:12-19. 9. Gourlay GK et al. Clin Pharmacol Ther. 1989;46:463-468.

7. Lugo RE, Kern SE. J Pain Palliat Care Pharmacother.

10. Lalovic B et al. Clin Pharmacol Ther. 2006;79:461-479.

- 11. Gammaitoni AR, Davis MW. J Clin Pharmacol. 2002;42:192-197.
- 12. Kaiko RF et al. Clin Pharmacol Ther. 1996;59:52-61.

Supported by QRxPharma, Bedminster, NJ, USA.

Presented at the 29th Annual Meeting of the American Pain Society, May 6-8, 2010, Baltimore, Maryland.

#298

A DUAL-OPIOID FORMULATION CONTAINING A FIXED RATIO OF MORPHINE AND OXYCODONE SINGLE-DOSE AND STEADY-STATE PHARMACOKINETICS OF MOXDUOTM,

LYNN WEBSTER, MD;¹ JOEL OWEN, PHD, RPH;² INGER DARLING, PHD;³ PATRICIA RICHARDS, MD, PHD;⁴ ROBIN KELEN, RN;⁴ AND WARREN STERN, PHD⁴ 'LIFETRE CLINICAL RESEARCH, SALT LARE CITY, UTAH; ²UNION UNIVERSITY, JACKSON, TENNESSEE; ³COGNIGEN CORPORATION, BUFFALO, NEW YORK; ⁴QRAPHARMA, INC., BEDMINSTER, NEW JERSEY

Introduction

- Opioid analgesics are standard therapy for moderate to severe acute pain in many patients¹
- Q8003 (MoxDuo™) is the first dual-opioid combination product that has been evaluated in clinical trials. MoxDuo immediate-release capsules were developed for the management of acute moderate to severe pain and contain morphine sulfate and oxycodone hydrochloride combined in a fixed ratio of 3:2 by weight
- The MoxDuo dosage forms currently being studied are 3/2 mg, 6/4 mg, 12/8 mg, and 18/12 mg
- Use of opioids in combination has been shown to be an effective therapeutic strategy that results in lower drug consumption and fewer side effects than monotherapy. $^{2-4}$ Moreover, MoxDuo may potentiate analgesia through interactions on a wider range of opioid subreceptors, including μ receptors (morphine) and κ receptors (oxycodone) $^{3-5}$
- While the individual pharmacokinetic properties, including dose proportionality, of orally administered morphine and oxycodone are well documented,^{6,7} the pharmacokinetics of a therapeutic product combining these opioids has not been reported. The aim of the present study is to assess the dose proportionality of MoxDuo by examining the single-dose (3 mg/2 mg and 12 mg/8 mg morphine/oxycodone, respectively) and steady-state (12 mg/8 mg) pharmacokinetic properties of MoxDuo

OBJECTIVE

To assess the dose proportionality of the morphine plus oxycodone combination (MoxDuo) immediate-release capsule following single-dose administration of low-strength (3 mg/2 mg, morphine/oxycodone) and high-strength (12 mg/8 mg, morphine/oxycodone) MoxDuo capsules and to evaluate the steady-state pharmacokinetic profiles of MoxDuo after multiple-dose administration of the high-strength 12 mg/8 mg capsule

METHODS

Study Design

- The study was performed in 18 healthy male and female volunteers
- Part 1 of the study was a single-dose, 2-way crossover study of a low-strength MoxDuo capsule containing 3 mg of morphine and 2 mg of oxycodone (3 mg/2 mg) and a high-strength MoxDuo capsule containing 12 mg of morphine and 8 mg of oxycodone (12 mg/8 mg) (Figure 1)
 - The first treatment was administered on the morning of day 1, followed by a 48-hour washout period
 - The second treatment was administered on the morning of day 3
- Part 2 of the study was a multiple-dose study of MoxDuo 12 mg/8 mg administered every 4 hours from the morning of day 4 until the morning of day 6 (total of 13 doses) (Figure 1)
 - Full-profile blood sampling was performed on days 1, 3, and 6
- In both part 1 and part 2, subjects received naltrexone 50-mg tablets at approximately 12 hours and at 30 minutes prior to each morning dose of MoxDuo
- All analyte concentrations for oxycodone, morphine, morphine-3β-p-glucuronide (M3G; a morphine metabolite), and morphine-6β-p-glucuronide (M6G; a morphine metabolite) were determined using high-performance liquid chromatography with tandem mass spectrometry [LC/MS/MS]) detection by MEDTOX Labs, St. Paul, MN
- The detection limits for the assays were 50 pg/mL for oxycodone, 0.10 ng/mL for morphine, 2.0 ng/mL for morphine-3β-D-glucuronide (M3G; a morphine metabolite), and 0.5 ng/mL for morphine-6β-D-glucuronide (M6G; a morphine metabolite)

