

1

You’ve Got Data! : Using SAS® from Data Receipt to Reporting
Phil Vecchione, Cognigen Corporation, Buffalo NY

ABSTRACT
In a fast-paced, pharmaceutical data analysis environment, the
transfer of data needs to be quick and accurate. A number of
steps are involved in coordinating data transfers. Data must be
received, processed, and verified; proof of receipt needs to be
communicated to the sender; and the internal team needs to be
updated about the newly arrived datasets. These steps can be
time consuming, prolonging the time to analyze and submit data
to the FDA.

SAS® can be used to automate each of these steps, decreasing
the time for data transfers. Macros can be written to access the
Data Dictionary Tables to assemble and report on metadata.
Additionally, macros utilizing the Proc Contents OUT option can
be used to look at libraries of data, as well as individual tables,
and identify missing variables or datasets. ODS HTML output can
be used to create web-based reports to keep track of received
data. Furthermore, SAS generated email can be used to update
internal team members. Utilizing a combination of the above
programming strategies will make the data receipt process more
efficient, allowing for data analysis to start sooner, and
contributing to reduced costs in the development of new drugs.

INTRODUCTION
Data transfer should be a transparent process. That is to say, in
the larger scheme of planning an analysis, one should not
concern oneself with the steps taken in the receipt of new data.
Data should be sent from a site to your company and should be
available to use when it arrives. Senders should know that their
data has been received correctly, and internal users should be
informed as soon as the new data arrives. In a good system, data
transfers should be taken for granted.

A number of steps occur during data transfer, and critical
information needs to be communicated to the sender and to the
internal team. A tight communication loop between sender and
internal team ensures that problems can be identified quickly and
resolved shortly after they are detected. Often problems that
occur are not in the data transfer process, but rather within the
data itself. Incomplete data can include missing variables,
missing datasets, or even missing observations. Problems that
can occur within the transfer are often communication issues
where internal members are unaware of new data or unable to
locate archived data. A tight communication loop allowing for
faster and less problematic data transfers is crucial. At Cognigen
we strive to establish this communication loop with each of our
data transfers.

Cognigen provides data analysis and consulting services for the
pharmaceutical and biotechnology industries during clinical
development of new medicines. The population-based statistical
and pharmacokinetic/pharmacodynamic modeling performed at
Cognigen requires targeted data assembly of multiple datasets
within and across clinical trials. As a data analysis firm, we
receive data from a number of different sponsors for various
projects. Each of these sponsors has their own data management
systems and database structures. Many sponsors also contract
with laboratories or CROs that generate data and transmit it
directly to Cognigen periodically during the course of the study.

Typically we receive clinical data as SAS transport files containing
20 or more datasets, comprising the various database tables used
by the sponsor. CROs will often send Excel® files instead of SAS
datasets. During the course of a given project we may receive
updates of data several times. At each transfer we need to make

sure that any data issues are identified and communicated to our
sender as quickly as possible and that the internal team is aware
of new data and knows how to locate that data within our data
storage model.

To facilitate these types of checks and communications, we have
developed a number of SAS programs that utilize various features
of the SAS language. These programs have helped to reduce the
time it takes to perform the data transfer process and have
increased our ability to identify potential problems as new data
arrives rather then during the data assembly or analysis phase.

This paper addresses the overall data receipt process, some SAS
features that can be utilized to automate the collection of
metadata, and then demonstrates how they are put together to
create a faster and more information rich process.

DATA TRANSFER PROCESS
To fully understand how SAS can facilitate the data transfer
process, it is best to start with the definition of the process. In the
simplest sense, data transfer is the movement of data from one
source to another. The sender is therefore the person or entity
that sends the data, and the recipient is the person or entity that
receives the data.

Typical data transfers should include the following steps: Receipt
of Data, Processing of Data, External Confirmation, and Internal
Confirmation.

RECEIPT OF DATA
The receipt of data is simply the arrival of data to the recipient.
This data can come by conventional mail, email, or FTP. It may
be compressed, encrypted or both. Compressed data can be in
the form of data compression programs such as ZIP or GZIP or it
can be in the form of SAS Transport Files. Received data has to
be moved to some file system where it can be processed.

The only types of errors that occur at this stage have little to do
with the actual data, but rather in how it was sent, for example,
files may have been corrupted.