FIGURE 1. STUDY DESIGN.

Subjects

- Subjects were healthy male and female volunteers (N=18), aged 18 to 55 years, inclusive
- Resting respiration rate was ≥10 breaths per minute, and the pulse oximetry measurement was ≥95%

Pharmacokinetic Evaluation

- The primary variables for the pharmacokinetic analysis were plasma concentrations of oxycodone, morphine, and the morphine metabolites M3G and M6G
- · Pharmacokinetic analyses were performed using WinNonlin® Professional, Version 5.2 (Pharsight Corporation, Cary, NC)
- Standard noncompartmental analyses were conducted for computation of metrics of exposure (C_{max} , AUC) and disposition terminal elimination half-life ($t_{1/2}$)
- The accumulation index was calculated as the minimum plasma concentration (C_{min}) obtained under steady-state conditions (time 0 on day 6) divided by the C_{min} value obtained after a single dose (4-hour time point on day 1 or day 3)
- Analysis of variance (ANOVA) was performed using the general linear model procedure in SAS
 - Separate ANOVA analyses were performed to assess differences in the 3 mg/2 mg dose and the 12 mg/8 mg dose for each of the measured analytes (morphine, M3G, M6G, and oxycodone)

- These analyses were performed for dose-normalized maximum observed plasma concentration (C_{max}), area under the plasma concentration-time curve from time 0 to 8 hours (AUC₀₋₄), area under the plasma concentration-time curve from time 0 to 8 hours (AUC₀₋₈), area under the plasma concentration-time curve from time 0 to the time of last non-zero concentration (AUC₀₋₁), and total area under the plasma concentration-time curve (AUC₀₋₂)
- The ANOVA model included factors of sequence, subject nested within sequence, period, and treatment (formulation) on dose-normalized, log-transformed AUC and C_{max}
- Ninety percent confidence intervals (CIs) of the ratios of the geometric means for C_{max} , AUC_{0-4} , AUC_{0-8} , AUC_{0-1} , and AUC_{0-8} were compared with the equivalence criteria limits (80% and 125%)

Safety Evaluation

- · Safety was assessed through the collection of adverse event (AE) reports, clinical laboratory evaluation, vital signs, and pulse
- · Summary statistics were performed for measured values and change from screening values for each dose period, where applicable

RESULTS

• Demographic and baseline characteristics are summarized in Table 1

Table 1. Subject Demographics

Characteristic	
Age, y	25.4 ± 6.8 (20.0-47.0)
Sex, n (%)	
Male	8 (44.4)
Female	10 (55.6)
Race, n (%)	
White	18 (100)
BMI, kg/m ²	23.0 ± 2.5 (19.9-28.7)
Height, cm	173.0 ± 9.6 (154.8-194.2)
Weight, kg	69.3 ± 11.9 (55.8-95.3)
N=18.	·

BMI = body mass index.
All results are mean ± SD (range) unless otherwise noted.

MoxDuo Single-Dose Pharmacokinetic Results: Part 1

- · All 18 subjects completed the study and were included in the descriptive statistics and the pairwise bioequivalence analyses, with the exception of 1 subject. This subject's day 3 M3G and M6G profiles were excluded because the predose M3G and M6G concentrations were greater than 5% of the corresponding C_{max} for that dosing interval
- The mean plasma concentrations for morphine, M3G, M6G, and oxycodone following administration of MoxDuo 3 mg/2 mg and 12 mg/8 mg are shown in Figures 2A and 2B, respectively
- · Mean plasma concentrations during the terminal phase for morphine and the metabolites (M3G and M6G) appeared to decline at similar rates for the 3 mg/2 mg dose (Figure 2A), resulting in apparent parallel profiles
- Similar parallel profiles for morphine, M3C, and M6C also were observed for the 12 mg/8 mg dose (Figure 2B)
- By inspection, the oxycodone profiles for the 3 mg/2 mg dose (Figure 2A) and the 12 mg/8 mg dose (Figure 2B) appeared to decline in a parallel manner

- The plasma concentration vs time profiles for morphine, M3C, M6C, and oxycodone following administration of the 12 mg/8 mg dose were consistently approximately 4 times greater than those following administration of the 3 mg/2 mg dose, indicating pharmacokinetic linearity (dose proportionality) over this dose range (Figures 2A and 2B)
- Peak exposure (C_{max}) and all metrics of total exposure (AUC) appear to be dose proportional across the two treatments (3 mg/2 mg and 12 mg/8 mg) (**Tables 2 & 3**)
- \bullet Terminal $t_{1/2}$ values were similar for M3G and M6G compared with morphine for both doses, consistent with the observed parallel decline of morphine, M3G, and M6G plasma concentrations^{8,9}
 - The $t_{1/2}$ values for M3G and M6G were consistent with previously published results, however, due to more sensitive LC/MS/MS bioanalaytical methods, the apparent $t_{1/2}$ value observed for morphine was substantially longer than those previously reported8,9
 - Time to maximum plasma concentration (T_{max}) values for morphine were similar to previously published results⁹
- \bullet The $t_{\rm max}$ and $t_{\rm 1/2}$ values for oxycodone were consistent with previous reports $^{\rm 10,11}$

TABLE 2. MEAN DOSE-NORMALIZED VALUES FOR PEAK EXPOSURE (C_{MAX}) and Disposition $(T_{1/2})$ Reported for Part 1

Analyte	Dose, mg	t _{1/2} , h	T _{max} , h	C _{max} , ng/mL	C _{max} /D, ng/mL/mg
Morphine (N=18)	3	8.77 ± 5.06	0.500 (0.330-2.50)	3.87 ± 1.46	1.29 ± 0.487
	12	10.5 ± 3.53	0.540 (0.330-3.00)	16.1 ± 7.51	1.34 ± 0.626
Morphine-3β-D-glucuronide (N=17)	3	9.49 ± 3.23	1.00 (0.750-3.00)	82.2 ± 18.8	27.4 ± 6.26
	12	9.52 ± 2.84	1.00 (0.500-3.00)	332 ± 58.0	27.6 ± 4.83
Morphine-6β-D-glucuronide (N=17)	3	8.60 ± 4.86	1.50 (0.750-3.00)	15.2 ± 3.11	5.08 ± 1.04
	12	10.9 ± 3.29	1.50 (1.00-3.00)	60.5 ± 7.47	5.04 ± 0.622
Oxycodone (N=18)	2	3.55 ± 0.738	1.00 (0.500-4.00)	4.89 ± 2.18	2.44 ± 1.09
	8	3.95 ± 0.515	1.00 (0.500-3.00)	17.8 ± 8.20	2.22 ± 1.03

 C_{max} = maximum observed plasma concentration; C_{max}/D = dose-normalized maximum concentration; $t_{1/2}$ = terminal elimination half-life; T_{max} = time to maximum plasma concentration. Data are mean \pm SD for $t_{1/2}$ (h), C_{max} , and C_{max}/D and median (range) for T_{max} (h).