PROCESSING OF DATA
At this point the newly arrived data is processed. Part of this
process is the SOPs that are used to handle new data and the
use of programs to transform the data into a format that can be
used for data assembly and analysis. Often part of this phase is
to load the data into a database system (Oracle®, Ingres®, etc.),
or to transform this data into SAS datasets. The overall goal at
this phase is to transform the data into a format that is useable by
others within the company.

This is the stage where the data content errors are detected. The
sender may not have sent all the datasets required, datasets may
be missing crucial variables, or there may be missing
observations. The absence of any of the types of data described
above may impede data analysis or may stall it completely,
depending on the severity of the discrepancy.

EXTERNAL CONFIRMATION
Once data has been received and transformed, it is common to
inform the sender that the data has been received. In the
external confirmation it is good practice for the recipient to give
control totals for the data that has been received. This would
include the number and names of the datasets received, as well
as number of observations and variables for each dataset. This
allows the sender to verify that the data was received intact.

2

Often errors in sent data can be identified at this phase, when the
sender reviews the external receipt.

INTERNAL CONFIRMATION
Internal confirmation is the process by which the other members
of the recipient’s company are informed of the receipt of new data.
This can take the form of updating a database, sending out an
email, publishing an HTML report, or some combination of these
and other techniques. The goal at this phase is to make the other
members of the recipient’s company aware of new data, so that
they can take appropriate action.

Documentation is very important at this point. A good data
transfer system employs a data receipt log. This log can be a flat
file, a SAS dataset, even a database. The log contains metadata
about the transmission of data, including what files were sent,
their contents, etc. This log is a valuable resource for determining
what data has been received and when it was received.

Communication errors could occur at this stage. If the team is not
informed about the newly arrived data, the analysis could be
delayed until it is located, or the data is skipped and not used in
the analysis.

SAS TECHNIQUES
SAS has a number of metadata and reporting tools available that
can be utilized to view information about datasets and libraries.
Most are easy to program and provide useful information during
the Data Receipt process. Each technique is described below,
including example programs to highlight each technique.

DATA DICTIONARY TABLES
These tables are a collection of SAS views that contain
information about SAS libraries and datasets. They are the best
source of metadata. They are located in the SASHELP library,
and can be accessed with PROC SQL or by using a DATA step.

The VMEMBER table contains some basic information about
each dataset in a library. Its two most useful data elements are
the Engine Name (engine) and the Path Name (path). The
Engine Name will tell you the dataset version, and the Path will
give you the physical location of the dataset on your file system.

The VTABLE table contains more information about individual
datasets, including Number of Observations (nobs), and Number
of Variables (nvar). This is great information that can be
summarized about each dataset in a library.

At Cognigen, we employ a macro called datasum to create a
custom report on a library of data. Datasum exclusively uses the
data dictionary tables to accomplish this.

Datasum
MACRO CALL: %datasum(whatlib=libref, mode=[C,S])

FUNCTION: Displays information about the specified library,
creates a list of all the datasets in a given library, and lists the
number of observations and variables for each dataset.

MECHANISM: The macro variable whatlib refers to the library to
be analyzed. The macro variable mode has two settings, C for
creation and S for summary. In creation mode, the creation and
modification date for each dataset are suppressed. This mode is
used when datasets are first created and the creation date and
modification date are the same. In summary mode the dataset
creation date and modification date are shown, and if the two
dates differ, a text flag is displayed in the output to indicate that
the dataset has been altered.

The VMEMBER view is used to provide information about the
library, and the VTABLE view is used for creating a summary for
each dataset within the library.

The Library Summary is created by using PROC SQL to retrieve
the information from VMEMBER. This PROC SQL uses the flow
option so that the directory path of the library wraps rather then
skews the output. Grouping by libname and adding the count
statement reduces the info in VMEMBER from individual tables to
information about the library.

The Dataset Summary is created by accessing VTABLE using a
data step with a where clause for the library of interest. The
Dataset Summary table is then printed using a PROC PRINT.
Using both PROC SQL and a DATA step, the program is able to
summarize information about the library and the individual
datasets within the library. Excerpts of the code are shown below:

/* Create Library Summary from DDTs */
title "Library Summary from library: &whatlib";
proc sql flow;
 select libname, engine, path,
 count(1) as Datasets

 from sashelp.vmember
 where libname=upcase("&whatlib")
 group by libname, engine, path;

/* Create Data Set Summary Table from DDTs */
data work.dsinfo;
 set sashelp.vtable
 (keep= libname memname memtype nobs
 nvar memlabel crdate modate);
 where libname=upcase("&whatlib");
run;

 /* Print out Data Set Summary */
proc print data=work.dsinfo label noobs;

 var memname memtype nobs nvar memlabel;
 title 'Data Set Summary';

run;

EXAMPLE OUTPUT: The output that datasum creates for a
fictitious library named GENLIB, looks like this:

 Library Summary from library: genlib

Library Engine
Name Name Path Name DATASETS
--
GENLIB V612 /doc/temp/data/ 3

 Data Set Summary

Member Member Number of Number of Dataset
Name Type Observations Variables Label
--
CONC_01 DATA 201 15 PK Data
SERA_01 DATA 202 12 Site 01
SERA_1_1 DATA 201 10 Site 09

PROC CONTENTS OUT OPTION
PROC CONTENTS is a very useful tool for describing individual
datasets. The information contained in PROC CONTENTS is the
same information that is contained in the Data Dictionary Tables.
In the case of PROC CONTENTS this data is pulled together by
SAS for a specific purpose, such as summarizing the metadata
about a given dataset. If you are not familiar with the Data
Dictionary Tables, PROC CONTENTS is a great source of
metadata.

3

PROC CONTENTS has an OUT option that will create a dataset
that contains all the information from the PROC CONTENTS
procedure. This dataset can then be manipulated to obtain
information about the variables for each dataset.

We have created a suite of macros designed to rapidly
summarize the structure of the incoming data, determine if
variables have been added or removed, locate specific variables
by keyword, and determine missing data in key datasets. We refer
to this suite as the VAR family. These macros, when added to a
program written to unpack a transport file or to load data from
another file format, provide concise output, which enables the
programmer to identify potential problems with the data. Each
member of the VAR family is described below.

VARLIST
MACRO CALL:
%varlist (whatlib=libref, wherelib=libref, print=(0 | Null))

FUNCTION: To create a list of all the variable names within a
given library and to list all cases where a variable exists in more
than one dataset.

MECHANISM: Varlist runs on a specified library of data that is
defined in the whatlib parameter. It creates a list of all the
datasets in the specified library and then begins to assemble a
dataset that contains the memname (dataset), variable name,
type, length, label, format, and informat.

Once the dataset is assembled, a list of the dataset is printed
using PROC PRINT. Then a second list is created using a DATA
NULL step that prints a summary for each variable that is
contained in multiple datasets. This list contains the variable
name, label, and a list of all the datasets in which the variable is
contained.

Varlist has two other parameters that can be used by other
programs and are used by the other members of VAR family. The
first is the wherelib parameter. This parameter is used to
determine the library where the metadata dataset will be created.
Typically WORK is the specified directory, so no permanent
dataset is created. If a permanent dataset is desired, then define
another libref, and varlist will output the dataset to that library.

The second parameter is the print parameter. This parameter is
optional. When it has the value of 0, varlist does not create the
two lists described above. When the parameter is not specified or
given any value other then 0, the lists are printed. This parameter
is used by the other VAR family macros so that varlist creates the
necessary datasets but does not create a text output when called.

Varlist assembles its list of variable names by using PROC
CONTENTS with the OUT option. A loop is created that
processes the code below for each dataset.

proc contents data=&whatlib..&&ds&i noprint
 out=work.tmpvar
 (keep=memname name type length
 label format informat);
run;

Each iteration of the loop creates the PROC CONTENTS dataset
for a dataset in the library of interest. This dataset called tempvar
(temporary variable list) and then appends it to a dataset called
mvarlst (master variable list). The dataset mvarlst is then sorted
and printed to create the first list containing all the variables in the
specified library.