Table 3. Mean Dose-Normalized Values for Total Exposure (AUC) TO SELECTED TIME POINTS REPORTED FOR PART 1

Analyte	Dose (mg)	AUC ₀₋₄ /Dose (ng·h/mL/mg)	AUC ₀₋₈ /Dose (ng·h/mL/mg)	AUC _{0-t} /Dose (ng·h/mL/mg) ^a	AUC _{0-∞} /Dose (ng·h/mL/mg)
Morphine	3 (n=18)	2.07 ± 0.798	2.74 ± 0.977	2.47 ± 0.902	4.24 ± 1.97b
	12 (n=18)	2.09 ± 0.738	2.75 ± 0.853	2.48 ± 0.809	4.55 ± 1.17°
Morphine-3β-D-glucuronide	3 (n=17)	67.5 ± 16.8	98.2 ± 19.8	124 ± 25.0	157 ± 34.9
	12 (n=18)	66.9 ± 13.0	97.1 ± 17.7	123 ± 23.4	158 ± 29.3
Morphine-6β-D-glucuronide	3 (n=17)	12.1 ± 2.68	17.0 ± 3.06	19.3 ± 3.62	25.3 ± 6.23b
	12 (n=18)	11.8 ± 1.73	16.6 ± 2.28	18.8 ± 2.66	25.9 ± 4.53b
Oxycodone	2 (n=18)	5.06 ± 1.91	7.62 ± 2.75	9.20 ± 3.35	9.62 ± 3.55
	8 (n=18)	4.85 ± 1.78	7.50 ± 2.52	9.14 ± 3.02	9.62 ± 3.20

All results are mean ± SD.

a Time values for t in $AUC_{0-t}/dose$ calculations were 6 hours for morphine, 16 hours for morphine-3 β -D-glucuronide, 12 hours for morphine-6 β -D-glucuronide, and 16 hours for oxycodone. bn=16.

cn=15.

AUC = area under the plasma concentration-time curve; $AUC_{0\cdot4}$ = AUC from time 0 to 4 hours; $AUC_{0\cdot8}$ = AUC from time 0 to 8 hours; $AUC_{0\cdot1}$ = AUC from time 0 to the time of last non-zero concentration; $AUC_{0\cdot\infty}$ = total area under the AUC.

——— Morphine-3β-p-Glucuronide 50-FIGURE 2. A) PLASMA CONCENTRATIONS FOR ALL ANALYTES AFTER ADMINISTRATION OF A SINGLE DOSE OF MOXDUO 3 MG/2 MG; -- Oxycodone B) PLASMA CONCENTRATIONS FOR ALL ANALYTES AFTER ADMINISTRATION OF A SINGLE DOSE OF MOXDUO 12 MG/8 MG. Time Since Last Dose (h) 12 MorphineMorphine-6β-p-Glucuronide 10 Data are mean ± SD. 0.010-1000.000 0.100-100.000 10.000 1.000 0.001 В Mean Plasma Concentration (ng/mL) 25 —— Morphine-3β-D-Glucuronide 50 --- Oxycodone Time Since Last Dose (h) 12 MorphineMorphine-6β-p-Glucuronide 10. Data are mean ± SD. 0.010-100.000 1000.0001 0.100 0.001 10.000 1.000 4 Mean Plasma Concentration (ng/mL)

- Steady-state conditions for all analytes were reached prior to the day 6 dose administration (Figures 3 and 4)
- This is most clearly illustrated in the 4 hour-dosing interval profile, where the pre-dose concentrations are similar to the 4-hour concentrations for each analyte (Figure 4)

FIGURE 3. PLASMA CONCENTRATIONS FOR ALL ANALYTES AFTER STEADY STATE ADMINISTRATION OF MOXDUO 12 Mg/8 Mg (FULL PROFILE)

FIGURE 4. PLASMA CONCENTRATIONS FOR ALL ANALYTES AFTER STEADY STATE ADMINISTRATION OF MOXDUO 12 Mg/8 Mg: Samples From Time 0 to 4 Hours (dosing interval)

- Plasma concentration-time profiles from subjects administered the 12 mg/8 mg dose every 4 hours since day 4 show that day 6 morphine, M3C, and M6C plasma concentrations declined in a parallel manner, suggesting similar disposition (Figure 3)
- \bullet T_{max} values for all analytes were similar to those observed after a single-dose administration in part 1 of the study
- The accumulation index determined from the C_{min} values at steady state and after a single dose (4-hour point from Part 1) was 3.16 ± 0.927 for morphine, 2.59 ± 0.623 for M3G, 2.49 ± 0.618 for M6G, and 2.10 ± 0.319 for oxycodone