After printing the complete list of all variables, the macro takes the
mvarlst dataset and removes all records that only appear once,
and prints the variables that appear in more than one dataset by
using a DATA NULL step. The code that creates this listing is

shown below:

data work.multvars;

 set &wherelib..mvarlst;
 by name;
 if first.name and last.name then delete;

run;

data _NULL_ ;
%if &print ne 0 %then %do;
 set work.multvars;
 by name;
 file print;
 bline=repeat ('-', 30);
 if first.name then do;
 put //@5 'Variable Name: '
 @22 name
 / @5 'Label: '
 @13 label;
 put @4 bline;
 put / @5 'Data Sets: '
 @17 memname;
 end;
 if not first.name then do;
 put @17 memname;
 end;
%end;

run;

EXAMPLE OUTPUT: When Varlist is run on a library called
samplib, the output is shown below:

 Complete list of Variables from:
 SAMPLIB

MEMNAME NAME TYPE LENGTH LABEL FORMAT

BLODSAMP DAY 1 8 STUDY DAY
DRUGADMN DAY 1 8 STUDY DAY
EXAM DAY 1 8 DAY
MEAL DAY 1 8 STUDY DAY
QUESTION DAY 1 8 STUDY DAY
VITALS DAY 1 8 DAY
FORMATS DEFAULT 1 5 DEFAULT
EXAM DESCR1 2 40 DESC1
EXAM DESCR2 2 40 DESC2
DEMOG DOB 1 8 DATE OF BIRTH DATE

Variable Name: BIRTHD
Label: Date of Birth

Data Sets: DEMOG

 SUMMARY

It can be seen that the variable birthd is found in both the demog
and summary datasets.

As stated above, VARLIST is called by the other members of the
VAR family to create a dataset of variable information, so that the
other macros can do different types of metadata analysis. A
shorter description of those macros are given below:

VARFREQ
MACRO Call: %varfreq (whatlib=libref, thr=[0.01-1.0])

FUNCTION: To summarize from a list of variables in a library the
variables that appear in a specified percentage of datasets and to
create a summary list of all known formats for that library.

MECHANISM: Varfreq is an extension of Varlist. It was designed
to create more directed and summarized output from the data

4

generated by Varlist. It has replaced Varlist as the macro we use
to summarize libraries of data. While Varfreq may have replaced
Varlist for reporting, it still starts with a macro call to Varlist, with
the print=0 option. Varlist creates the dataset of all variable
names within the specified library from the whatlib parameter.

Then PROC SQL is used to create a summary dataset from the
Varlist output dataset. This new dataset contains a list of each
variable in the library along with the number of datasets in which
that variable is present. That number is then expressed as a
percentage of the total number of datasets in the library. The
percentage calculated is then evaluated against the threshold
parameter (thr), and the observation is deleted if the percentage
is less then the value of the threshold. This creates a dataset of
variables that are present in a specified percentage of datasets.
The final dataset is then listed by using PROC PRINT.

A second dataset of variable names is created based on the
datasets that were above the threshold. The dataset is then
printed using PROC REPORT, displaying the variable name and
a list of all associated datasets in which that variable is located.

Finally, a simple PROC FREQ is done on the original Varlist
dataset to generate a table of all the formats used in the library.

EXAMPLE OUTPUT: The example below shows a typical output
from the Varfreq macro, exemplifying all three listings described
above.

 Variable Frequency For testlib
 Threshold= 0.75

Variable Variable No. of Pct. of
 Name Desc. Tables Tables

 INVNUM Inv. Number 8 100%
 PT_NO Patient No. 8 100%
 STUDY Study Name 8 100%
 VISIT_ORG Visit Name 7 88%
 VISIT_DT Visit Date 7 88%
 DOB Date of Birth 7 76%

 Most Common Variable Summary
 From Library testlib

 Pct.
Variable Name Variable Label Table Data Sets

VISIT_ORG Visit Name 88% DEMO
 EKG
 LABS
 CONMED
 PK
 PKPKD
 VITALSGN

 Format Frequency for Library: testlib
 The FREQ Procedure
 Variable Format

 Cumulative Cumulative
FORMAT Frequency Percent Frequency Percent

 42 22.95 42 22.95
$ 120 65.57 162 88.52
YSN 21 11.48 183 100.00

VARCOMP
MACRO CALL: %varcomp (newlib=libref, oldlib=libref)

FUNCTION: To compare the variable lists from two libraries of
data and to determine which variables have been added, which

have been removed, and which are the same.

MECHANISM: Varcomp starts by creating datasets of metadata
from the two libraries. This is done by calling varlist with the
print=0 parameter, twice. Once the datasets have been made,
they are then merged by memname and variable name and put
into three datasets using the IN option: newvar, lostvar, and
merglst.

The newly created list begins with a summary of the number of
variables in each of the three datasets followed by a list of newvar
and lostvar.

EXAMPLE OUTPUT: The example below shows a typical output
from the varcomp macro where there are differences in the
variables between two libraries.

 VarComp Summary Report

 Number of Variables that are the same: 1128

 Number of Variables that are new: 9

 Number of Variables that are lost: 2

Variables Not In Previous Data Set
(New Variables)

 OBS MEMNAME NAME LABEL

 1 ADE DRUG
 2 ADE PAGEDONE PAGE WAS DONE
 3 DOSTUDY DRUG
 4 EOS DRUG
 5 MED_HX DRUG
 6 OTHMED DRUG
 7 SMEDACC DRUG
 8 VITAL DRUG
 9 VITAL PAGENO PAGE NUMBER

 N = 9

Variables In Previous Data Set but Not In New

Data Set
(Missing Variables)

OBS MEMNAME NAME LABEL

 1 ADE PTINIT PATIENT INITIALS
 2 OTHMED PTINIT PATIENT INITIALS

 N = 2

VARSCAN
MACRO CALL:
%varscan (whatlib=libref, keyword=text, field=[N,L,B])

FUNCTION: To search a list of variable names and labels in
order to locate variables that match the keyword.

MECHANISM: Varscan starts by creating a dataset of metadata
by calling varlist with a print=0 parameter. Then the dataset is
pared down by using a where statement which uses both the
sounds-like and like options to find potential matches to the
keyword that is specified. The keyword has to be a single word.

The field parameter allows the user to specify which fields
varscan should search. A value of N searches only the variable
name field. A value of L searches only the variable label field. A

5

value of B searches both the variable name and label fields. The
default setting is B, and if the field parameter is not included, the
search is performed on both the variable name and label fields.

EXAMPLE OUTPUT: The example below shows a search for both
variable names and variable labels that contain the keyword
“dose.”

B: Variable Name Search for Labels and
Variables that sound like: dose

From Library: lib018

Obs MEMNAME NAME LABEL

1 CONMED DOSE DOSE
2 DRUGADMN DOSE COMPOUND DOSAGE

N = 2

B: Variable Name Search for Labels and

Variables that contain: dose
From Library: lib018

Obs MEMNAME NAME LABEL

1 CONMED DOSE DOSE
2 DRUGADMN DOSE COMPOUND DOSAGE
3 CONMED UNITS DOSE UNITS

N = 3

Each mechanism delivers slightly different results. That is why it
is best to use both mechanisms to increase the chance of locating
the variable of interest.

VARSUM
MACRO CALL: %varsum (whatlib=libref, dset=dataset)

FUNCTION: To summarize a given table and determine for each
variable the number of missing and non-missing values.

MECHANISM: Varsum creates a dataset of variable names from
the dataset specified in the dset parameter. Using that metadata
list as the list of variables in the table, varsum begins to count the
blank and non-blank values for each variable. It does this by
taking each variable one at a time and for each record
determining if the value is missing or not missing then summing
these counts. The metadata for the variable and the number of
missing and non-missing values are then transferred to a new
dataset as a single record.

When all the variables have been scanned, the final dataset of
metadata and counts is then output as a list.

EXAMPLE OUTPUT:

Variable List for dataset: lib1.conc

Num Var Label Type N MISS
1 PROT Protocol Character 884 0
2 CENTER Center # Character 884 0
3 SUBJECT Subject # Character 884 0
4 SAMPLE SampleType Character 884 0
5 DRDTRAW Draw Date Character 884 0
6 DRAWDT Draw Date (SAS)Numeric 884 0
7 VISIT Visit Desc Character 884 0
8 ANALYT Analyte Character 884 0
9 LAB Analytical Lab Character 884 0
10 EXTID External ID # Character 884 0
11 CONC Concen. Character 873 11
12 UNITS Units Character 884 0
13 COMENT Lab Comments Character 17 867

ODS HTML
Most companies have an Intranet site. This Intranet site contains
pages of useful information for the employees of the company.
The Data Receipt Log should be one of the pages of this site. A
centrally located Log allows various team members to determine
what data has arrived and when. It also gives them a historical
log of all data that has arrived.

ODS, or Output Delivery System is a feature in SAS that creates
formatted output that can be used by a variety of programs. In
our discussion we will focus on how it is used to create HTML
pages from SAS Datasets. While SAS/IntrNet® can be used to
create a more interactive resource, a very simple resource can be
created using some familiar PROCs and ODS HTML output. The
best part about ODS HTML is that no HTML experience is
necessary to create web ready reports; SAS will do all the work
for you.