Bioequivalence Analysis of Pharmacokinetic Metrics From Part ${\bf 1}$

• Results of pairwise statistical analyses of the dose-normalized pharmacokinetic parameter values between the low-strength 3 mg/2 mg capsule and the high-strength 12 mg/8 mg capsule in part 1 of the study are shown in **Table 4**

Table 4. Statistical Analyses of Dose-Normalized, LOG-TRANSFORMED PHARMACOKINETIC PARAMETERS FOR ALL Analytes Comparing Low-Strength (3 mg/2 mg) With HIGH-STRENGTH (12 MG/8 MG) MOXDUO CAPSULES

Analyte	PK Parameter	Point Estimate, %a	90% CI
Morphine	AUC ₀₋₄ AUC ₀₋₈ AUC _{0-t} ^b AUC _{0-∞} C _{max}	97.06 97.87 97.64 92.07 98.77	86.33-109.12 89.81-106.65 88.82-107.34 84.26-100.59 83.10-117.39
Morphine-3β-D-glucuronide	AUC ₀₋₄ AUC ₀₋₈ AUC _{0-t} ^b AUC _{0-∞} C _{max}	99.28 100.42 99.88 99.60 98.31	90.14-109.33 94.01-107.27 93.32-106.90 92.44-107.32 89.95-107.45
Morphine-6β-D-glucuronide	$\begin{array}{c} AUC_{0\text{-}4} \\ AUC_{0\text{-}8} \\ AUC_{0\text{-}t} \\ AUC_{0\text{-}\infty} \\ C_{max} \end{array}$	100.72 102.37 102.01 96.00 99.92	90.60-111.98 94.61-110.77 93.94-110.77 86.70-106.29 91.92-108.61
Oxycodone	$\begin{array}{c} AUC_{0\text{-}4} \\ AUC_{0\text{-}8} \\ AUC_{0\text{-}^{b}} \\ AUC_{0\text{-}\infty} \\ C_{max} \end{array}$	102.48 100.43 99.38 98.42 109.62	92.40-113.66 94.76-106.45 94.04-105.03 92.88-104.28 97.47-123.28

aPoint estimates of the ratios of the geometric means.

From testimates of the ratios of the geometric means. The time values used for t in the AUC_{0+t} calculations were 6 hours for morphine, 16 hours for morphine-3β-D-glucuronide, 12 hours for morphine-6β-D-glucuronide, and 16 hours for oxycodone. AUC = area under the plasma concentration-time curve; AUC₀₊₄ = AUC from time 0 to 4 hours; AUC₀₋₈ = AUC from time 0 to 8 hours; AUC₀₊₆ = AUC from time 0 to the time of last non-zero concentration; AUC₀₋₈ = total area under the AUC; C_{max} = maximum observed plasma constantiation; AUC₀₊₆ = AUC from time 0 to the time of last non-zero concentration; AUC₀₋₈ = total area under the AUC; C_{max} = maximum observed plasma constantiation; AUC₀₊₆ = AUC from time 0 to the time of last non-zero concentration; AUC₀₋₈ = total area under the AUC; C_{max} = maximum observed plasma constantiation; AUC₀₋₈ = AUC from time 0 to the time of last non-zero concentration; AUC₀₋₈ = total area under the AUC; C_{max} = maximum observed plasma constantiation; AUC₀₋₈ = AUC from time 0 to the time of last non-zero concentration; AUC₀₋₈ = total area under the AUC; C_{max} = maximum observed plasma constantiation; AUC₀₋₈ = AUC from time 0 to the time of last non-zero concentration; AUC₀₋₈ = total area under the AUC; C_{max} = maximum observed plasma constantiation; AUC₀₋₈ = AUC from time 0 to the time of last non-zero concentration; AUC₀₋₈ = total area under the AUC; C_{max} = maximum observed plasma constantiation; AUC₀₋₈ = AUC from time 0 to the time of last non-zero concentration; AUC₀₋₈ = total area under the AUC; C_{max} = maximum observed plasma constantiation; AUC₀₋₈ = AUC from time 0 to the time of last non-zero concentration; AUC₀₋₈ = total area under the AUC; C_{max} = maximum observed plasma constantiation; AUC₀₋₈ = AUC from time 0 to the time of last non-zero concentration; AUC₀₋₈ = AUC from time 0 to the time of last non-zero concentration; AUC₀₋₈ = AUC from time 0 to the time of last non-zero concentration; AUC₀₋₈ = AUC centration: CI = confidence interval: PK = pharmacokinetic.