There are a number of predefined HTML color schemes to use,
they are referred to as Styles. These styles are standard and are
supplied with SAS version 8 and can be used without any HTML
experience. With a little understanding of SAS and HTML you
can modify those templates and create your own color schemes.
The program we use in house to create our Data Receipt Log
uses its own custom template, called CogD that we have modified
to display our corporate colors.

In it’s simplest form, a program to create HTML output of a
dataset would look like this:

ods html file='pklist.html';
ods listing close;
ods html style=CogD;

proc print data=work.webrpt label;

 var sponsor drug study filename arrive path;
run;

ods html close;

The output from the Proc Print would then be transformed into a
HTML file named, pklist.html. The output of which would look
something like this:

You can create a more elaborate report by using PROC REPORT
that includes breaks after each sponsor and other formatting.
This report can be further enhanced by using an option in ODS
HTML that will create a web page with frames that will have a
table of contents on the left portion of the page. This table of
contents will allow the user to jump to the section of the Data
Receipt Log that is most important to him/her. The code below
shows the changes that would need to be made to create this
framed webpage:

6

ods html file='datarec_body.html'

 contents='datarec_contents.html'
 frame='datarec_frame.html'
 headtext= '<TITLE> Cognigen Data
 Receipt </TITLE>';

ods listing close;
ods html style=CogD;

proc report data=work.webrpt nowindows wrap
 headline headskip;
 columns study arrive filename mediatyp
 filetype desc confordt path
 sendnote;
 title 'Cognigen Data Receipt Report';
 title2 "Posted On: &outdt";
 footnote;
 by sponsor drug;
 define study/order width=15 spacing=1;
 define arrive/ width=9 spacing=1;
 define filename/ width=50 spacing=1 flow ;
 define mediatyp/ width=20 spacing=1
 flow left;
 define filetype/ width=20 spacing=1
 flow left;
 define desc/ width=50 spacing=1 flow left;
 define confordt/ width=9 spacing=1 left;
 define path/width=100 spacing=1 flow left;
 define sendnote/ width=50 spacing=1
 flow left;
 break after study/ dul ;
run;
ods html close;

The contents of the PROC REPORT step will be contained in
datarec_body.html. The table of contents as determined by the
break option in the PROC REPORT step will be contained in
datarec_contents.html, and the frame page that will incorporate
both of these web pages is named datarec_frame.html. The flow
option was used a number of times on longer text fields to allow
the text to wrap within the confines of the defined cell rather then
letting it skew the report.

When the program is run, the HTML output looks like this:

You can see that the left column now has links to take you to each
section of the report. The right side is the PROC REPORT. By
using the break option, the study values do not repeat and using a
BY value in the PROC REPORT the web page is broken up by
Sponsor and Drug.

We use SAS ODS HTML to post our Data Receipt Log in a format
very similar to the output shown above. We use PROC REPORT
to create a custom report with breaks between every
sponsor/drug combination, and then use the frame option of ODS

HTML to create a table of contents page for the HTML output.
This page is then posted to our Intranet site, and made available
for everyone to use.

The value of ODS HTML is that this type of report can be created
with very little code, and when posted to an intranet site is a
valuable resource for keeping track of data.

EMAIL VIA SAS
The SAS system can generate and send its own email using a
modified filename statement. This email is then generated
automatically by the program and sent to the recipients defined in
the program, as the program is run.

This is a great way to disseminate critical information in a timely
manner. The program can be a macro that is triggered at some
time during the data transfer process, or it can be a program that
is automatically run by the job manager in your operating system,
such as the UNIX® CRON command.

To program SAS to send an email, there is a special filename
statement that is used to define for SAS that this file references
an email. A DATA NULL step is then used to report out the
information to be sent. This DATA NULL step uses the email
filename in the File option; the records are printed out as defined
in the body of the DATA NULL step. When the step is completed
an email is generated and sent.

We employ a program that makes a weekly mailing of all data
received for that week to the directors of each department,
informing them of the data that came in for the week. Excerpts of
the program we use are shown below:

filename emailout email 'pv@cognigencorp.com'
 to=("pv@cognigencorp.com"

 "rtz@cognigencorp.com"
 "gdg@cogngencorp.com"

 "dn@cognigencorp.com");

This statement defines that emailout is to be an email that will be
sent to everyone listed in the TO option. The syntax of the
statement requires that a single address be included after the
email statement, but that address is overridden by the TO option.
The body of the email is handled by this code:

data _null_;

 set work.webrpt end=last;
 by sponsor drug study;
 rptdt= put(&begwk, date9.);
 file emailout
 Subject= 'Weekly Data Receipt Report';
 bline= repeat('-',60);

 if _n_=1 then do;
 put /@20 'Cognigen Weekly Data
 Receipt Report';
 put /@30 "For:"
 put @35 rptdt ;
 end;
 if First.sponsor and first.drug and
 first.study then do;
 put /@4 ' ';
 put /@4 ' ';
 put /@4 bline
 /@5 'Sponsor'
 @15 'Drug'
 @40 'Study'
 /@4 bline;

 put /@5 sponsor
 @15 drug

7

 @40 study
 /@4 bline;

 put /@5 'File Name'
 @40 'Description'
 /@5 '---------'
 @40 '-----------';

 put /@5 filename
 @40 desc;
 end;
if not first.sponsor and not first.drug and
 not first.study then do;
 put /@5 filename
 @40 desc;
 end;

 if last then do;
 put @5 ' ';
 put @5 ' ';
 put /@20 'This report brought
 to you by SAS.';

 end;
run;

When this program runs, it generates an email with a body like
this:

 Cognigen Weekly Data Receipt Report
 For:02JUN2002

--
Sponsor Drug Study
--
Drug Co. Drug X Study 101
--
File Name Description
--------- -------------
Patient 103 CRF Data(various)
Patient 104 CRF Data(various)
Patient 105 CRF Data(various)

--
Sponsor Drug Study
--
GENDRUG GD001 02-14
--
 File Name Description
--------- -----------
GD001_02-14_AGE.xls Patient Ages

 This report brought to you by SAS.

This makes a great summary report that can be generated and
automatically sent from an existing Data Receipt Log via SAS.

WHERE PROCESS MEETS PROGRAMMING
The true power of SAS comes when programming is integrated
with process. This section will pull together the data transfer
process we have discussed along with the programming
techniques to create a more automated process. It will be
discussed in the context of Cognigen’s data transfer practices.

RECEIPT OF DATA
There is not much automation that SAS can provide at this level.
Basically, the sender has sent data to the recipient. That data is
not yet available to be analyzed by SAS.

PROCESSING OF DATA
This is the most crucial stage to detect data content errors. At
this stage, SAS can interface with the data via a SAS dataset. As
a SAS dataset there is now metadata associated with each
dataset. This metadata can be accessed using the Data
Dictionary tables or the PROC CONTENTS OUT option.

We use %datasum to create a listing with metadata about the
library (from VMEMBER) and the individual datasets (from
VCOLUMNS). This is especially true if the transmission of data
was in the form of a SAS Transport file and contains 20 or more
datasets. Often we will receive control totals from our senders,
telling us how many observations are in each dataset. In the past
we would take that list and compare it to the log file of the
program that unpacked the data. The log file is often cluttered
with additional notes, and picking out the line for each dataset
unpacked could be tedious. With %datasum we are able to
produce a single, easy to read table that makes verification easy
and quick.

At this stage of data transfer, it is important to ascertain if any
data is missing in the form of missing datasets or missing
variables. Since we often get our data in the form of transport
files, we are concerned about what variables are contained in the
datasets provided and how complete is each dataset. If there are
missing variables or too many missing observations, we may not
be able to properly assemble and analyze the data. By using the
VAR family of macros we can quickly look at the metadata of all
the datasets in a library and determine:

• Missing variables by using VARSCAN to look for
keywords such as dose, conc, age, sex, race.

• Newly added or deleted variables using VARCOMP to
compare the data from the previous transmission to the
current transmission.

• Merge Variables by using VARFREQ to find all the
variables that appear in a significant number of
datasets.

• Types of formats used by using VARFREQ to generate
a complete listing of formats used in the library.

• Completeness of data by using VARSUM to look at the
number of missing and non-missing values in a given
table.

Using all these tools on newly arrived data allows us to identify
problems as we receive new data, rather than during the data
assembly phase. Problems that are found at this stage can be
communicated to the sender as well as the internal team. This
tight turnaround allows the sender to correct the problems and re-
transmit quickly.