- Results show that the 90% CIs for all the dose-normalized parameters for $C_{max'}$ AUC_{0-4} , AUC_{0-8} , AUC_{0-8} , AUC_{0-8} , and $AUC_{0-\infty}$ are within the equivalence limits of 80% and 125% for all measured analytes
- · The observation that all of the pharmacokinetic parameters fall within the equivalence limits for the 90% Cls provides conclusive evidence of dose proportionality between the 3~mg/2~mg dose and the 12~mg/8~mg dose
- A statistically significant difference in sex was found for oxycodone in dose-normalized, log-transformed AUC₀₋₄, AUC₀₋₈, AUC₀₋₁ and $AUC_{0-\infty}$, which were consistently higher in women than in men (41%-55% higher in women)
 - These sex differences were similar to those noted in a previous pharmacokinetic study¹²

Safety

- · Oral doses of MoxDuo were well tolerated by healthy subjects. This was expected since all subjects received naltrexone prior to opioid dosing
 - Seven of the 18 subjects (38.9%) experienced a total of 14 treatment-emergent AEs
 - Eight events were mild in severity and 6 were moderate in severity; none were considered serious
 - The number of patients who experienced AEs related to MoxDuo are as follows: headache (3), dizziness (2), nausea (3), gastrointestinal pain (1), hyperhidrosis (1), and pallor (1)

Conclusions

- In the dual-opioid combination MoxDuo, morphine and oxycodone exhibit pharmacokinetic properties that are linear and dose proportional over a dosage range of 3 mg/2 mg to 12 mg/8 mg (morphine/oxycodone)
- Pharmacokinetic parameters for oxycodone, morphine, and morphine metabolites following administration of MoxDuo were consistent with results obtained for the individual drugs in previously published studies8-11
- · Steady-state plasma concentrations for both morphine and oxycodone were achieved within 48 hours of MoxDuo administration
- Steady-state accumulation was observed for both morphine (approximately 3 times single dose C_{min}) and oxycodone (approximately 2 times single dose C_{min}) with administration of the 12 mg/8 mg dose every 4 hours
 - This low-level accumulation would be expected, considering the single-dose pharmacokinetics of morphine and oxycodone observed in the dual-opioid formula and the dosing interval
- Single-dose AUC values for oxycodone were higher in female subjects, as observed in a previous pharmacokinetic study¹²
- Both MoxDuo 3 mg/2 mg and 12 mg/8 mg were well tolerated (in naltrexone pretreated subjects)

REFERENCES

- 1. Trescot AM et al. Pain Physician. 2008;11:S5-S62.
- 2. Blumenthal S et al. Anesth Analg. 2007;105:233-237.
- 3. Lauretti GR et al. Br J Cancer. 2003;89:2027-2030.
- 4. Ross FB et al. Pain. 2000;84:421-428.
- 5. Nielsen CK et al. Pain. 2007;132:289-300. 6. Lugo RA, Kern SE. J Pain Palliat Care Pharmacother. 2004:18:17-30.
- 7. Lugo RE, Kern SE. J Pain Palliat Care Pharmacother. 2002;16:5-18
- 8. Osborne R et al. Clin Pharmacol Ther. 1990;47:12-19.
- 9. Gourlay GK et al. Clin Pharmacol Ther. 1989:46:463-468.
- 10. Lalovic B et al. Clin Pharmacol Ther. 2006;79:461-479.
- 11. Gammaitoni AR, Davis MW. J Clin Pharmacol. 2002;42:192-197.
- 12. Kaiko RF et al. Clin Pharmacol Ther. 1996;59:52-61.