EXTERNAL CONFIRMATION
It is important to communicate back to the sender exactly what
was sent. In the case of missing or incomplete data, problems
can often be found and corrected if the sender is aware of exactly
what was received. In many cases the error is that the wrong
dataset was sent. In this case we use %datasum again to provide
an easy to read table of all received datasets along with their
number of observations and variables. The output from
%datasum is pasted into a boilerplate receipt email and sent to
the Sender.

If any errors are found in any of the datasets using the VAR
macros we will communicate those queries to the sender. For
instance, we once received locked PK concentration data from a
CRO. This data was to be used at once in a data analysis. The
Excel® file of concentrations was processed and transformed into
a SAS® dataset and a varsum call was added to the end of the
program. From the output of varsum, it was shown that 11 records
had missing concentration values. Because this data was locked
and our analysis of it was about to proceed, we contacted the
sender one hour after the data arrived and confirmed with them

8

that the missing values could not be recovered.

Had we not found the missing variables with varsum, they would
have been found in the middle of data assembly, and would have
delayed data assembly until the above confirmation was made.

INTERNAL CONFIRMATION
As important as it is for the sender to know when data has been
received, it is equally important for the internal team members to
know that data has arrived, and to give them any additional
information about the data based on the findings during the
processing phase.

At Cognigen we send a receipt to the sender and a Data
Summary Report to the internal team members. The Data
Summary Report consists of output from %datasum as well as
output from the VAR family macros, typically %varsum and
%varcomp. This report provides information about the library, as
well as the individual datasets, and the variables within the
datasets. The report is easy to read and rich in information. It is
easy to assemble this report because the macros do all the work
within the program that unpacked or transformed the data.

In addition to our Data Summary Report, we post our Data
Receipt Log to our Intranet site. That Data Receipt Log is
produced using ODS HTML. This central source for our Log
allows all internal company users to look up what data has been
received, giving them filenames, descriptions, and locations of
data.

In order to keep Management informed of what data arrives
weekly, we used the Email filename to create a summary report of
all the data that has been received for the week. The program
that generates this message has been put into our CRON
program and every Friday afternoon the program is run and the
report is sent without any human intervention.

CONCLUSION
The data transfer process is an important part of any CRO or
departments’ activities. It is a multi-step process that requires a
combination of procedure and programming. SAS can be used to
create programs that can automate the collection and analysis of
the metadata. From this analysis of metadata, potential problems
that could delay data assembly and analysis can be identified and
resolved.

SAS can also be used to facilitate the reporting of received data.
Web pages of data receipt information, in the form of SAS
datasets, can be created easily using ODS HTML. Email
containing information from SAS datasets can also be sent out
from SAS, creating an automated system that increases the
overall level of communication within a team or department.

Data Transfer should be a transparent process, but that does not
mean that it should be a silent process. There is a wealth of
information that can be gained by looking at the metadata. This
information can be harvested by the programmers assembling the
data to speed up assembly and preparation of the data for
analysis.

Because of the length and cost of the Drug Development process,
any system that contributes to a reduction in time for data analysis
has an impact in the time to bring a new compound to market. By
decreasing the time invested in data transfer and increasing the
information that can be gained from data transfer, data assembly
can occur more quickly. This leads to more time for data
analysis. It is during data analysis where discoveries are made
and information based decisions are made.

REFERENCES
Vecchione, Phil (2002), “Rapid Assessment of Data Set
Structures”, Proceedings from the 2002 Conference of the
Pharmaceutical Industry SAS Users Group, Cary, NC: SAS
Institute Inc., 177-180.

ACKNOWLEDGMENTS
The Cognigen data transfer process and programs would not be
possible without the trust and guidance of Kathy Reitz, the
Manager of Data Management, who let me derive both the
process and programming, which has formed our data transfer
system.

In addition I have to thank the SAS programmers in the Data
Management department who answered endless questions and
reviewed program after program as this system evolved. Without
their knowledge and feedback this system could not exist.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Phil Vecchione
 Cognigen Corporation
 395 Youngs Road
 Buffalo, NY 14221-5831
 Work Phone: 716-633-3463 (ext. 260)
 Fax: 716-633-7404
 Email: phil.vecchione@cognigencorp.com
 Web: www.cognigencorp.com

SAS® and all other SAS Institute Inc. product or service names
are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration. Other
brand and product names are registered trademarks of
trademarks of their respective companies

